CN105514207B - 一种多结太阳能电池的集成旁路二极管的制备方法 - Google Patents

一种多结太阳能电池的集成旁路二极管的制备方法 Download PDF

Info

Publication number
CN105514207B
CN105514207B CN201510894699.5A CN201510894699A CN105514207B CN 105514207 B CN105514207 B CN 105514207B CN 201510894699 A CN201510894699 A CN 201510894699A CN 105514207 B CN105514207 B CN 105514207B
Authority
CN
China
Prior art keywords
bypass diode
solar cell
region
battery
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510894699.5A
Other languages
English (en)
Other versions
CN105514207A (zh
Inventor
刘冠洲
毕京锋
熊伟平
李明阳
杨美佳
宋明辉
李森林
陈文浚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Sanan Optoelectronics Co Ltd
Original Assignee
Tianjin Sanan Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Sanan Optoelectronics Co Ltd filed Critical Tianjin Sanan Optoelectronics Co Ltd
Priority to CN201510894699.5A priority Critical patent/CN105514207B/zh
Publication of CN105514207A publication Critical patent/CN105514207A/zh
Application granted granted Critical
Publication of CN105514207B publication Critical patent/CN105514207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • H01L27/1421Energy conversion devices comprising bypass diodes integrated or directly associated with the device, e.g. bypass diode integrated or formed in or on the same substrate as the solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic System, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种多结太阳能电池的集成旁路二极管的制备方法,包括以下步骤:在衬底上形成多结太阳能电池外延结构;形成太阳能电池制作区域与旁路二极管制作区域之间的隔离槽;对旁路二极管制作区域的外延层进行特定能量的离子注入,使其多结子电池中的至少一个子电池pn结的掺杂情况被改变;对上述旁路二极管制作区域的外延层进行特定波长的强光照射,使其多结子电池中的至少一个子电池pn结受到高温退火处理;制备太阳能电池与旁路二极管的正面、背面电极与减反射膜;按照互联规则封装太阳能电池与旁路二极管。

