CN102569495A - 太阳能晶片的掺杂方法以及掺杂晶片 - Google Patents

太阳能晶片的掺杂方法以及掺杂晶片 Download PDF

Info

Publication number
CN102569495A
CN102569495A CN2010105994462A CN201010599446A CN102569495A CN 102569495 A CN102569495 A CN 102569495A CN 2010105994462 A CN2010105994462 A CN 2010105994462A CN 201010599446 A CN201010599446 A CN 201010599446A CN 102569495 A CN102569495 A CN 102569495A
Authority
CN
China
Prior art keywords
type
type doped
layer
doped region
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105994462A
Other languages
English (en)
Other versions
CN102569495B (zh
Inventor
陈炯
钱锋
洪俊华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kingstone Semiconductor Co Ltd
Original Assignee
SHANGHAI KAISHITONG SEMICONDUCTOR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI KAISHITONG SEMICONDUCTOR CO Ltd filed Critical SHANGHAI KAISHITONG SEMICONDUCTOR CO Ltd
Priority to CN201010599446.2A priority Critical patent/CN102569495B/zh
Priority to KR1020137018723A priority patent/KR101620532B1/ko
Priority to KR1020157004300A priority patent/KR101583599B1/ko
Priority to PCT/CN2011/080101 priority patent/WO2012079403A1/zh
Priority to KR1020157004294A priority patent/KR101583594B1/ko
Priority to KR1020157004302A priority patent/KR101583601B1/ko
Publication of CN102569495A publication Critical patent/CN102569495A/zh
Application granted granted Critical
Publication of CN102569495B publication Critical patent/CN102569495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种太阳能晶片的掺杂方法包括以下步骤:在N型基底表面形成N+型掺杂层;在该N+型掺杂层表面形成掺杂阻挡层;在该掺杂阻挡层表面形成具有图样的薄膜;蚀刻开放区域的掺杂阻挡层和N+型掺杂层,并在该具有图样的薄膜下方靠近该开放区域的一端的该掺杂阻挡层和N+型掺杂层中形成侧蚀,其中蚀刻深度至少为该掺杂阻挡层和该N+型掺杂层厚度的总和;通过离子注入的方式将P型离子注入至N型基底中以形成P+型掺杂区域,其中,该P+型掺杂区域与该N+型掺杂层互不接触;去除该具有图样的薄膜以及该掺杂阻挡层。本发明公开了一种掺杂晶片。本发明简化了工艺步骤,无需购买光刻机,无需使用多张掩模板,不存在掩模板校准问题且降低了制作成本。

