RU2681660C1 - Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя - Google Patents

Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя Download PDF

Info

Publication number
RU2681660C1
RU2681660C1 RU2018117127A RU2018117127A RU2681660C1 RU 2681660 C1 RU2681660 C1 RU 2681660C1 RU 2018117127 A RU2018117127 A RU 2018117127A RU 2018117127 A RU2018117127 A RU 2018117127A RU 2681660 C1 RU2681660 C1 RU 2681660C1
Authority
RU
Russia
Prior art keywords
diode
etching
gainp
built
mask
Prior art date
Application number
RU2018117127A
Other languages
English (en)
Inventor
Борис Николаевич Самсоненко
Original Assignee
Публичное акционерное общество "Сатурн" (ПАО "Сатурн")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Сатурн" (ПАО "Сатурн") filed Critical Публичное акционерное общество "Сатурн" (ПАО "Сатурн")
Priority to RU2018117127A priority Critical patent/RU2681660C1/ru
Application granted granted Critical
Publication of RU2681660C1 publication Critical patent/RU2681660C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Изобретение относится к солнечной энергетитке, в частности к способам изготовления фотопреобразователей на трехкаскадных эпитаксиальных структурах GaInP/Ga(In)As/Ge, выращенных на германиевой подложке. Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя включает создание фоторезистивной маски с окнами лицевых контактов фотопреобразователя и диода на трехкаскадной полупроводниковой структуре GaInP/Ga(In)As/Ge с pи nслоями туннельного перехода верхнего каскада, вытравливание капельным смачиванием в диодном окне маски полупроводниковых слоев верхнего каскада до nслоя туннельного перехода в травителях на основе соляной кислоты, при этом в процессе вытравливания после возникновения газовых пузырьков по периметру диодного окна в маске их удаляют гидродинамически путем дистанционного нанесения капель травителя в область диодного окна, а после промывки и высушивания обрабатывают контактную площадку диода в травителе состава: соляная кислота концентрированная в количественном соотношении от 30 до 70% общего объема, остальное - водный раствор бихромата калия 5-45% концентрации. Технический результат, достигаемый в предлагаемом способе вытравливания контактной площадки встроенного диода фотопреобразователя, заключается в повышении адгезии лицевой металлизации диода и снижении величины прямого напряжения на встроенном диоде. 1 табл., 2 ил.

