CN105537615A - 一锅法制备不同直径银纳米线的方法 - Google Patents

一锅法制备不同直径银纳米线的方法 Download PDF

Info

Publication number
CN105537615A
CN105537615A CN201510995206.7A CN201510995206A CN105537615A CN 105537615 A CN105537615 A CN 105537615A CN 201510995206 A CN201510995206 A CN 201510995206A CN 105537615 A CN105537615 A CN 105537615A
Authority
CN
China
Prior art keywords
nano silver
silver wire
reaction
solution
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510995206.7A
Other languages
English (en)
Other versions
CN105537615B (zh
Inventor
张晟卯
丁宏卫
张玉娟
张平余
张治军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Copton Petrochemical Co ltd
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201510995206.7A priority Critical patent/CN105537615B/zh
Publication of CN105537615A publication Critical patent/CN105537615A/zh
Application granted granted Critical
Publication of CN105537615B publication Critical patent/CN105537615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于新型功能纳米材料制备技术领域,具体公开了一种一锅法制备不同直径银纳米线的方法,具体为:将硝酸银(AgNO3)、卤盐和聚乙烯吡咯烷酮(PVP)按比例一次性溶于乙二醇中,并直接加热至120-180℃反应20-180min,反应结束后,添加蒸馏水稀释,反复离心洗涤以除去溶液中离子和PVP,即得到直径40-200nm的纯净银纳米线。该方法通过控制反应温度、AgNO3浓度、卤盐种类和浓度可以制备出不同直径的银纳米线,具有工艺简单高效的特点,所得银纳米线形貌均一且产率较高,具有较高的潜在应用价值并适合工业化生产。

Description

一锅法制备不同直径银纳米线的方法
技术领域
本发明属于新型功能纳米材料制备技术领域,特别涉及一种一锅法制备不同直径银纳米线的方法。
背景技术
近些年来,纳米银线由于其优良的导电、导热以及催化性能,引起了人们的广泛关注,尤其是在透明导电薄膜领域有着极大的应用前景。ITO作为传统的导电薄膜材料有着优良的导电性和透明度,但因其质地较脆并受到尺寸效应的限制,急需新材料作为替代品。目前,碳纳米管、石墨烯、金属网格以及金属纳米线作为ITO的潜在替代品受到了许多学者的研究,尤其是银纳米线,因为银纳米线不仅具有良好的导电性和透明性,而且具有较好的柔性,在新一代透明导电薄膜材料中有着明显的优势。除此之外,经研究发现不同长径比的银纳米线制备的透明电极有着明显的性能差异。
目前,制备银纳米线的主要方法有模板法、溶剂热法以及多元醇法。模板法所制备的银纳米线规格受到模板的限制而且需要去除模板,较为麻烦。溶剂热法,使用酒精、水等作为溶剂时所得银纳米线的纯度较低,副产物较多,且长径比较小。乙二醇法相对较为简单、高效,是最有可能工业化制备银纳米线的方法。但目前使用的各种改良的乙二醇法,试验步骤仍较为繁琐,制备效率和可重复性不高,不利于银纳米线的规模化制备。此外,由于银纳米线尤其是超细银纳米线在透明导电薄膜领域的潜在应用价值及不同规格银纳米线对其性能的影响,对不同规格银纳米线有着强烈的需求。因此,如何简化银纳米线的制备工艺,扩大制备规模,制备出具有不同长径比及超细银纳米线,是该领域的研究热点。
发明内容
本发明目的在于克服现有技术缺陷,提供一锅法制备不同直径银纳米线的方法,采用该方法制得的银纳米线形貌均一且产率较高。
为实现上述目的,本发明采用如下技术方案:
一锅法制备不同直径银纳米线的方法,具体为:将硝酸银(AgNO3)、卤盐和聚乙烯吡咯烷酮(PVP)按比例一次性溶于乙二醇(简称EG)中,并直接加热至120-180℃反应20-180min,反应结束后,添加蒸馏水稀释,反复离心洗涤以除去溶液中的离子和PVP,即得到直径40-200nm的纯净银纳米线。
所述硝酸银与卤盐的摩尔比为10-1000:1。乙二醇中硝酸银的浓度为0.025-0.20M。
具体的,所述聚乙烯吡咯烷酮的添加量以单体N-乙烯基吡咯烷酮(NVP)计,硝酸银与N-乙烯基吡咯烷酮的摩尔比为1:1-9。即:实验中PVP的摩尔数是按照其单体NVP的分子量进行计算。
具体的,所述卤盐可以为NiCl2、CuCl2、NaCl和NaBr中的一种或两种以上的混合物。
作为上述一锅法制备不同直径银纳米线的优选方法,可以是:将硝酸银、NiCl2、NaBr和聚乙烯吡咯烷酮按比例一次性溶于乙二醇中,并直接加热至140℃反应20-180min;其中,硝酸银与NiCl2的摩尔比为250:1,硝酸银与NaBr的摩尔比为100:1。
AgNO3与PVP、卤盐的用量符合化学计量摩尔比,并且AgNO3浓度控制在0.025-0.20mol/L,PVP与AgNO3摩尔比控制在1:1-9:1,卤盐与AgNO3摩尔比控制在1:10-1:1000。不同的卤盐具有不同的可适用摩尔比,不同的反应物比例和AgNO3浓度所制备的银纳米线的直径和产量不同。温度决定反应速度,温度越高反应速度越快,且直径越粗。不同的温度对应不同的卤盐用量,否则将降低产量甚至得不到银纳米线。
通过混合使用NiCl2和NaBr作为控制剂,并通过控制其与AgNO3的比例和反应温度(在140℃条件下,NiCl2与AgNO3摩尔比1:250,NaBr与AgNO3摩尔比1:100),能够高效的制备出直径为20nm左右的超细银纳米线。
和现有技术相比,本发明的有益效果:
本发明制备方法具有工艺简单高效,产率高等特点,适合大规模的工业生产。所制备出的银纳米线形貌均一,可以通过改变反应温度、AgNO3浓度、AgNO3与PVP、卤盐的摩尔比,以及卤盐种类来控制银纳米线的直径和长度,为银纳米线在透明导电膜领域的应用奠定了良好的基础。
附图说明
图1为实施例1制得的银纳米线的XRD图;
图2为实施例1制得的银纳米线的扫描电子显微镜图;
图3为实施例2制得的银纳米线的扫描电子显微镜图;
图4为实施例6制得的银纳米线的扫描电子显微镜图;
图5为实施例7制得的银纳米线的扫描电子显微镜图;
图6为实施例9制得的银纳米线的扫描电子显微镜图;
图7为实施例11制得的银纳米线的扫描电子显微镜图;
图8为实施例14制得的银纳米线的扫描电子显微镜图;
图9为实施例17制得的银纳米线的扫描电子显微镜图;
图10为实施例19制得的银纳米线的扫描电子显微镜图。
具体实施方式
以下结合实施例对本发明的技术方案作进一步地详细介绍,但本发明的保护范围并不局限于此。
实施例1
取PVP10g、AgNO35.1g(0.03mol)、4mL0.03M的NiCl2溶液溶于600mLEG中,直接加热至140℃,反应60min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得银纳米线的XRD图见图1。由图1可以看出:XRD结果表明所制备的产品为纯净的面心立方结构的金属银,没有其它杂质峰,说明本方法制备的产品纯度很高。
上述制备所得银纳米线的扫描电子显微镜图见图2。由图2可以看出:所制备的银纳米线形貌均一,直径为45nm左右,长度为35nm左右,几乎没有任何颗粒副产物,纯度极高。
实施例2
取PVP10g、AgNO35.1g、4mL0.03M的NiCl2溶液溶于600mLEG中,加热至160℃,反应60min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得的银纳米线的扫描电子显微镜图见图3。由图3可以看出:所制备的银纳米线形貌均一,直径在55nm左右,长度在20μm左右。
实施例3
取PVP10g、AgNO35.1g、4mL0.03M的NiCl2溶液溶于600mLEG中,加热至180℃,反应60min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在65nm左右,长度在5μm左右。
实施例4
取PVP10g、AgNO32.5g、4mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应60min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在45nm左右,长度在5μm左右。
实施例5