Description

一种多结太阳能电池的集成旁路二极管的制备方法
技术领域
本发明涉及一种多结太阳能电池的集成旁路二极管的制备方法,属半导体器件与工艺技术领域。
背景技术
近些年来,作为第三代光伏发电技术的多结化合物太阳电池开始倍受关注,通过优化子电池的数量和能带结构的不断优化,其光电转化效率无论理论还是实际都是太阳能电池中最高的,被广泛的应用于注重效率的空间电源领域。另外由于三五族材料良好的耐热能力,使得多结化合物太阳电池十分适合于高倍聚光条件,在民用聚光光伏领域也有广阔的应用前景。
多个太阳能电池芯片通过串并联形成电池模组时,为了避免由于某一片电池芯片因被遮光而损坏,通常需要在电池芯片上并联一个旁路二极管。单独制备的旁路二极管封装工艺较为复杂,因此在多结太阳能电池芯片上集成旁路二极管成为发展趋势。在多结太阳能芯片上集成旁路二极管通常有两种方案,一种是在多结太阳能电池外延结构之上再外延生长二极管结构,但这种方案增加了外延成本,且由于正面半导体极性不同而使得电极制备较为复杂。另一种方案是利用原有的多结太阳能电池外延结构隔离出一个区域制备旁路二极管,这种方案的缺点是由于外延结构不是针对旁路二极管设计,制备出的旁路二极管通常正向压降较高,使得整个模组在旁路二极管上消耗的功率较大。
发明内容
为解决上述技术问题,本发明公开了一种多结太阳能电池的集成旁路二极管的制备方法,包括以下步骤:
1)在衬底上形成多结太阳能电池外延层结构;
2) 形成太阳能电池制作区域与旁路二极管制作区域之间的隔离槽;
3) 对旁路二极管制作区域的外延层进行特定能量的离子注入,使其多结子电池中的至少一个子电池pn结的掺杂情况被改变;
4) 对上述旁路二极管制作区域的外延层进行特定波长的强光照射,使其多结子电池中的至少一个子电池pn结受到高温退火处理;
5)制备太阳能电池与旁路二极管的正面、背面电极与减反射膜;
6) 按照互联规则封装太阳能电池与旁路二极管。
优选地,所述多结太阳能电池外延结构包含多个子电池结构,从上到下各个子电池的基区材料带隙逐步减小,实现对不同波段的太阳光的吸收。
优选地,所述离子注入过程只在旁路二极管制作区域进行,太阳能电池制作区域采用光刻胶、介质层材料保护的方式来避免受到离子注入的影响。
所述离子注入过程通过调节注入离子的能量来控制注入深度,使其只作用于多结子电池外延层中的个别层。
优选地,所述步骤4)中利用太阳能电池各外延层的光吸收波段的不同,通过控制入射光波长,实现对特定外延层的光照退火。
优选地,所述入射光具有良好的单色性,其能量的波长分布的半峰宽小于100nm,可以是激光或经过滤光得到的单色光。。
优选地,所述入射光是是脉冲光,通过调节激光能量密度、脉冲宽度、脉冲重复率,来控制目标外延层的退火温度。
优选地,为避免目标外延层以外的外延层受到影响,光照退火时对外延片采用水冷或液氮方式降温,同时遮挡太阳能电池制作区域,只对旁路二极管制作区域进行光照退火。
本发明的创新点及优点包括:利用太阳能电池每层外延层的光吸收波段的不同,通过控制入射光波长,实现对特定外延层的光照退火,同时结合可控注入深度的离子注入技术,实现对特定区域的特定外延层的掺杂情况的改变,利用该技术,在不影响其他区域的情况下,使得多结太阳能电池外延层制作的集成的旁路二极管的正向压降减小或反向漏电减小,从而减少整个太阳能电池模组在旁路二极管上产生的功率损失。此方案不需要更改外延结构,正面电极制备也较为简单,且可以得到较好性能的旁路二极管。
附图说明
图1~4为本发明的GaInP/InGaAs/Ge三结太阳能电池的集成旁路二极管的结构侧面剖面示意图,图2-3中左侧为旁路二极管制作区域,右侧为太阳能电池制作区域。图5为本发明图4的等效电路图。
图中标示:001:p型Ge衬底;002:Ge底电池;003:中底电池隧穿结;004:InGaAs中电池;005:中顶电池隧穿结;006:GaInP顶电池;007:n型InGaAs欧姆接触层;008:隔离槽;009:SiNx绝缘层;010:正面电极金属;011:减反膜;012:背面电极金属。
具体实施方式
下面结合实施例对本发明作进一步描述,但不应以此限制本发明的保护范围。
一种多结太阳能电池的集成旁路二极管的制备方法,可以选择如下步骤获得:
如图1所示,本实例采用的衬底为p型Ge衬底001,用MOCVD方式在Ge缓冲层上依次生长Ge底电池002、中底电池隧穿结003、InGaAs中电池004、中顶电池隧穿结005、GaInP顶电池006、n型InGaAs欧姆接触层007,所述InGaAs中电池的材料能带宽度在1.3~1.5之间,所述GaInP顶电池的材料能带宽度在1.8~1.9之间。
如图2所示,在该外延片正面进行光刻并通过Cl2/Ar混合气体氛围下的反应离子刻蚀制备出太阳能电池与旁路二极管之间的隔离槽008。采用PECVD方式在太阳能电池制备区域上形成一层SiNx绝缘层009,通过光刻和腐蚀的方法去除旁路二极管区域的SiNx绝缘层,露出外延层。
通过离子注入,调节注入深度和剂量,在中顶电池隧穿结005、InGaAs中电池004、中底电池隧穿结003中注入p型掺杂杂质Be。由于中顶电池隧穿结距离顶电池基区较近,不可避免的会在顶电池基区也注入杂质,但只需控制诸如深度,不在顶电池发射区注入到杂质即可。
通过离子注入,调节注入深度和剂量,在Ge底电池002中注入p型掺杂杂质B。
采用820nm大功率脉冲激光,控制激光照射的区域,对旁路二极管制作区域的中顶电池隧穿结005、InGaAs中电池004、中底电池隧穿结003进行激光退火。调节激光能量密度、脉冲宽度、脉冲重复率,同时退火时对外延片进行水冷降温,使中顶电池隧穿结005、InGaAs中电池004、中底电池隧穿结003目标层的退火温度足够高,同时GaInP顶电池006保持较低温度,使目标层掺杂的Be杂质激活,转变为p型半导体层。
采用1064nm大功率脉冲激光,控制激光照射的区域,对旁路二极管制作区域的Ge底电池002进行激光退火。调节激光能量密度、脉冲宽度、脉冲重复率,同时退火时对外延片进行水冷降温,使Ge底电池002目标层的退火温度足够高,同时GaInP顶电池006保持较低温度,使目标层掺杂的B杂质激活,转变为p型半导体层。
如图3所示,去除SiNx层,用电子束蒸发的方法在太阳电池正面形成正面电极金属010和减反膜011。在衬底背面形成背面电极金属012。对芯片进行快速热退火使得金属与半导体相熔合形成欧姆接触。
如图4所示,将制备好的太阳能电池芯片进行串并联形成电池模组。每一颗电池芯片上集成的旁路二极管与下一颗电池芯片并联,最终等效电路如图5所示。