Description

Изобретение относится к электротехнике, в частности, к технологии изготовления трехкаскадных фотопреобразователей со встроенным диодом.
Известен каскадный фотопреобразователь и способ его изготовления (см. Патент РФ №2382439, опубл. 20.02.2010 г.), принятый за аналог, в котором трехкаскадная полупроводниковая структура GaInP/Ga(In)As/Ge используется для изготовления высокоэффективных фотопреобразователей космического и наземного применения. Верхний каскад полупроводниковой структуры состоит из n+-Ga(In)As - контактного слоя, n-AlInP слоя широкозонного оптического окна, n+-GaInP - эмиттерного слоя, p-GaInP - базового слоя, p-AlInP - слоя тыльного потенциального барьера. Далее расположены p++-AlGaAs, n++-GaInP или n++-GaAs - слои верхнего туннельного перехода к среднему каскаду.
Недостаток данного аналога применительно к изготовлению фотопреобразователя со встроенным диодом следующий: при изготовлении диода без удаления полупроводниковых слоев верхнего каскада величина прямого напряжения на диоде составляет более 3В, что приводит к значительному тепловыделению с возможными деградацией параметров и электрическим пробоем.
Общий признак вышеуказанного аналога с предлагаемым способом капельного вытравливания контактной площадки встроенного диода фотопреобразователя следующий: использование трехкаскадной полупроводниковой структуры GaInP/Ga(In)As/Ge, выращенной на германиевой подложке.
Известен способ изготовления солнечного фотоэлемента с интегральным защитным диодом (см. Patent DE №102004023856 В4, опубл. 12.05.2004 г.), принятый на аналог, в котором на трехкаскадной полупроводниковой структуре GaInP/Ga(In)As/Ge, выращенной на p-Ge подложке дополнительно наращивают эпитаксиальные слои Ga1-xInxAs (0,01≤х≤0,03) n и p-типа проводимости для создания р/n перехода интегрального диода, затем р++- AlGaAs и n++-Ga(In)As (или n++-GaInP) слои туннельного перехода к n+- Ga(In)As контактному слою. Вытравливают меза-изолирующую канавку до Ge- подложки. Удаляют дополнительно выращенные эпитаксиальные слои до n-Ga(In)As - слоя в рабочей области фотопреобразователя. Создают лицевые контакты к фотопреобразователю и диоду, а также шунтирующее соединение базового n-Ga(In)As слоя диода с р-Ge подложкой.
Недостаток данного аналога заключается в необходимости формирования дополнительных эпитаксиальных слоев и создания пристеночной металлизации для шунтирования n-Ga(In)As базы интегрального диода и p-Ge подложки.
Признаки аналога, общие с предлагаемым способом, следующие: использование трехкаскадной эпитаксиальной структуры GaInP/Ga(In)As/Ge, выращенной на германиевой подложке.
Известен способ изготовления фотопреобразователя со встроенным диодом (см. Патент РФ №2515420, опубл. 16.08.2012 г. ), принятый за аналог, в котором на трехкаскадной полупроводниковой структуре GaInP/Ga(In)As/Ge, выращенной на германиевой подложке, создают фоторезистивную маску с окнами лицевых контактов фотопреобразователя и диода, вытравливают капельным смачиванием в диодном окне маски полупроводниковые слои верхнего GaInP - каскада, в том числе n+-Ga(In)As - контактный слой и n-AlInP - слой широкозонного оптического окна в водном растворе ортофосфорной кислоты с перекисью водорода, a n+-GaInP-эмиттерный и p-GaInP базовый слои в концентрированной соляной кислоте до стопорного эпитаксиального слоя.
Недостаток вышеуказанного способа заключается в том, что применительно к трехкаскадной полупроводниковой структуре с p-AlGaInP слоем потенциального барьера, р++-AlGaAs и n++-GaInP - слоями туннельного перехода верхнего каскада концентрированная соляная кислота стравливает полупроводниковые слои за короткий промежуток времени, что затрудняет воспроизводимую остановку травления на n++-GaInP слое туннельного перехода, используемом в качестве контактной площадки. В случае перетравливания полупроводниковой структуры недопустимо возрастают обратные токи диода Iобр.>2,5mA/4В. При недотравливании полупроводниковой структуры неприемлемо увеличивается прямое напряжение Uпр.>1,8B/620mA.
Признаки указанного аналога, общие с признаками предлагаемого способа, следующие: создание фоторезистивной маски с окнами лицевых контактов фотопреобразователя и диода на трехкаскадной полупроводниковой структуре GaInP/Ga(In)As/Ge, выращенной на германиевой подложке; вытравливание капельным смачиванием в диодном окне маски полупроводниковых слоев верхнего каскада.