取PVP10g、AgNO310.2g、4mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应60min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在54nm左右,长度在15μm左右。
实施例6
取PVP10g,AgNO315.3g,4mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应60min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得的银纳米线的扫描电子显微镜图见图4。由图4可以看出:所制备的银纳米线形貌均一,直径在75nm左右,长度在10μm左右。
实施例7
取PVP10g、AgNO35.1g、8mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应60min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得的银纳米线的扫描电子显微镜图见图5。由图5可以看出:所制备的银纳米线形貌均一,直径在44nm左右,长度在30μm左右。
实施例8
取PVP10g,AgNO35.1g,2mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应120min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在75nm左右,长度在10μm左右。
实施例9
取PVP10g,AgNO35.1g,1mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应120min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得的银纳米线的扫描电子显微镜图见图6。由图6可以看出:所制备的银纳米线形貌均一,直径在90nm左右,长度在5μm左右。
实施例10
取PVP5g,AgNO35.1g,4mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应120min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在80nm左右,长度在25μm左右。
实施例11
取PVP20g,AgNO35.1g,4mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应120min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得的银纳米线的扫描电子显微镜图见图7。由图7可以看出:所制备的银纳米线形貌均一,直径在50nm左右,长度在30μm左右。
实施例12
取PVP40g,AgNO35.1g,4mL0.03M的NiCl2溶液溶于600mLEG中,加热至140℃,反应180min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在55nm左右,长度在20μm左右。
实施例13
取PVP10g,AgNO35.1g,1.2mL0.1M的CuCl2溶液溶于600mLEG中,加热至120℃,反应180min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在100nm左右,长度在15μm左右。
实施例14
取PVP10g,AgNO35.1g,6mL0.1M的CuCl2溶液溶于600mLEG中,加热至120℃,反应180min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得的银纳米线的扫描电子显微镜图见图8。由图8可以看出:所制备的银纳米线形貌均一,直径在200nm左右,长度在30μm左右。
实施例15
取PVP10g,AgNO35.1g,2.4mL0.1M的CuCl2溶液溶于600mLEG中,加热至180℃,反应30min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在150nm左右,长度在20μm左右。
实施例16
取PVP10g,AgNO35.1g,14mL0.21M的NaCl溶液溶于600mLEG中,加热至180℃,反应30min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在55nm左右,长度在20μm左右。
实施例17
取PVP10g,AgNO35.1g,2mL0.21M的NaCl溶液溶于600mLEG中,加热至140℃,反应90min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得的银纳米线的扫描电子显微镜图见图9。由图9可以看出:所制备的银纳米线形貌均一,所制备的银纳米线直径在40nm左右,长度在40μm左右。
实施例18
取PVP10g,AgNO35.1g,1.4mL0.21M的NaCl溶液溶于600mLEG中,加热至140℃,反应90min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,所制备的银纳米线直径在60nm左右,长度在10μm左右。
实施例19
取PVP7.5g,AgNO37.5g,2mL0.03M的NiCl2溶液溶于600mLEG中,加热至160℃,反应150min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
上述制备所得的银纳米线的扫描电子显微镜图见图10。由图10可以看出:所制备的银纳米线形貌均一,直径在90nm左右,长度在15μm左右。
实施例20
取PVP10g,AgNO35.1g,4mL0.03M的NiCl2溶液,1.3mL0.22MNaBr溶液溶于600mLEG中,加热至140℃,反应150min(反应期间溶液由无色变为黄色,再变为红褐色,再变为灰绿色)。反应结束后,反应产物冷却至室温。按体积比2:1用蒸馏水进行稀释,在4000rpm条件下离心洗涤两遍,保存在水或者酒精中。
扫描电子显微镜测试显示:所制备的银纳米线形貌均一,直径在20nm左右,长度在30μm左右。