Claims (8)

1.一种多结太阳能电池的集成旁路二极管的制备方法,其步骤包括:
1)在衬底上形成多结太阳能电池外延层结构;
2)形成太阳能电池制作区域与旁路二极管制作区域之间的隔离槽;
3)对旁路二极管制作区域的外延层进行离子注入,控制离子注入的深度,使得旁路二极管制作区域的多结子电池中的至少一个子电池pn结的掺杂情况被改变;
4)对上述旁路二极管制作区域的外延层进行特定波长的强光照射,使得旁路二极管制作区域的多结子电池中的至少一个子电池pn结受到高温退火处理;
5)制备太阳能电池与旁路二极管的正面、背面电极与减反射膜;
6)按照互联规则封装太阳能电池与旁路二极管。
2.如权利要求1所述的一种多结太阳能电池的集成旁路二极管的制备方法,其特征在于:所述多结太阳能电池外延结构包含多个子电池结构,从上到下各个子电池的基区材料带隙逐步减小,实现对不同波段的太阳光的吸收。
3.如权利要求1所述的一种多结太阳能电池的集成旁路二极管的制备方法,其特征在于:所述离子注入过程只在旁路二极管制作区域进行,太阳能电池制作区域采用光刻胶、介质层材料保护的方式来避免受到离子注入的影响。
4.如权利要求3所述的一种多结太阳能电池的集成旁路二极管的制备方法,其特征在于:所述离子注入过程通过调节注入离子的能量来控制注入深度,使其只作用于旁路二极管制作区域的多结子电池外延层中的个别层。
5.如权利要求1所述的一种多结太阳能电池的集成旁路二极管的制备方法,其特征在于:所述步骤4)中利用太阳能电池各外延层的光吸收波段的不同,通过控制入射光波长,实现对旁路二极管制作区域的多结子电池外延层中的至少一层外延层的光照退火。
6.如权利要求5所述的一种多结太阳能电池的集成旁路二极管的制备方法,其特征在于:所述入射光是激光、单色光或其他单色性较好的光。
7.如权利要求5所述的一种多结太阳能电池的集成旁路二极管的制备方法,其特征在于:所述入射光是脉冲光,通过调节脉冲频率、脉冲占空比、光强度来控制目标外延层的退火温度。
8.如权利要求1所述的一种多结太阳能电池的集成旁路二极管的制备方法,其特征在于:为避免目标外延层以外的外延层受到影响,光照退火时对外延片采用水冷或液氮方式降温,同时遮挡太阳能电池制作区域,只对旁路二极管制作区域进行光照退火。
CN201510894699.5A 2015-12-08 2015-12-08 一种多结太阳能电池的集成旁路二极管的制备方法 Active CN105514207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510894699.5A CN105514207B (zh) 2015-12-08 2015-12-08 一种多结太阳能电池的集成旁路二极管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510894699.5A CN105514207B (zh) 2015-12-08 2015-12-08 一种多结太阳能电池的集成旁路二极管的制备方法