Известен способ вытравливания контактной площадки встроенного диода фотопреобразователя (см. Патент РФ №2577826, опубл. 20.03.2016 г.), принятый за прототип в котором на трехкаскадной полупроводниковой структуре GaInP/Ga(In)As/Ge, выращенной на германиевой подложке с р-AlGaInP-слоем потенциального барьера, p++-AlGaAs и n++-GaInP слоями туннельного перехода верхнего каскада, создают фоторезистивную маску с окнами лицевых контактов фотопреобразователя и диода, удаляют в диодном окне маски полупроводниковые слои, причем вытравливают p-AlGaInP слой полностью или частично в смеси концентрированных соляной и фтористоводородной кислот в количественном соотношении объемных частей 5÷7 и 3÷5 соответственно, р++-AlGaAs-слой туннельного перехода удаляют в смеси концентрированных соляной и лимонной (50%) кислот в количественном соотношении объемных частей 6÷10 и 8÷12 соответственно. Напыляют лицевые контакты на основе серебра Cr/Ag/Au-Ge/Ag/Au. Вытравливают меза-изолирующую канавку. Напыляют тыльную металлизацию на основе серебра Cr/Au/Ag/Au. Вжигают контакты. Стравливают n+-Ga(In)As - контактный слой по маске лицевой металлизации. Наносят просветляющее покрытие TiO2/Al2O3.
Недостаток способа-прототипа заключается в том, что не обеспечивается полное удаление GaInP слоев верхнего каскада по периметру диодного окна из-за газовыделения и прикрепления пузырьков к стенкам фоторезистивной маски при травлении в соляной кислоте. В результате снижается адгезия лицевого контакта и увеличивается величина прямого
Признаки прототипа, общие с признаками предлагаемого способа, следующие: создание фоторезистивной маски с окнами лицевых контактов фотопреобразователя и диода на трехкаскадной полупроводниковой структуре GaInP/Ga(In)As/Ge, выращенной на германиевой подложке с р++ и n++ слоями туннельного перехода верхнего каскада вытравливание капельным смачиванием полупроводниковых слоев верхнего каскада до n++ - слоя туннельного перехода в травителях на основе соляной кислоты.
4
Технический результата, достигаемый в предлагаемом способе, заключается в повышении адгезии лицевого контакта, снижении величины и разброса прямого напряжения на встроенном диоде.
Достигается это тем, что в способе капельного вытравливания контактной площадки встроенного диода фотопреобразователя, включающем создание фоторезистивной маски с окнами лицевых контактов фотопреобразователя и диода на трехкаскадной полупроводниковой структуре GaInP/Ga(In)As/Ge с р++ и n++ слоями туннельного перехода верхнего каскада, вытравливание капельным смачиванием в диодном окне маски полупроводниковых слоев верхнего каскада до n++ - слоя туннельного перехода в травителях на основе соляной кислоты, при этом в процессе вытравливания после возникновения газовых пузырьков по периметру диодного окна в маске их удаляют гидродинамически путем дистанционного нанесения капель травителя в область диодного окна, а после промывки и высушивания обрабатывают контактную площадку диода в травителе составахоляная кислота концентрированная в количественном соотношении от 30 до 70% общего объема, остальное - водный раствор бихромата калия 5÷15% концентрации.
Отличительные признаки предлагаемого способа капельного вытравливания контактной площадки встроенного диода фотопреобразователя, обеспечивающие его соответствие критерию «новизна», следующие: удаление газовых пузырьков, возникающих в процессе вытравливания по периметру диодного окна в маске гидродинамически путем дистанционного нанесения капель травителя в область диодного окна, а после промывки и высушивания выполнение обработки контактной площадки диода в травителе состава: соляная кислота концентрированная в количественном соотношении от 30 до 70% общего объема, остальное - водный раствор бихромата калия 5÷15% концентрации.
Для обоснования соответствия предлагаемого способа капельного вытравливания контактной площадки встроенного диода фотопреобразователя критерию «изобретательский уровень» был проведен анализ известных технических решений по литературным источникам, в результате которого не обнаружено технических решений, содержащих совокупность известных и отличительных признаков предлагаемого способа, дающих вышеуказанный технический результат. Поэтому, по мнению автора, предлагаемый способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя соответствует критерию «изобретательский уровень».
Предложенный способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя обеспечивает полное удаление продуктов травления GaInP - слоев верхнего каскада по периметру диодного окна в травителях на основе соляной кислоты за счет гидродинамического удаления блокирующих травление газовых пузырьков и последующей доочистки поверхности n++- слоя в травителе состава: соляная кислота концентрированная в количественном соотношении от 30 до 70% общего объема, остальное - водный раствор бихромата калия 5÷15% концентрации.
В результате значительно повысилась адгезия лицевой металлизации диода и величина прямого напряжения снизилась на ~ 0,1 В.
Способ иллюстрирован фиг. 1, 2 и таблицей 1. На фиг. 1 представлен вид капли травителя с газовыми пузырьками по периметру диодного окна в маске. На фиг. 2 представлен профиль поверхности контактной площадки диода: а) - с областями недотравов по периметру; б) - с доочисткой по периметру согласно предложенному способу. В таблице 1 представлены параметры изготовленных диодов.