Description

太阳能晶片的掺杂方法以及掺杂晶片
技术领域
本发明涉及一种太阳能晶片的掺杂方法以及掺杂晶片,特别是涉及一种用于制作背结电池的太阳能晶片的掺杂方法以及掺杂晶片。
背景技术
新能源是二十一世纪世界经济发展中最具决定力的五大技术领域之一。太阳能是一种清洁、高效和永不衰竭的新能源。在新世纪中,各国政府都将太阳能资源利用作为国家可持续发展战略的重要内容。而光伏发电具有安全可靠、无噪声、无污染、制约少、故障率低、维护简便等优点。
近几年,国际光伏发电迅猛发展,太阳能晶片供不应求,于是提高太阳能晶片的光电转化效率和太阳能晶片的生产能力成为重要的课题。太阳能电池受光照后,电池吸收一个能量大于带隙宽度的入射光子后产生电子-空穴对,电子和空穴分别激发到导带与价带的高能态。在激发后的瞬间,电子和空穴在激发态的能量位置取决于入射光子的能量。处于高能态的光生载流子很快与晶格相互作用,将能量交给声子而回落到导带底与价带顶,这过程也称作热化过程,热化过程使高能光子的能量损失了一部分。热化过程后,光生载流子的输运过程(势垒区或扩散区)中将有复合损失。最后的电压输出又有一次压降,压降来源于与电极材料的功函数的差异。由上述分析,太阳能电池效率受材料、器件结构及制备工艺的影响,包括电池的光损失、材料的有限迁移率、复合损失、串联电阻和旁路电阻损失等。对于一定的材料,电池结构与制备工艺的改进对提高光电转换效率是重要的。一种可行的实现低成本高效率太阳电池方案是聚光太阳电池。聚光太阳电池可以大大节约材料成本,明显提高太阳电池效率。采用正面结结构的太阳电池,为了满足聚光电池电流密度更大的特点,必须大大增加正面栅线密度,这会反过来影响栅线遮光率,减小短路电流。一种可行的解决遮光损失的方案就是背接触结构太阳电池,也叫背结电池。背接触结构太阳能电池的掺杂区域和金半接触区域全部集成在太阳电池背面,背面电极占据背表面很大部分,减小了接触电阻损失。另外,电流流动方向垂直于结区,这就进一步消除了正面结构横向电流流动造成的电阻损失,这样就会同时满足高强度聚焦正面受光和高光电转换效率的要求。背接触太阳能电池也有利于电池封装,进一步降低成本。
但是由于背结电池的PN结靠近电池背面,而少数载流子必须扩散通过整个硅片厚度才能达到背面结区,所以这种电池设计就需要格外高的少子寿命的硅片作为基地材料,否则少子还未扩散到背面结区就被复合掉了,这样电池的效率就会大大下降。IBC(interdigitated back contact)太阳能电池是最早研究的背结电池,最初主要用于聚光系统中,任丙彦等的背接触硅太阳能电池研究进展(材料导报2008年9月第22卷第9期)中介绍了各种背接触硅太阳能电池的结构和制作工艺,以IBC太阳能电池为例,SUNPOWER公司制作的IBC太阳能电池的最高转换效率可达24%,然后由于其采用了光刻工艺,由于光刻所带来的复杂操作使得其成本难以下降,给民用或者普通场合的商业化应用造成困难。为了降低成本,也有利用掩模板来形成交叉排列的P+区和N+区,但是在制作过程中必须用到多张掩模板,不仅增加了制作成本,由于光刻技术需要精确校准因此还产生了采用不同掩模板需要校准的问题,为制作过程带来了不少难度。
发明内容
本发明要解决的技术问题是为了克服现有技术中IBC太阳能电池的制作过程中使用光刻工艺成本较高的缺陷,提供一种仅需一张掩模板、无掩模板校准问题、成本较低、工艺步骤较少且掺杂离子浓度得以精确控制的太阳能晶片的掺杂方法以及掺杂晶片。
本发明是通过下述技术方案来解决上述技术问题的:
一种太阳能晶片的掺杂方法,其特点在于,其包括以下步骤:
步骤S1、在N型基底表面形成N+型掺杂层;
步骤S2、在该N+型掺杂层表面形成掺杂阻挡层;
步骤S3、在该掺杂阻挡层表面形成具有图样的薄膜,其中,未被该具有图样的薄膜覆盖的区域为开放区域;该具有图样的薄膜起到掩膜的作用,
步骤S4、蚀刻去除该开放区域的掺杂阻挡层以及N+型掺杂层,并在该具有图样的薄膜下方靠近该开放区域的一端的该掺杂阻挡层和N+型掺杂层中形成侧蚀(undercut,此字原义是指早期人工伐木时,以斧头自树根两侧处,采上下斜口方式将大树逐渐砍断,谓之Undercut。后来在PCB(印刷电路板)中是指用于蚀刻制程中,当板面导体在阻剂的掩护下进行喷蚀时,理论上蚀刻液会垂直向下或向上进行攻击,但因药水的作用并无方向性,故也会产生侧蚀,造成侧蚀后导体线路在截面上,显现出两侧的内陷,称为Undercut),其中蚀刻深度至少为该掺杂阻挡层和该N+型掺杂层厚度的总和;
