CN105565781A - 一种用于热喷涂的红外辐射陶瓷粉末及其制备方法 - Google Patents
一种用于热喷涂的红外辐射陶瓷粉末及其制备方法 Download PDFInfo
- Publication number
- CN105565781A CN105565781A CN201510996309.5A CN201510996309A CN105565781A CN 105565781 A CN105565781 A CN 105565781A CN 201510996309 A CN201510996309 A CN 201510996309A CN 105565781 A CN105565781 A CN 105565781A
- Authority
- CN
- China
- Prior art keywords
- powder
- infrared radiation
- radiation ceramic
- comn
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
- C04B2235/763—Spinel structure AB2O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
本发明公开了一种用于热喷涂的红外辐射陶瓷粉末,其由下列质量比的物料配制而成:CoMn2O4粉:TiO2粉<b>=</b>100:3~5。其中:所述的CoMn2O4粉具有尖晶石结构,由平均粒径小于45μm的CoO和MnO的固体粉末按质量比例为38:71进行配制,所述TiO2粉的平均粒径为50~100nm。本发明还提供了一种所述的红外辐射陶瓷粉末的制备方法。本发明提供的红外辐射陶瓷粉末,可采用爆炸喷涂、超音速火焰喷涂和等离子热喷涂方法在发动机叶片、涡轮盘或高超音速飞行器表面沉积涂层。该涂层具有优异的红外辐射性能,可通过增强辐射传热,加快基材与自然环境的热交换速率,快速降低材料表面温度。
Description
技术领域
本发明属新材料技术领域,具体涉及一种用于热喷涂的高发射率红外辐射陶瓷粉末材料及其制备方法。
背景技术
叶片和涡轮盘是航空发动机热端的关键部件之一,因而要求材料具有优良的力学和耐热性能。镍基高温合金在高温下性能稳定,在一定时期内有效保证了发动机的可靠性和耐久性,成为制造先进航空发动机高压涡轮盘等关键热端部件的首选材料。随着航空发动机推重比的提高,先进发动机涡轮前工作温度已高达1750℃左右,这需要合金材料具有较高的承温能力和性能稳定性。涡轮前燃气温度对发动机推重比有着最直接、最显著的影响,军用航空燃气涡轮发动机对涡轮前温度要求更高,国外高性能五代机涡轮前温度甚至高达1970~2070℃,已超出当前叶片、轮盘材料的承受能力。目前主要通过压气机出口空气强制冷却和在表面涂覆热障涂层来进行表面防护,但这只是通过增加涂层热阻将减缓热量传导和强制对流散热来降低材料表面温度。此外,高速飞行器在以5马赫的速度穿越大气层时,摩擦产生的热量在10~15s内就足以将金属熔融,仅通过在材料表面喷涂0.3~0.5mm的热障涂层进行防护,并不能有效保证飞行器的可靠性,因此亟需开发新型散热材料。此外,在温度超过1000℃时,辐射传热在对流、传导和辐射3中传热方式中所占比例高达85%以上。
发明内容
本发明为了解决现有高温材料散热性能不够理想,还不能耐受特高温的技术问题,提出一种用于热喷涂的高发射率红外陶瓷粉末及其制备方法。
本发明提出了一种用于热喷涂的红外辐射陶瓷粉末,其由下列质量比的物料配制而成:
CoMn2O4粉:TiO2粉=100:3~5;
其中:所述的CoMn2O4粉具有尖晶石结构,由平均粒径小于45μm的CoO和MnO的固体粉末按质量比例为38:71进行配制,所述TiO2粉的平均粒径为50~100nm。
本发明还提出了一种红外辐射陶瓷粉末的制备方法,其步骤如下:
步骤1:CoMn2O4红外辐射陶瓷粉末的制备
选择高温性能稳定的CoO和MnO固体粉末按比例均匀混合,用水喷雾加湿粉末冷压制成坯体,在1200℃~1350℃高温烧结1~2h,冷却至室温后破碎、磨细至平均粒径45μm以下,得到稳定尖晶石结构的CoMn2O4红外辐射陶瓷粉末;
步骤2:Ti2+掺杂的红外辐射陶瓷粉末的制备
将CoMn2O4粉末和TiO2粉按比例均匀混合,用水喷雾加湿冷压制成坯体,然后在1350℃~1400℃高温下烧结1~2h,取出立即进行淬火处理,提高陶瓷粉末的热辐射效率。待自然干燥后破碎、磨细、筛分后得到粒径范围为15~45μm、Ti2+掺杂的CoMn2O4尖晶石结构红外辐射陶瓷粉末。
与现有技术相比,本发明具有以下优点:
(1)以CoO和MnO固体粉末作为主要成分,高温烧结得到的CoMn2O4红外辐射陶瓷粉末具有稳定尖晶石结构,最高熔点为1790℃,粉末在1200℃、1~5μm波段的红外辐射率为0.90~0.93。
(2)将CoMn2O4粉末和纳米TiO2混合均匀进行二次烧结,并进行淬火处理,得到Ti2+掺杂的CoMn2O4尖晶石结构红外辐射陶瓷粉末,由于晶格畸变和杂质能级的电子跃迁辐射机制,进一步提高了粉末的辐射率和耐高温性能。
(3)采用热喷涂工艺沉积的涂层有效成分含量接近100%,热喷涂制备的涂层致密、气孔率可小于1%,而且涂层厚度最小可控制在3~5μm。涂层红外辐射率为0.95~0.96,而合金材料的红外辐射率仅为0.25~0.3,理论可提高换热效率3~4倍。在发动机叶片、涡轮盘或高超音速飞行器表面沉积本发明提供的涂层,可通过增强辐射传热,加快基材与环境的换热效率,快速降低材料表面温度。
具体实施方式
本发明提出了一种用于热喷涂的红外辐射陶瓷粉末,其由下列质量比的物料配制而成:
CoMn2O4粉:TiO2粉=100:3~5;
其中:所述的CoMn2O4粉具有尖晶石结构,由平均粒径小于45μm的CoO和MnO的固体粉末按质量比例为38:71进行配制,所述TiO2粉的平均粒径为50~100nm。
下面结合实施例对本发明作进一步说明。
实施例1:
将平均粒径30μm的CoO和MnO固体粉末按质量比例为38:71混合均匀,用加入粉末总质量5%的水喷雾加湿粉末,冷压制成尺寸为50mm×30mm×10mm的坯体。在1200℃高温烧结2h。冷却至室温后破碎、磨细平均粒径至45μm以下,得到的CoMn2O4红外辐射陶瓷粉末具有稳定尖晶石结构,在1200℃、1~5μm波段的红外辐射率为0.90,熔点为1778℃。
将制备的CoMn2O4粉末和平均粒径为50nm的TiO2粉末按100:3的质量比混合均匀进行二次烧结。先用粉末总质量5%的水喷雾加湿粉末,冷压制成尺寸为50mm×30mm×10mm的坯体,然后在1400℃高温烧结1h,取出立即放入水中进行淬火处理,自然干燥后经破碎、磨细、筛分得到粒径范围为15~45μm、Ti2+掺杂的CoMn2O4尖晶石结构红外辐射陶瓷粉末。该粉末在1200℃、1~5μm波段的红外辐射率为0.95,熔点为1823℃。
实施例2:
将平均粒径45μm的CoO和MnO固体粉末按质量比例为38:71混合均匀,用加入粉末总质量5%的水喷雾加湿粉末,冷压制成尺寸为50mm×30mm×10mm的坯体。在1350℃高温烧结2h。冷却至室温后破碎、磨细至45μm以下,得到的CoMn2O4红外辐射陶瓷粉末具有稳定的尖晶石结构,在1200℃、1~5μm波段的红外辐射率为0.93,熔点为1784℃。
将制备的CoMn2O4粉末和平均粒径为100nm的TiO2按100:4的质量比混合均匀进行二次烧结。先用粉末总质量5%的水喷雾加湿粉末,冷压制成尺寸为50mm×30mm×10mm的坯体。然后在1400℃高温烧结2h,取出立即放入水中进行淬火处理,自然干燥后经破碎、磨细、筛分得到粒径范围为15~45μm、Ti2+掺杂的CoMn2O4尖晶石结构红外辐射陶瓷粉末。该粉末在1200℃、1~5μm波段的红外辐射率为0.96,熔点为1826℃。
实施例3:
将平均粒径38μm的CoO和MnO固体粉末按质量比例为38:71混合均匀,用加入粉末总质量5%的水喷雾加湿粉末,冷压制成尺寸为50mm×30mm×10mm的坯体。在1350℃高温烧结1h。冷却至室温后破碎、磨细至45μm以下,得到的CoMn2O4红外辐射陶瓷粉末具有稳定的尖晶石结构,在1200℃、1~5μm波段的红外辐射率为0.92,熔点为1790℃。
将制备的CoMn2O4粉末和平均粒径为75nm的TiO2按100:5的质量比混合均匀进行二次烧结。先用粉末总质量5%的水喷雾加湿粉末,冷压制成尺寸为50mm×30mm×10mm的坯体。然后在1400℃高温烧结1h,取出立即放入水中进行淬火处理,自然干燥后经破碎、磨细、分级得到粒径范围为15~45μm、Ti2+掺杂的CoMn2O4尖晶石结构红外辐射陶瓷粉末。该粉末在1200℃、1~5μm波段的红外辐射率为0.95,熔点为1830℃。
在某型高超音速武器的舵翼表面先用等离子热喷涂沉积约0.35mm的氧化锆热障涂层,然后用发明提供的具有尖晶石结构和Ti2+掺杂的CoMn2O4陶瓷粉末通过爆炸喷涂工艺沉积厚度约100μm涂层。解决了在穿越大气层阶段以4.5马赫高超音速飞行时,舵翼迎风面温度过高变形和由此引起的打靶精度问题。
以上所述仅为本发明的较佳实施例而已,并不限于此,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (3)