Для конкретного примера реализации способа используют трехкаскадные полупроводниковые структуры GaInP/Ga(In)As/Ge, выращенные на германиевой подложке диаметром ∅ 100 мм с n+ Ga(In)As-контактным слоем, n+-AlInP - слоем широкозонного оптического окна, n+-GaInP - эмиттерным слоем, p-GaInP - базовым слоем, p-AlIGaP - слоем потенциального барьера, p++-AlGaAs и n++-GaInP - слоями туннельного перехода верхнего каскада. Создают фоторезистивную маску негативного фоторезиста Aznlof2070 с рисунком лицевых контактов фотопреобразователя и встроенного диода. Вытравливают капельным смачиванием контактные площадки диодов до n++-GaInP слоя туннельного перехода верхнего каскада, при этом после нанесения капли травителя на основе соляной кислоты, инициирующей травление, HCl÷HF=2÷1 или HCl концентрированной для структур 3G30, выдерживают паузу 5÷6 сек до возникновения газовых пузырьков, прикрепляющихся к фоторезистивной маске и блокирующих травление по периметру диодного окна. Процесс травления сопровождается быстрой сменой интерференционных цветов поверхности GalnP - слоев. Удаляют газовые пузырьки согласно предложенному способу, гидродинамически посредством нанесения в течение 7÷10 сек (2÷3 сек для структур 3G30) нескольких (3÷4) капель травителя в диодное окно с высоты 3÷5 см от поверхности полупроводниковой структуры, при этом освободившиеся от пузырьков участки поверхности вновь подвергаются травлению.
По достижении р++-AlGaAs - слоя туннельного перехода травление замедляется и диодная площадка приобретает однородный светло-голубой цвет. Затем селективно удаляют p++-AlGaAs - слой туннельного перехода нанесением в диодное окно капли смеси концентрированных соляной и лимонной (50%) кислот при количественном соотношении объемных частей 1-4. В диодном окне маски при этом наблюдается (за 5÷7 сек) переход без газовыделения от светло-голубого до устойчивого синего цвета поверхности, что соответствует вскрытию n++- GaInP туннельного слоя. Для структур 3G30 стравливание слоев n+, p-GaInP, p-AlGaInP и p++-AlGaAs в концентрированной HCl выполняется за один процесс.
На контактный n+-Ga(In)As слой рабочей поверхности фотопреобразователя указанные травители не воздействуют. Далее полупроводниковую структуру промывают деионизованной водой и высушивают.
Выполняют, согласно предложенному способу, обработку контактной площадки диода капельным смачиванием в травителе состава: соляная кислота концентрированная в количественном соотношении 50% от общего объема, остальное - водный раствор бихромата калия 7% концентрации. Продолжительность обработки 7÷10 сек. При этом происходит доочистка поверхности контактной площадки от продуктов травления GaInP-слоев. (см. фиг. 1, 2). Данный травитель наносится локально в диодное окно, так как оказывает воздействие на контактный Ga(In)As слой фотопреобразователя в связи с наличием сильного окисляющего компонента (K2Сr2O7). Контактная площадка диода после обработки в растворе HCl÷(7%) K2Cr2O7 приобретает насыщенный синий цветовой оттенок, что соответствует полному вскрытию и частичному травлению n++-GaInP слоя туннельного перехода. Полупроводниковую структуру промывают деионизованной водой и сушат.
Для составления травителя применяется соляная кислота концентрированная 35÷38%, марки «ОСЧ» по ГОСТ 14261-77.
Использование для травителя водного раствора бихромата калия K2Cr2O7 менее 5% концентрации при содержании HCL более 70% от общего объема нежелательно, так как происходит интенсивное неконтролируемое стравливание n++- GaInP слоя.
Увеличение концентрации K2Cr2O7 в водном растворе более 15% концентрации избыточно. При количественном соотношении HCL концентрированной менее 30% от общего объема ухудшается доочистка поверхности диодной площадки.
Гидродинамический удар капли травителя с высоты 3÷5 см вызывает стряхивание и удаление газовых пузырьков со стенок фоторезистивной маски. При этом освобожденные от газовых пузырьков пристеночные (шириной до ~ 200 мкм) участки поверхности вновь подвергаются травлению. При меньшем расстоянии эффективность гидродинамического воздействия недостаточна. Прокапывание с высоты более ~ 5 см нецелесообразно в силу малоразмерности диодного окна (1×7 мм) в маске.
Далее напылением и последующим взрывом создают лицевые контакты Cr/Au-Ge/Ag/Au фотопреобразователя и диода. Вытравливают меза-изолирующую канавку. Напыляют тыльную металлизацию Cr/Au/Ag/Au. Отжигают контакты. Затем вскрывают слой оптического окна травлением n+-Ga(In)As контактного слоя по маске лицевой металлизации и напыляют просветляющее покрытие TiO2/Al2O3. Изготовленные диоды имеют улучшенную адгезию лицевых контактов, не отделяемых посредством механического воздействия, низкие обратные токи Iобр.<0,1mА/4 В и величину разброса прямого напряжения ΔUпр.=0,01B (1,58≤Uпр.≤1,59 В), см. таб. 1.
Figure 00000001
Предложенный способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя применим для четырехкаскадных полупроводниковых структур с p++-AlGaAs и n++- GaInP слоями туннельных переходов двух верхних каскадов.