步骤S5、加速P型离子并通过离子注入的方式将该P型离子从该N型基底的表面的该开放区域注入至N型基底中以形成P+型掺杂区域,其中,该P+型掺杂区域与该未经蚀刻的N+型掺杂层互不接触;
步骤S6、去除该具有图样的薄膜以及该掺杂阻挡层,
其中,所述的P型替换为N型时,N型同时替换为P型。这里所说的侧蚀(undercut)是指在蚀刻该开放区域的掺杂阻挡层以及N+型掺杂层的过程中,除了该开放区域正下方的掺杂阻挡层以及N+型掺杂层被完全蚀刻掉之外(即正向蚀刻),由于外延扩散的原因,该具有图样的薄膜下方靠近该开放区域的一端的该掺杂阻挡层和N+型掺杂层也被侧向蚀刻掉一小部分,业内称之为侧蚀(例如图4a、图4b中形成的弧形凹槽式的侧蚀31)。这里所谓的正向指垂直于基底平面的方向,侧向即指平行于基底平面的方向。
优选地,步骤S1中通过热扩散或者离子注入的方式形成该N+型掺杂层,其中该N+型掺杂层的方块电阻为20-100Ω/□。本领域技术人员可以根据需要选择合适的扩散源或者掺杂离子的能量、浓度等参数以形成该N+型掺杂层。较佳地,该N+型掺杂层的方块电阻为30-90Ω/□,更佳地,该N+型掺杂层的方块电阻为40-80Ω/□。
优选地,步骤S2中通过CVD(化学汽相淀积)的方法形成该掺杂阻挡层,其中该掺杂阻挡层的厚度大于1μm,该掺杂阻挡层为二氧化硅、非晶硅、多晶硅或氮化硅薄膜。本领域技术人员可以根据实际需要选择其他的掺杂阻挡层的材料以及形成工艺。
优选地,步骤S3中通过丝网印刷的方式形成该具有图样的薄膜,其中该具有图样的薄膜由合成橡胶或金属制成,例如铜铝合金,该具有图样的薄膜形成之后,还包括烘干该薄膜的步骤。
优选地,步骤S4中采用湿法化学法蚀刻去除该开放区域的掺杂阻挡层以及N+型掺杂层。例如采用稀释后的氢氟酸进行蚀刻,并形成侧蚀。
优选地,步骤S4中所形成的侧蚀的深度至少为2,为了使PN结不容易被击穿,提高掺杂晶片的使用寿命,该优选的侧蚀深度为2-30μm,更佳地,优选的侧蚀深度为5-20μm。这里用测试深度来描述侧蚀程度,本领域通常以构成侧蚀的凹槽深度来描述侧蚀程度,侧蚀量的大小是指最大侧向蚀刻深度(例如图4a、图4b中侧蚀31的最大宽度w)。
由于上述步骤S4中侧蚀的形成,使得整个蚀刻过程中开放区域的上下宽度不同,优选地,蚀刻底部宽度(蚀刻后形成的开放区域的最大宽度,即指包括了两侧侧蚀深度的宽度)为104-210μm。
优选地,步骤S5中该P型离子被加速至500eV-50keV,所形成的P+型掺杂区域的方块电阻为40-120Ω/□。优选地,P型离子被加速至1keV-40keV,更优选地,P型离子被加速至5keV-30keV;优选地,所形成的P+型掺杂区域的方块电阻为60-110Ω/□,更优选地,所形成的P+型掺杂区域的方块电阻为80-100Ω/□。
优选地,步骤S5之后还包括退火步骤。离子注入后,在700-1100℃的温度下退火30秒至30分钟以激活掺杂离子,优选地,退火温度为850-1000℃。
本发明还提供一种按照如上所述的太阳能晶片的掺杂方法制得的掺杂晶片,其特点在于,该掺杂晶片包括:
一N型基底;
形成于该N型基底表面的至少一个N+型掺杂区域;
形成于该N型基底中的P+型掺杂区域;
其中,该N+型掺杂区域与该P+型掺杂区域互不接触,这里所说的N+掺杂区域即指上述方法中所指的未经蚀刻的N+型掺杂层,
其中,所述的P型替换为N型时,N型同时替换为P型。
优选地,该N型基底具有凹槽,该P+型掺杂区域形成于该N型基底的凹槽中。
优选地,该N+型掺杂区域与该P+型掺杂区域的最小距离至少为2μm,较佳地,该N+型掺杂区域与该P+型掺杂区域的最小距离为2-30μm。
优选地,该N+型掺杂区域的方块电阻为20-100Ω/□。较佳地,该N+型掺杂区域的方块电阻为30-90Ω/□,更佳地,该N+型掺杂区域的方块电阻为40-80Ω/□。
优选地,P+型掺杂区域的方块电阻为40-120Ω/□。较佳地,P+型掺杂区域的方块电阻为60-110Ω/□,更优选地,所形成的P+型掺杂区域的方块电阻为80-100Ω/□。
利用上述方法形成的掺杂晶片,再经钝化和镀压电极的操作可以形成背结电池。例如,在掺杂晶片的表面和背面分别形成氮化硅薄膜作为钝化层,掺杂晶片表面的氮化硅薄膜还作为减反射层,之后分别在该P+型掺杂区域和该N+型掺杂区域(即未经蚀刻的N+型掺杂层)上镀压金属电极并烧结,使金属电极中的金属元素与N型基底共晶复合,由此形成了背结电池。
只需要在上述过程中,调换基底材料和离子注入或扩散生长的方式掺杂的杂质材料,则该方法同样适用于P型太阳能掺杂晶片的制作,即所述的N型替换为P型时,P型同时替换为N型。
本发明的积极进步效果在于:
1、本发明中P+型掺杂区域与N+型掺杂区域之间具有N型基底材料作为缓冲层,使得PN结之间不会因为耗尽层太薄而导致被击穿,由此提高了该掺杂晶片的使用寿命。
2、比起采用光刻工艺制作背结电池而言,本发明简化了工艺步骤,无需购买光刻机,成本大大降低,另外制作流程中无需使用多张掩模板,解决了掩模板校准问题的同时还降低了制作成本。
3、本发明中P+型掺杂区域与N+型掺杂区域之间N型缓冲层的最小宽度为2μm,采用纯粹机械加工方法制得的掩模板很难做到这样的精度,即使能做到,这样的掩模板也是价格高昂,本发明通过控制掺杂阻挡层以及N+型掺杂层的厚度,并且采用蚀刻开放区域的掺杂阻挡层以及N+型掺杂层的方式,自然形成符合上述最小宽度的侧蚀结构,省去了购买价格高昂的掩模板的成本,进一步降低了制作成本。
4、采用离子注入进行掺杂形成P+型掺杂区域,掺杂离子的浓度得到了精确的控制,比起热扩散工艺的掺杂而言对提高光电转换的效率更有利。
附图说明
图1-图6b为本发明的制作背结电池的掺杂晶片的分解步骤示意图。
具体实施方式
下面结合附图给出本发明较佳实施例,以详细说明本发明的技术方案。
实施例1
参考图1,步骤S1、在N型基底1表面形成N+型掺杂层2,该N+型掺杂层的方块电阻为20Ω/□。具体来说,将磷离子加速至500eV并通过离子注入的方式将该磷离子从该N型基底的表面注入至该N型基底中。
参考图2,步骤S2、在该N+型掺杂层2表面形成掺杂阻挡层3,具体来说,通过CVD(化学汽相淀积)的方法形成该掺杂阻挡层3,其中该掺杂阻挡层3的厚度大于1μm,本实施例中该掺杂阻挡层采用厚度为1.5μm的二氧化硅薄膜。
参考图3,步骤S3、在该掺杂阻挡层3表面形成具有图样的薄膜4,其中,未被该具有图样的薄膜4覆盖的区域为开放区域,该具有图样的薄膜4起到掩膜的作用。其中通过丝网印刷的方式形成该具有图样的薄膜,其中该具有图样的薄膜由合成橡胶制成。
参考图4a,步骤S4、蚀刻去除该开放区域21的掺杂阻挡层3以及N+型掺杂层2,并在该具有图样的薄膜4下方靠近该开放区域21的一端的该掺杂阻挡层3和N+型掺杂层2中形成侧蚀31,其中蚀刻深度为该掺杂阻挡层3和该N+型掺杂层2厚度的总和。其中,采用湿法化学法蚀刻去除该开放区域的掺杂阻挡层以及N+型掺杂层,本实施例中采用稀释后的氢氟酸进行蚀刻,并形成侧蚀,该侧蚀的深度w为2μm。
参考图5a,步骤S5、加速硼型离子至500eV并通过离子注入的方式将该硼离子从该N型基底的表面的该开放区域沿方向a垂直注入至N型基底中以形成P+型掺杂区域6,该P+型掺杂区域的方块电阻为40Ω/□,其中,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2互不接触,如图5a所示,由于离子注入具有方向性,加上该具有图样的薄膜4以及该掺杂阻挡层3的阻挡,该P+型掺杂区域6的宽度等于该开放区域21的最窄宽度,即图5a中开放区域21上部开口的宽度,本实施例中,该P+型掺杂区域6的宽度为100μm,此时,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2之间的最小距离为侧蚀深度2μm,这样,本实施中形成的蚀刻底部宽度就为该P+型掺杂区域6的宽度与两侧的侧蚀深度的总和104μm。完成这一步的离子注入后,在大于700℃的温度下退火,本实施例中在750℃下退火30分钟以激活掺杂离子。
参考图6a,步骤S6、去除该具有图样的薄膜4以及该掺杂阻挡层3,可以采用本领域的常规方法去除该具有图样的薄膜4以及该掺杂阻挡层3,由该P+型掺杂区域6、该未经蚀刻的N+型掺杂层2以及上述两者之间的N型基底构成P+/N/N+结构的PN结。
由此,掺杂晶片的制作完成。利用上述方法形成的掺杂晶片,再经钝化和镀压电极的操作可以形成背结电池。例如,在掺杂晶片的表面和背面分别形成氮化硅薄膜作为钝化层,掺杂晶片表面的氮化硅薄膜还作为减反射层,之后分别在该P+型掺杂区域和该N+型掺杂区域(即未经蚀刻的N+型掺杂层)上镀压金属电极并烧结,使金属电极中的金属元素与N型基底共晶复合,由此形成了背结电池。
实施例2
实施例2的原理与实施例1相同,其主要工艺步骤也相同,不同之处仅在于以下材料和工艺参数的选择:
步骤S1中在N型基底1表面形成N+型掺杂层2,该N+型掺杂层的方块电阻为100Ω/□。具体来说,将磷离子加速至50keV并通过离子注入的方式将该磷离子从该N型基底的表面注入至该N型基底中;
步骤S3中该具有图样的薄膜由铜铝合金制成;
步骤S4中采用稀释后的氢氟酸进行蚀刻,并形成深度w为5μm侧蚀31;
步骤S5中加速硼型离子至50keV并通过离子注入的方式将该硼离子从该N型基底的表面的该开放区域沿方向a垂直注入至N型基底中以形成P+型掺杂区域6,该P+型掺杂区域的方块电阻为120Ω/□,其中,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2互不接触,如图5a所示,由于离子注入具有方向性,加上该具有图样的薄膜4以及该掺杂阻挡层3的阻挡,该P+型掺杂区域6的宽度等于该开放区域21的最窄宽度,即图5a中开放区域21上部开口的宽度,本实施例中,该P+型掺杂区域6的宽度为150μm,此时,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2之间的最小距离为侧蚀深度5μm,这样,本实施中形成的蚀刻底部宽度就为该P+型掺杂区域6的宽度与两侧的侧蚀深度的总和160μm。完成这一步的离子注入后,在1100℃的温度下退火30秒以激活掺杂离子。
除了以上所述之外的其余工艺步骤与实施例1均相同。
由该P+型掺杂区域6、该未经蚀刻的N+型掺杂层2以及上述两者之间的N型基底构成P+/N/N+结构的PN结。由此,掺杂晶片的制作完成。利用上述方法形成的掺杂晶片,再经钝化和镀压电极的操作可以形成背结电池。例如,在掺杂晶片的表面和背面分别形成氮化硅薄膜作为钝化层,掺杂晶片表面的氮化硅薄膜还作为减反射层,之后可以在钝化层中分别与该P+型掺杂区域和该N+型掺杂区域(即未经蚀刻的N+型掺杂层)相对应的位置开出接触孔,接着在该接触孔上镀压金属电极并烧结,使金属电极中的金属元素与N型基底共晶复合,由此形成了背结电池。
实施例3
实施例3的原理与实施例1相同,其主要工艺步骤也相同,不同之处仅在于以下材料和工艺参数的选择:
步骤S1中在N型基底1表面形成N+型掺杂层2,该N+型掺杂层的方块电阻为40Ω/□。具体来说,将磷离子加速至30keV并通过离子注入的方式将该磷离子从该N型基底的表面注入至该N型基底中;
步骤S3中该具有图样的薄膜由铜铝合金制成;
步骤S4中采用稀释后的氢氟酸进行蚀刻,并形成深度为30μm侧蚀;
步骤S5中加速硼型离子至30keV并通过离子注入的方式将该硼离子从该N型基底的表面的该开放区域沿方向a垂直注入至N型基底中以形成P+型掺杂区域6,该P+型掺杂区域的方块电阻为100Ω/□,其中,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2互不接触,如图5a所示,由于离子注入具有方向性,加上该具有图样的薄膜4以及该掺杂阻挡层3的阻挡,该P+型掺杂区域6的宽度等于该开放区域21的最窄宽度,即图5a中开放区域21上部开口的宽度,本实施例中,该P+型掺杂区域6的宽度为150μm,此时,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2之间的最小距离为侧蚀深度30μm,这样,本实施中形成的蚀刻底部宽度就为该P+型掺杂区域6的宽度与两侧的侧蚀深度的总和210μm。完成这一步的离子注入后,在850℃的温度下退火10分钟以激活掺杂离子。
除了以上所述之外的其余工艺步骤与实施例1均相同。
实施例4
实施例4的原理与实施例1相同,其主要工艺步骤也相同,不同之处仅在于:步骤S1中通过热扩散的方式形成该N+型掺杂层,其中该N+型掺杂层的方块电阻为20Ω/□,其余步骤均与实施例1相同。
实施例5
实施例5的原理与实施例1相同,其主要工艺步骤也相同,不同之处仅在于以下工艺步骤、参数的选择:
参考图4b,步骤S4、蚀刻去除该开放区域21的掺杂阻挡层3以及N+型掺杂层2,并在该具有图样的薄膜4下方靠近该开放区域21的一端的该掺杂阻挡层3和N+型掺杂层2中形成侧蚀31,其中蚀刻深度大于该掺杂阻挡层3和该N+型掺杂层2厚度的总和,即如图4b所示,该N型基底的基底部分也被蚀刻掉一薄层。其中,采用湿法化学法蚀刻去除该开放区域的掺杂阻挡层、N+型掺杂层以及该N型基底的薄层,本实施例中采用稀释后的氢氟酸进行蚀刻,并形成侧蚀,该侧蚀的深度为2μm。
参考图5b,步骤S5、加速硼型离子至500eV并通过离子注入的方式将该硼离子从该N型基底的表面的该开放区域沿方向a垂直注入至N型基底中以形成P+型掺杂区域6,该P+型掺杂区域的方块电阻为40Ω/□,其中,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2互不接触,如图5b所示,由于离子注入具有方向性,加上该具有图样的薄膜4以及该掺杂阻挡层3的阻挡,该P+型掺杂区域6的宽度等于该开放区域21的最窄宽度,即图5b中开放区域21上部开口的宽度,本实施例中,该P+型掺杂区域6的宽度为100μm,此时,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2之间的最小距离为侧蚀深度2μm,这样,本实施中形成的蚀刻底部宽度就为该P+型掺杂区域6的宽度与两侧的侧蚀深度的总和104μm。完成这一步的离子注入后,在900℃的温度下退火30分钟以激活掺杂离子。