1.一种用于热喷涂的红外辐射陶瓷粉末,其由下列质量比的物料配制而成:
CoMn2O4粉:TiO2粉=100:3~5;
其中:所述的CoMn2O4粉具有尖晶石结构,由平均粒径小于45μm的CoO和MnO的固体粉末按质量比例为38:71进行配制,所述TiO2粉的平均粒径为50~100nm。
2.一种如权利要求1所述的红外辐射陶瓷粉末的制备方法,其步骤如下:
步骤1:CoMn2O4红外辐射陶瓷粉末的制备
选择高温性能稳定的CoO和MnO固体粉末按比例均匀混合,用水喷雾加湿粉末冷压制成坯体,在1200℃~1350℃高温烧结1~2h,冷却至室温后破碎、磨细至平均粒径45μm以下,得到稳定尖晶石结构的CoMn2O4红外辐射陶瓷粉末;
步骤2:Ti2+掺杂的红外辐射陶瓷粉末的制备
将CoMn2O4粉末和TiO2粉按比例均匀混合,用水喷雾加湿冷压制成坯体,然后在1350℃~1400℃高温下烧结1~2h,立即取出进行淬火处理,待自然干燥后破碎、磨细、筛分后得到粒径范围为15~45μm、Ti2+掺杂的CoMn2O4尖晶石结构红外辐射陶瓷粉末。
3.如权利要求2所述的制备方法,其特征在于:所述步骤1和步骤2中,用水喷雾加湿粉末时,加入分别对应所述加湿粉末的质量5%的水,所述坯体冷压制成为50mm×30mm×10mm的坯体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510996309.5A CN105565781B (zh) | 2015-12-28 | 2015-12-28 | 一种用于热喷涂的红外辐射陶瓷粉末及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510996309.5A CN105565781B (zh) | 2015-12-28 | 2015-12-28 | 一种用于热喷涂的红外辐射陶瓷粉末及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105565781A true CN105565781A (zh) | 2016-05-11 |
CN105565781B CN105565781B (zh) | 2018-07-17 |
Family
ID=55876497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510996309.5A Expired - Fee Related CN105565781B (zh) | 2015-12-28 | 2015-12-28 | 一种用于热喷涂的红外辐射陶瓷粉末及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105565781B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114314685A (zh) * | 2022-01-06 | 2022-04-12 | 西南石油大学 | 一种高发射率复合金属材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4030903A (en) * | 1974-01-01 | 1977-06-21 | Corning Glass Works | Exuded transition metal films on glass-ceramic articles |
CN101585999A (zh) * | 2009-03-12 | 2009-11-25 | 徐中 | 一种耐高温抗腐蚀抗磨自润滑涂料及其制备方法 |
CN102206088A (zh) * | 2011-04-12 | 2011-10-05 | 中国科学院唐山高新技术研究与转化中心 | 红外辐射涂料及其制备方法 |
CN103788849A (zh) * | 2012-11-01 | 2014-05-14 | 深圳市润物科技有限公司 | 一种低碳节能涂料 |
JP2015011958A (ja) * | 2013-07-02 | 2015-01-19 | 大阪瓦斯株式会社 | 保護膜形成方法 |
-
2015
- 2015-12-28 CN CN201510996309.5A patent/CN105565781B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4030903A (en) * | 1974-01-01 | 1977-06-21 | Corning Glass Works | Exuded transition metal films on glass-ceramic articles |
CN101585999A (zh) * | 2009-03-12 | 2009-11-25 | 徐中 | 一种耐高温抗腐蚀抗磨自润滑涂料及其制备方法 |
CN102206088A (zh) * | 2011-04-12 | 2011-10-05 | 中国科学院唐山高新技术研究与转化中心 | 红外辐射涂料及其制备方法 |
CN103788849A (zh) * | 2012-11-01 | 2014-05-14 | 深圳市润物科技有限公司 | 一种低碳节能涂料 |
JP2015011958A (ja) * | 2013-07-02 | 2015-01-19 | 大阪瓦斯株式会社 | 保護膜形成方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114314685A (zh) * | 2022-01-06 | 2022-04-12 | 西南石油大学 | 一种高发射率复合金属材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105565781B (zh) | 2018-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103469207B (zh) | 一种抗高温氧化耐腐蚀的玻璃陶瓷复合涂层及其制备工艺 | |
CN104818482A (zh) | 耐高温、高结合强度的低红外发射率复合涂层、带涂层的金属合金材料及其制备方法 | |
CN110387148B (zh) | 一种用于树脂基复合材料的抗烧蚀涂层材料及其制备方法 | |
CN105861972A (zh) | 一种氧化铬-氧化钛基高温高发射率涂层及其制备方法 | |
CN101891398A (zh) | 一种具有高红外辐射率的高温抗氧化涂层的制备方法 | |
CN103924205B (zh) | 耐高温低红外发射率复合涂层及其制备方法 | |
CN105016734B (zh) | 空心梯度红外热阻隔微球的制备方法 | |
CN105154872A (zh) | 一种在钛合金上制备Ni基合金梯度材料的激光制造工艺 | |
CN110512165A (zh) | 一种高温高发射率红外辐射涂层材料体系及其制备方法 | |
CN103469144B (zh) | 一种高气孔率且具有等轴晶结构的热障涂层 | |
Li et al. | Thermal radiative properties of plasma sprayed thermochromic coating | |
CN110117764A (zh) | 一种热障/高温低红外发射率一体化涂层、带涂层的金属复合材料及其制备方法 | |
CN109355613A (zh) | 一种高温高发射率氧化铪基红外辐射涂层及其制备方法 | |
CN104710179A (zh) | 一种过渡金属离子掺杂稀土锆酸盐材料的制备方法 | |
CN103693956B (zh) | 一种ysz-lsm复合热障涂层材料的制备方法 | |
CN102371734B (zh) | 一种在高温条件下抗cmas侵蚀的热障涂层及其制备工艺 | |
CN109721356A (zh) | 热障涂层用大尺寸氧化锆陶瓷靶材的制备方法 | |
CN105565781A (zh) | 一种用于热喷涂的红外辐射陶瓷粉末及其制备方法 | |
CN104862687A (zh) | 一种金属防热结构表面涂层的制备方法 | |
CN112095067B (zh) | 一种耐高温红外低发射率涂层的制备方法 | |
CN108467265B (zh) | 一种热障涂层用核壳结构粉末及其制备方法与应用、发动机部件 | |
CN105861977A (zh) | 耐高温吸波涂层、其制备方法与应用 | |
CN105860611B (zh) | 一种红外辐射涂料及其制备方法 | |
CN112230321A (zh) | 一种耐高温光谱选择性红外隐身涂层及其制备方法 | |
CN109554658A (zh) | 一种耐超高温红外辐射粉末、涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180717 Termination date: 20201228 |
|
CF01 | Termination of patent right due to non-payment of annual fee |