Claims (1)

  1. Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя, включающий создание фоторезистивной маски с окнами лицевых контактов фотопреобразователя и диода на трехкаскадной полупроводниковой структуре GaInP/Ga(In)As/Ge с p++ и n++ слоями туннельного перехода верхнего каскада, вытравливание капельным смачиванием полупроводниковых слоев верхнего каскада до n++ слоя туннельного перехода в травителях на основе соляной кислоты, отличающийся тем, что в процессе вытравливания после возникновения газовых пузырьков по периметру диодного окна в маске их удаляют гидродинамически путем дистанционного нанесения капель травителя в область диодного окна, а после промывки и высушивания обрабатывают контактную площадку диода в травителе состава: соляная кислота концентрированная в количественном соотношении от 30 до 70% общего объема, остальное - водный раствор бихромата калия 5÷15% концентрации.
RU2018117127A 2018-05-07 2018-05-07 Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя RU2681660C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018117127A RU2681660C1 (ru) 2018-05-07 2018-05-07 Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018117127A RU2681660C1 (ru) 2018-05-07 2018-05-07 Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя

Publications (1)

Publication Number Publication Date
RU2681660C1 true RU2681660C1 (ru) 2019-03-12

Family

ID=65805616

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018117127A RU2681660C1 (ru) 2018-05-07 2018-05-07 Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя

Country Status (1)