参考图6b,步骤S6、去除该具有图样的薄膜4以及该掺杂阻挡层3,由该P+型掺杂区域6、该N+型掺杂层2以及上述两者之间的N型基底构成P+/N/N+结构的PN结。
由此,掺杂晶片的制作完成。由该P+型掺杂区域6、该未经蚀刻的N+型掺杂层2以及上述两者之间的N型基底构成P+/N/N+结构的PN结。由此,掺杂晶片的制作完成。利用上述方法形成的掺杂晶片,再经钝化和镀压电极的操作可以形成背结电池。例如,在掺杂晶片的表面和背面分别形成氮化硅薄膜作为钝化层,掺杂晶片表面的氮化硅薄膜还作为减反射层,之后可以在钝化层中分别与该P+型掺杂区域和该N+型掺杂区域(即未经蚀刻的N+型掺杂层)相对应的位置开出接触孔,接着在该接触孔上镀压金属电极并烧结,使金属电极中的金属元素与N型基底共晶复合,由此形成了背结电池。
实施例6
实施例6的原理与实施例5相同,其主要工艺步骤也相同,不同之处仅在于以下材料和工艺参数的选择:
步骤S1中在N型基底1表面形成N+型掺杂层2,该N+型掺杂层的方块电阻为60Ω/□。具体来说,将磷离子加速至50keV并通过离子注入的方式将该磷离子从该N型基底的表面注入至该N型基底中;
步骤S3中该具有图样的薄膜由铜铝合金制成;
步骤S4中采用稀释后的氢氟酸进行蚀刻,并形成深度为10μm侧蚀31;
步骤S5中加速硼型离子至50keV并通过离子注入的方式将该硼离子从该N型基底的表面的该开放区域沿方向a垂直注入至N型基底中以形成P+型掺杂区域6,该P+型掺杂区域的方块电阻为120Ω/□,其中,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2互不接触,如图5b所示,由于离子注入具有方向性,加上该具有图样的薄膜4以及该掺杂阻挡层3的阻挡,该P+型掺杂区域6的宽度等于该开放区域21的最窄宽度,即图5b中开放区域21上部开口的宽度,本实施例中,该P+型掺杂区域6的宽度为120μm,此时,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2之间的最小距离为侧蚀深度10μm,这样,本实施中形成的蚀刻底部宽度就为该P+型掺杂区域6的宽度与两侧的侧蚀深度的总和140μm。完成这一步的离子注入后,在1100℃的温度下退火30秒以激活掺杂离子。
除了以上所述之外的其余工艺步骤与实施例5均相同。
实施例7
实施例7的原理与实施例5相同,其主要工艺步骤也相同,不同之处仅在于以下材料和工艺参数的选择:
步骤S1中在N型基底1表面形成N+型掺杂层2,该N+型掺杂层的方块电阻为40Ω/□。具体来说,将磷离子加速至30keV并通过离子注入的方式将该磷离子从该N型基底的表面注入至该N型基底中;
步骤S3中该具有图样的薄膜由铜铝合金制成;
步骤S4中采用稀释后的氢氟酸进行蚀刻,并形成深度为30μm侧蚀31;
步骤S5中加速硼型离子至30keV并通过离子注入的方式将该硼离子从该N型基底的表面的该开放区域沿方向a垂直注入至N型基底中以形成P+型掺杂区域6,该P+型掺杂区域的方块电阻为100Ω/□,其中,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2互不接触,如图5b所示,由于离子注入具有方向性,加上该具有图样的薄膜4以及该掺杂阻挡层3的阻挡,该P+型掺杂区域6的宽度等于该开放区域21的最窄宽度,即图5b中开放区域21上部开口的宽度,本实施例中,该P+型掺杂区域6的宽度为120μm,此时,该P+型掺杂区域6与该未经蚀刻的N+型掺杂层2之间的最小距离为侧蚀深度30μm,这样,本实施中形成的蚀刻底部宽度就为该P+型掺杂区域6的宽度与两侧的侧蚀深度的总和180μm。完成这一步的离子注入后,在850℃的温度下退火10分钟以激活掺杂离子。
除了以上所述之外的其余工艺步骤与实施例5均相同。
只需要在上述过程中,调换基底材料和离子注入或扩散生长的方式掺杂的杂质材料,则该方法同样适用于P型太阳能掺杂晶片的制作,即所述的N型替换为P型时,P型同时替换为N型。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (13)

1.一种太阳能晶片的掺杂方法,其特征在于,其包括以下步骤:
步骤S1、在N型基底表面形成N+型掺杂层;
步骤S2、在该N+型掺杂层表面形成掺杂阻挡层;
步骤S3、在该掺杂阻挡层表面形成具有图样的薄膜,其中,未被该具有图样的薄膜覆盖的区域为开放区域;
步骤S4、蚀刻去除该开放区域的掺杂阻挡层以及N+型掺杂层,并在该具有图样的薄膜下方靠近该开放区域的一端的该掺杂阻挡层和N+型掺杂层中形成侧蚀,其中蚀刻深度至少为该掺杂阻挡层和该N+型掺杂层厚度的总和;
步骤S5、加速P型离子并通过离子注入的方式将该P型离子从该N型基底的表面的该开放区域注入至N型基底中以形成P+型掺杂区域,其中,该P+型掺杂区域与该未经蚀刻的N+型掺杂层互不接触;
步骤S6、去除该具有图样的薄膜以及该掺杂阻挡层,
其中,所述的P型替换为N型时,N型同时替换为P型。
2.如权利要求1所述的太阳能晶片的掺杂方法,其特征在于,步骤S1中通过热扩散或者离子注入的方式形成该N+型掺杂层,其中该N+型掺杂层的方块电阻为20-100Ω/□。
3.如权利要求1所述的太阳能晶片的掺杂方法,其特征在于,步骤S2中通过CVD的方法形成该掺杂阻挡层,其中该掺杂阻挡层的厚度大于1μm,该掺杂阻挡层为二氧化硅、非晶硅、多晶硅或氮化硅薄膜。
4.如权利要求1所述的太阳能晶片的掺杂方法,其特征在于,步骤S3中通过丝网印刷的方式形成该具有图样的薄膜,其中该具有图样的薄膜由合成橡胶或金属制成。
5.如权利要求1所述的太阳能晶片的掺杂方法,其特征在于,步骤S4中采用湿法化学法蚀刻去除该开放区域的掺杂阻挡层以及N+型掺杂层。
6.如权利要求1所述的太阳能晶片的掺杂方法,其特征在于,步骤S4中所形成的侧蚀的深度至少为2μm。
7.如权利要求1所述的太阳能晶片的掺杂方法,其特征在于,步骤S5中该P型离子被加速至500eV-50keV,所形成的P+型掺杂区域的方块电阻为40-120Ω/□。
8.如权利要求1-7中任意一项所述的太阳能晶片的掺杂方法,其特征在于,步骤S5之后还包括退火步骤,退火温度为700-1100℃,退火时间为30秒-30分钟。
9.一种按照如权利要求1所述的太阳能晶片的掺杂方法制得的掺杂晶片,其特征在于,该掺杂晶片包括:
一N型基底;
形成于该N型基底表面的至少一个N+型掺杂区域;
形成于该N型基底中的P+型掺杂区域;
其中,该N+型掺杂区域与该P+型掺杂区域互不接触,
其中,所述的P型替换为N型时,N型同时替换为P型。
10.如权利要求9所述的掺杂晶片,其特征在于,该N型基底具有凹槽,该P+型掺杂区域形成于该N型基底的凹槽中。
11.如权利要求9或10所述的掺杂晶片,其特征在于,该N+型掺杂区域与该P+型掺杂区域的最小距离至少为2μm。
12.如权利要求9或10所述的掺杂晶片,其特征在于,该N+型掺杂区域的方块电阻为20-100Ω/□。
13.如权利要求9或10所述的掺杂晶片,其特征在于,该P+型掺杂区域的方块电阻为40-120Ω/□。
CN201010599446.2A 2010-12-17 2010-12-17 太阳能晶片的掺杂方法 Active CN102569495B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201010599446.2A CN102569495B (zh) 2010-12-17 2010-12-17 太阳能晶片的掺杂方法
KR1020137018723A KR101620532B1 (ko) 2010-12-17 2011-09-23 도핑방법, pn 구조, 태양전지 제조방법 및 태양전지
KR1020157004300A KR101583599B1 (ko) 2010-12-17 2011-09-23 도핑방법, pn 구조, 태양전지 제조방법 및 태양전지
PCT/CN2011/080101 WO2012079403A1 (zh) 2010-12-17 2011-09-23 掺杂方法、pn结构、太阳能电池的制作方法及太阳能电池
KR1020157004294A KR101583594B1 (ko) 2010-12-17 2011-09-23 도핑방법, pn 구조, 태양전지 제조방법 및 태양전지
KR1020157004302A KR101583601B1 (ko) 2010-12-17 2011-09-23 도핑방법, pn 구조, 태양전지 제조방법 및 태양전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010599446.2A CN102569495B (zh) 2010-12-17 2010-12-17 太阳能晶片的掺杂方法