Claims (5)

1.一种一锅法制备不同直径银纳米线的方法,其特征在于,将硝酸银、卤盐和聚乙烯吡咯烷酮按比例一次性溶于乙二醇中,加热至120-180℃反应20-180min,反应结束后,添加蒸馏水稀释,反复离心洗涤即得到直径40-200nm的纯净银纳米线。
2.如权利要求1所述一锅法制备不同直径银纳米线的方法,其特征在于,所述硝酸银与卤盐的摩尔比为10-1000:1。
3.如权利要求1所述一锅法制备不同直径银纳米线的方法,其特征在于,所述聚乙烯吡咯烷酮的添加量以单体N-乙烯基吡咯烷酮计,硝酸银与N-乙烯基吡咯烷酮的摩尔比为1:1-9。
4.如权利要求1所述一锅法制备不同直径银纳米线的方法,其特征在于,所述卤盐为NiCl2、CuCl2、NaCl和NaBr中的一种或两种以上的混合物。
5.如权利要求1所述一锅法制备不同直径银纳米线的方法,其特征在于,将硝酸银、NiCl2、NaBr和聚乙烯吡咯烷酮按比例一次性溶于乙二醇中,并直接加热至140℃反应20-180min;其中,硝酸银与NiCl2的摩尔比为250:1,硝酸银与NaBr的摩尔比为100:1。
CN201510995206.7A 2015-12-24 2015-12-24 一锅法制备不同直径银纳米线的方法 Active CN105537615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510995206.7A CN105537615B (zh) 2015-12-24 2015-12-24 一锅法制备不同直径银纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510995206.7A CN105537615B (zh) 2015-12-24 2015-12-24 一锅法制备不同直径银纳米线的方法

Publications (2)

Publication Number Publication Date
CN105537615A true CN105537615A (zh) 2016-05-04
CN105537615B CN105537615B (zh) 2018-10-30

Family

ID=55817428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510995206.7A Active CN105537615B (zh) 2015-12-24 2015-12-24 一锅法制备不同直径银纳米线的方法

Country Status (1)

Country Link
CN (1) CN105537615B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175394A (zh) * 2018-09-15 2019-01-11 电子科技大学 一种小直径且超高长径比的均匀纳米银线可控制备方法
CN109261982A (zh) * 2018-11-07 2019-01-25 暨南大学 一种简单快速制备银纳米线的方法
CN109954887A (zh) * 2019-03-22 2019-07-02 扬州大学 一种银纳米线的制备方法
CN110437568A (zh) * 2019-08-16 2019-11-12 苏州热工研究院有限公司 一种适用于自修复压力传感器中的敏感材料及其制备方法
CN110586928A (zh) * 2019-09-20 2019-12-20 华南理工大学 基于一锅多醇法的高长径比银纳米线及其制备方法与应用
CN111992738A (zh) * 2020-09-19 2020-11-27 西安瑞特三维科技有限公司 一种一锅法合成宽范围粒径尺寸分布的纳米银颗粒的方法
CN112331410A (zh) * 2020-09-07 2021-02-05 湖南大学 一种银纳米线的制备及其在透明导电膜中的应用
CN116478576A (zh) * 2022-01-13 2023-07-25 天津理工大学 可克服咖啡环效应的银纳米导电填料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161892A1 (en) * 2011-05-23 2012-11-29 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
CN103084584A (zh) * 2013-01-29 2013-05-08 中国科学院理化技术研究所 一种利用水热法制备银纳米线的方法
CN103100724A (zh) * 2013-02-21 2013-05-15 中国科学院深圳先进技术研究院 银纳米线的制备方法
CN103357889A (zh) * 2013-07-15 2013-10-23 中南大学 一种高长宽比银纳米线的制备方法及应用
CN104759634A (zh) * 2015-03-04 2015-07-08 江苏大学 一种超细银纳米线的制备方法
CN105081348A (zh) * 2015-10-09 2015-11-25 重庆文理学院 一种常压一锅法制备无颗粒高纯度银纳米线的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161892A1 (en) * 2011-05-23 2012-11-29 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
CN103084584A (zh) * 2013-01-29 2013-05-08 中国科学院理化技术研究所 一种利用水热法制备银纳米线的方法
CN103100724A (zh) * 2013-02-21 2013-05-15 中国科学院深圳先进技术研究院 银纳米线的制备方法
CN103357889A (zh) * 2013-07-15 2013-10-23 中南大学 一种高长宽比银纳米线的制备方法及应用
CN104759634A (zh) * 2015-03-04 2015-07-08 江苏大学 一种超细银纳米线的制备方法
CN105081348A (zh) * 2015-10-09 2015-11-25 重庆文理学院 一种常压一锅法制备无颗粒高纯度银纳米线的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175394A (zh) * 2018-09-15 2019-01-11 电子科技大学 一种小直径且超高长径比的均匀纳米银线可控制备方法
CN109261982A (zh) * 2018-11-07 2019-01-25 暨南大学 一种简单快速制备银纳米线的方法
CN109954887A (zh) * 2019-03-22 2019-07-02 扬州大学 一种银纳米线的制备方法
CN110437568A (zh) * 2019-08-16 2019-11-12 苏州热工研究院有限公司 一种适用于自修复压力传感器中的敏感材料及其制备方法
CN110437568B (zh) * 2019-08-16 2021-07-27 苏州热工研究院有限公司 一种适用于自修复压力传感器中的敏感材料及其制备方法
CN110586928A (zh) * 2019-09-20 2019-12-20 华南理工大学 基于一锅多醇法的高长径比银纳米线及其制备方法与应用
CN112331410A (zh) * 2020-09-07 2021-02-05 湖南大学 一种银纳米线的制备及其在透明导电膜中的应用
CN112331410B (zh) * 2020-09-07 2021-11-26 湖南大学 一种银纳米线的制备及其在透明导电膜中的应用
CN111992738A (zh) * 2020-09-19 2020-11-27 西安瑞特三维科技有限公司 一种一锅法合成宽范围粒径尺寸分布的纳米银颗粒的方法
CN116478576A (zh) * 2022-01-13 2023-07-25 天津理工大学 可克服咖啡环效应的银纳米导电填料