Country Link
RU (1) RU2681660C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060042684A1 (en) * 2001-10-24 2006-03-02 Sharps Paul R Method of fabricating a multijunction solar cell with a bypass diode having an intrisis layer
RU2382439C1 (ru) * 2008-06-05 2010-02-20 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" (ООО "Национальная инновационная компания "НЭП") Каскадный фотопреобразователь и способ его изготовления
RU2391745C1 (ru) * 2009-01-23 2010-06-10 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Способ изготовления каскадных солнечных элементов (варианты)
RU2559166C1 (ru) * 2014-05-08 2015-08-10 Публичное акционерное общество "Сатурн" Способ изготовления фотопреобразователя
RU2577826C1 (ru) * 2014-12-01 2016-03-20 Публичное акционерное общество "Сатурн" Способ вытравливания контактной площадки встроенного диода фотопреобразователя
CN105514207A (zh) * 2015-12-08 2016-04-20 天津三安光电有限公司 一种多结太阳能电池的集成旁路二极管的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060042684A1 (en) * 2001-10-24 2006-03-02 Sharps Paul R Method of fabricating a multijunction solar cell with a bypass diode having an intrisis layer
RU2382439C1 (ru) * 2008-06-05 2010-02-20 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" (ООО "Национальная инновационная компания "НЭП") Каскадный фотопреобразователь и способ его изготовления
RU2391745C1 (ru) * 2009-01-23 2010-06-10 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Способ изготовления каскадных солнечных элементов (варианты)
RU2559166C1 (ru) * 2014-05-08 2015-08-10 Публичное акционерное общество "Сатурн" Способ изготовления фотопреобразователя
RU2577826C1 (ru) * 2014-12-01 2016-03-20 Публичное акционерное общество "Сатурн" Способ вытравливания контактной площадки встроенного диода фотопреобразователя
CN105514207A (zh) * 2015-12-08 2016-04-20 天津三安光电有限公司 一种多结太阳能电池的集成旁路二极管的制备方法

Similar Documents

Publication Publication Date Title
RU2577826C1 (ru) Способ вытравливания контактной площадки встроенного диода фотопреобразователя
US9018081B2 (en) Light emitting diode (LED) using three-dimensional gallium nitride (GaN) pillar structures
JP2953468B2 (ja) 化合物半導体装置及びその表面処理加工方法
KR101168589B1 (ko) 계면 활성제를 이용한 실리콘 태양전지의 텍스처링 방법
US5458735A (en) Process for the production of electroluminescent silicon structures
RU2528277C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ КАСКАДНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ Galnp/Galnas/Ge
US20130234149A1 (en) Sidewall texturing of light emitting diode structures
JPS55102282A (en) Light emitting diode and method of fabricating the same
RU2391745C1 (ru) Способ изготовления каскадных солнечных элементов (варианты)
RU2681660C1 (ru) Способ капельного вытравливания контактной площадки встроенного диода фотопреобразователя
CN205723599U (zh) 表面覆盖ITO的反极性AlGaInP基LED
CN103966605B (zh) 一种LED芯片GaP层用刻蚀液及刻蚀方法以及表面粗化方法
RU2559166C1 (ru) Способ изготовления фотопреобразователя
JPS61110476A (ja) 赤外発光ダイオ−ド
US5919715A (en) Method for cleaning a semiconductor surface
CN102280536A (zh) 一种光辅助红光led的磷化镓窗口层湿法粗化的方法
RU2685015C2 (ru) Способ изготовления фотопреобразователя со встроенным диодом на утоняемой подложке
CN109192769A (zh) 具有低正向压降高电压的二极管整流芯片及其制造方法
IE35848L (en) Semiconductor devices
US3041258A (en) Method of etching and etching solution for use therewith
RU2575974C1 (ru) Способ изготовления гетероструктурного солнечного элемента
KR100396675B1 (ko) 플라즈마 처리를 이용한 청색 반도체 레이저의 제조 방법
RU2391744C1 (ru) Способ изготовления чипов фотоэлектрических преобразователей
RU2492555C1 (ru) Способ изготовления чипов многослойных фотоэлементов
CN109962130A (zh) 一种六面粗化的红外led芯片及制作方法