Publications (2)

Publication Number Publication Date
CN102569495A true CN102569495A (zh) 2012-07-11
CN102569495B CN102569495B (zh) 2014-03-19

Family

ID=46414445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010599446.2A Active CN102569495B (zh) 2010-12-17 2010-12-17 太阳能晶片的掺杂方法

Country Status (1)

Country Link
CN (1) CN102569495B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282799A (zh) * 2013-07-12 2015-01-14 上海神舟新能源发展有限公司 采用掩膜反刻蚀制作ibc电池交错结构的工艺
CN109378356A (zh) * 2018-09-04 2019-02-22 国家电投集团西安太阳能电力有限公司 一种ibc太阳能电池的制备方法
CN117637875A (zh) * 2024-01-26 2024-03-01 隆基绿能科技股份有限公司 一种背接触电池及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330926A (en) * 1990-11-14 1994-07-19 Nec Corporation Method of fabricating semiconductor device having a trenched cell capacitor
JPH11214720A (ja) * 1998-01-28 1999-08-06 Canon Inc 薄膜結晶太陽電池の製造方法
US7700400B2 (en) * 2004-12-27 2010-04-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
CN101728452A (zh) * 2008-10-20 2010-06-09 昱晶能源科技股份有限公司 具有差异性掺杂的太阳能电池的单次扩散制造方法
CN101740661A (zh) * 2009-12-24 2010-06-16 浙江向日葵光能科技股份有限公司 一种晶体硅太阳能电池选择性发射区的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330926A (en) * 1990-11-14 1994-07-19 Nec Corporation Method of fabricating semiconductor device having a trenched cell capacitor
JPH11214720A (ja) * 1998-01-28 1999-08-06 Canon Inc 薄膜結晶太陽電池の製造方法
US7700400B2 (en) * 2004-12-27 2010-04-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
CN101728452A (zh) * 2008-10-20 2010-06-09 昱晶能源科技股份有限公司 具有差异性掺杂的太阳能电池的单次扩散制造方法
CN101740661A (zh) * 2009-12-24 2010-06-16 浙江向日葵光能科技股份有限公司 一种晶体硅太阳能电池选择性发射区的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282799A (zh) * 2013-07-12 2015-01-14 上海神舟新能源发展有限公司 采用掩膜反刻蚀制作ibc电池交错结构的工艺
CN109378356A (zh) * 2018-09-04 2019-02-22 国家电投集团西安太阳能电力有限公司 一种ibc太阳能电池的制备方法
CN117637875A (zh) * 2024-01-26 2024-03-01 隆基绿能科技股份有限公司 一种背接触电池及其制造方法

Also Published As

Publication number Publication date
CN102569495B (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
CN102222726B (zh) 采用离子注入法制作交错背接触ibc晶体硅太阳能电池的工艺
US9153728B2 (en) Ion implanted solar cells with in situ surface passivation
CN102637767B (zh) 太阳能电池的制作方法以及太阳能电池
CN102544195B (zh) 太阳能电池及其制作方法
CN103208557A (zh) 太阳能电池的制作方法及太阳能电池
CN102487102B (zh) 太阳能电池及其制备方法
KR20130052627A (ko) 선택적 전면 필드를 구비한 후면 접합 태양전지
CN103208556A (zh) 太阳能电池的制作方法及太阳能电池
CN102487103B (zh) 太阳能电池及其制备方法
CN103137448A (zh) 掺杂方法、pn结构、太阳能电池及其制作方法
KR101474008B1 (ko) 플라즈마 표면 처리를 이용한 태양전지의 제조방법
CN102569495B (zh) 太阳能晶片的掺杂方法
CN102738263B (zh) 掺杂单元、掺杂晶片、掺杂方法、电池及制作方法
CN102683504B (zh) 通过离子注入砷改进晶体硅太阳能电池制作工艺的方法
CN102637766B (zh) 太阳能晶片掺杂方法、掺杂晶片、太阳能电池及制作方法
CN102569492B (zh) 太阳能晶片的掺杂方法以及掺杂晶片
CN103828069B (zh) 掺杂方法、pn结构、太阳能电池的制作方法及太阳能电池
CN102738264B (zh) 掺杂单元、掺杂晶片、掺杂方法、太阳能电池及制作方法
CN102569498A (zh) 太阳能电池及其制作方法
KR20090019600A (ko) 고효율 태양전지 및 그의 제조방법
CN102569491B (zh) 太阳能晶片的掺杂方法以及掺杂晶片
CN102738265A (zh) 掺杂单元、掺杂晶片、掺杂方法、太阳能电池及制作方法
CN102339893A (zh) 太阳能晶片的制备方法
CN102569493B (zh) 太阳能晶片的掺杂方法以及掺杂晶片
CN102412335A (zh) 太阳能晶片及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 201203 Shanghai City Newton Road, Zhangjiang High Tech Park of Pudong New Area No. 200 Building No. 7, No. 1

Patentee after: KINGSTONE SEMICONDUCTOR COMPANY LTD.

Address before: 201203 Shanghai City Newton Road, Zhangjiang High Tech Park of Pudong New Area No. 200 Building No. 7, No. 1

Patentee before: Shanghai Kaishitong Semiconductor Co., Ltd.