Also Published As

Publication number Publication date
CN105537615B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN105537615A (zh) 一锅法制备不同直径银纳米线的方法
US9908178B2 (en) Method for preparing ultrathin silver nanowires, and transparent conductive electrode film product thereof
EP2660192B1 (en) Graphene derivative-carbon nanotube composite material and preparation method thereof
CN103658675B (zh) 纳米铜线及其制备方法
JP6735342B2 (ja) 新規のアスペクト比が均一でノードを有する銀ナノワイヤの製造方法
Xiang et al. Progress in application and preparation of silver nanowires
CN100436008C (zh) 一种金属镍纳米线的化学制备方法
CN104959622B (zh) 一种不同长径比的铜纳米线的合成方法
CN105537622A (zh) 一种制备银纳米线的方法
CN102581297A (zh) 基于氧化石墨烯的可控性绿色合成金属纳米材料的方法
CN103011778A (zh) 一种多孔氧化铝纳米纤维及其制备方法
CN106031950A (zh) 一种快速高效的超细银纳米线制备方法
CN106745111A (zh) 一种高比表面积纳米晶氟化镁的制备方法
CN105750559A (zh) 一种银纳米线及其透明导电膜的制备方法
KR20130027634A (ko) 이온성 액체를 이용한 은 나노와이어 제조방법
Sheikhiabadi et al. Hydrothermal synthesis and optical properties of antimony sulfide micro and nano-size with different morphologies
CN103111628B (zh) 一种可弯曲Ag纳米线的制备方法
CN103143718A (zh) 一种铂纳米材料及其制备
JPWO2014189149A1 (ja) 金属ナノワイヤの製造方法及び金属ナノワイヤ並びに銀ナノワイヤの製造方法及び銀ナノワイヤ
CN104743602A (zh) 一种氧化锌纳米材料的水热合成方法以及氧化锌纳米材料
CN105800604A (zh) 一种石墨烯负载铁酸钴量子点的制备方法
CN107841791B (zh) 单晶铟纳米线的制备方法及其产品和应用
CN104923803A (zh) 一步法合成高稳定高导电铜纳米线墨水的方法
Becker et al. Synthesis of silver nanowires in aqueous solutions
CN104108712A (zh) 一种硼掺杂石墨烯及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221025

Address after: No.192 Longshoushan Road, Huangdao District, Qingdao City, Shandong Province 266000

Patentee after: QINGDAO COPTON PETROCHEMICAL CO.,LTD.

Address before: 475001 Henan province city Minglun Street No. 85

Patentee before: Henan University

TR01 Transfer of patent right