Publications (2)

Publication Number Publication Date
CN105514207A CN105514207A (zh) 2016-04-20
CN105514207B true CN105514207B (zh) 2017-04-26

Family

ID=55722039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510894699.5A Active CN105514207B (zh) 2015-12-08 2015-12-08 一种多结太阳能电池的集成旁路二极管的制备方法

Country Status (1)

Country Link
CN (1) CN105514207B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016118177A1 (de) * 2016-09-26 2018-03-29 Heliatek Gmbh Organisches Bauelement zur Umwandlung von Licht in elektrische Energie mit verbesserter Effizienz und Lebensdauer bei Teilverschattung
RU2681660C1 (ru) * 2018-05-07 2019-03-12 Публичное акционерное общество "Сатурн" (ПАО "Сатурн") Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя
EP3654389A1 (en) * 2018-11-16 2020-05-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Photovoltaic device and method of manufacturing the same
CN110534601A (zh) * 2019-08-14 2019-12-03 上海空间电源研究所 一种带防护集成旁路二极管的太阳电池及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010811A (zh) * 2004-05-12 2007-08-01 Rwe太空太阳能有限责任公司 具有集成的保护二极管的太阳能电池
CN104393115A (zh) * 2014-11-18 2015-03-04 上海空间电源研究所 一种多结砷化镓太阳电池一次腐蚀工艺方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864414B2 (en) * 2001-10-24 2005-03-08 Emcore Corporation Apparatus and method for integral bypass diode in solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010811A (zh) * 2004-05-12 2007-08-01 Rwe太空太阳能有限责任公司 具有集成的保护二极管的太阳能电池
CN104393115A (zh) * 2014-11-18 2015-03-04 上海空间电源研究所 一种多结砷化镓太阳电池一次腐蚀工艺方法

Also Published As

Publication number Publication date
CN105514207A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6633709B2 (ja) 太陽電池の製造方法及び構造
KR101627217B1 (ko) 태양전지 및 그 제조방법
Dalal et al. Design considerations for high‐intensity solar cells
CN105514207B (zh) 一种多结太阳能电池的集成旁路二极管的制备方法
KR101569415B1 (ko) 태양 전지의 제조 방법
US4914044A (en) Method of making tandem solar cell module
CN106531816A (zh) 一种背结背接触太阳能电池
CN114784148B (zh) 太阳能电池的制备方法及太阳能电池、光伏组件
US20130146999A1 (en) Method for forming a selective contact
CN102487102A (zh) 太阳能电池及其制备方法
CN116721913A (zh) 太阳能电池的制备方法及太阳能电池
Helmers et al. Processing techniques for monolithic interconnection of solar cells at wafer level
Fernández et al. Back‐surface optimization of germanium TPV cells
US4116717A (en) Ion implanted eutectic gallium arsenide solar cell
US20100263713A1 (en) Four Terminal Monolithic Multijunction Solar Cell
KR101396027B1 (ko) 고효율 후면 접촉 후면 접합 태양 전지의 이온 주입 및 어닐링
CN103187478A (zh) 形成太阳电池掺杂区的方法
Khvostikov et al. High-efficiency (η= 39.6%, AM 1.5 D) cascade of photoconverters in solar splitting systems
CN115483311A (zh) 太阳能电池的制备方法
Paire et al. Thin-film microcells: a new generation of photovoltaic devices
CN102569492B (zh) 太阳能晶片的掺杂方法以及掺杂晶片
CN102569495A (zh) 太阳能晶片的掺杂方法以及掺杂晶片
KR20090019600A (ko) 고효율 태양전지 및 그의 제조방법
CN103828069B (zh) 掺杂方法、pn结构、太阳能电池的制作方法及太阳能电池
CN102339893A (zh) 太阳能晶片的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant