CN105506999A - 一种高强高模聚乙烯醇纤维的表面处理改性方法 - Google Patents

一种高强高模聚乙烯醇纤维的表面处理改性方法 Download PDF

Info

Publication number
CN105506999A
CN105506999A CN201610064429.6A CN201610064429A CN105506999A CN 105506999 A CN105506999 A CN 105506999A CN 201610064429 A CN201610064429 A CN 201610064429A CN 105506999 A CN105506999 A CN 105506999A
Authority
CN
China
Prior art keywords
polyvinyl alcohol
strength high
fiber
high strength
alcohol fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610064429.6A
Other languages
English (en)
Other versions
CN105506999B (zh
Inventor
张华鹏
闻克瑜
范立峰
王激扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU GUYIQIANG NEW MATERIAL TECHNOLOGY Co.,Ltd.
Zhejiang Zhongrui New Material Technology Co.,Ltd.
Original Assignee
Hangzhou Saiqisi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Saiqisi Technology Co Ltd filed Critical Hangzhou Saiqisi Technology Co Ltd
Priority to CN201610064429.6A priority Critical patent/CN105506999B/zh
Publication of CN105506999A publication Critical patent/CN105506999A/zh
Application granted granted Critical
Publication of CN105506999B publication Critical patent/CN105506999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/647Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing polyether sequences
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/65Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing epoxy groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/24Polymers or copolymers of alkenylalcohols or esters thereof; Polymers or copolymers of alkenylethers, acetals or ketones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Abstract

本发明公开了一种高强高模聚乙烯醇纤维的表面处理改性方法。将高强高模聚乙烯醇纤维进行表面清洗并烘干后,浸入稀释乳液中浸轧处理,之后焙烘,乳液包含聚硅氧烷、纳米二氧化硅、硅烷偶联剂和润滑剂,乳液浸渍处理后再进行清洗并烘干。本发明方法可用来调控聚乙烯醇纤维与水泥基体之间的界面,使表面改性后的高强高模聚乙烯醇纤维更好地被用于高韧性水泥基复合材料中,降低高强高模聚乙烯醇纤维在水泥中的用量,提高水泥基复合材料才韧性,降低高韧性水泥基复合材料制造成本。

Description

一种高强高模聚乙烯醇纤维的表面处理改性方法
技术领域
本发明涉及了一种纤维处理方法,涉及了一种高强高模聚乙烯醇纤维的表面处理改性方法,属于纤维材料改性及产业用纤维材料制备领域。
背景技术
高强高模聚乙烯醇(PVA)纤维具有高强度、高模量、耐碱性优良等特点,自20世纪90年代开始,其短纤维被广泛应用于高性能水泥基复合材料中,用来改善混凝土的韧性与裂纹开裂特征,同时可以提高混凝土的抗渗性、抗碳化性、抗融冻等耐久性指标,提高混凝土结构的安全性和耐久性。
其中ECC(EngineeredCementitiousComposites)或超高韧性水泥基复合材料(UHTCC)是一种经过断裂力学、细观力学优化调整纤维、基体和界面的关系,最终以较低的纤维掺量,获得具有超强韧性的乱向分布短纤维增强水泥基复合材料。ECC纤维混凝土中纤维掺量一般不超过复合材料总体积的2.5%,硬化后的复合材料应具有显著的应变硬化和多缝开裂特征,极限拉应变可稳定达到3%以上,是普通混凝土的300倍以上,饱和状态的多缝开裂裂缝宽度小于0.1mm。近二十几年来,国内外许多专家学者已对该类复合材料的的力学性能和耐久性能等开展了大量的研究工作,取得了很多研究成果,由于其优异的力学性能和耐久性能,美国、日本、瑞士和韩国等国家己将其在实际工程中投入使用,并取得了良好的成效。
用于ECC复合材料的纤维最早为超高分子量聚乙烯纤维,PE-ECC的性能优异,但超高分子量PE纤维价格昂贵,因此从1997年开始,美国密西根大学的V.Li等人开始使用高强高模聚乙烯醇纤维(PVA)代替超高分子量PE纤维,制成了性能同样优异的PVA-ECC,而其成本只有PE-ECC的八分之一。目前国内外在PVA-ECC中大量使用的高强高模PVA纤维主要为日本可乐丽公司(Kuralon纤维)生产,所制备的PVA-ECC的成本和普遍混凝土相比,仍然非常昂贵,使得PVA-ECC材料在大多工程应用上和普通混凝土配合使用或作为普通混凝土的加固补强或修补材料,大大限制了该类材料在建筑工程中的应用。
我国有数家维纶厂可以生产高强高模PVA纤维,纤维的强度和模量和国外产品相比已经十分接近,纤维售价远低于进口产品,但由于国产PVA纤维与水泥基体之间的界面结构没有经过优化,同时,国产高强高模PVA纤维在水泥中的分散性较差,难以达到进口高强高模PVA纤维的基体增韧和混凝土多裂缝开裂效果,限制了国产纤维在高性能水泥基复合材料中的应用。
纤维表面处理是调整复合材料界面结构的一种重要方法,在芳纶、超高分子量聚乙烯、玻璃纤维、碳纤维复合材料中具有一定应用,但目前现有技术在水泥基复合材料中使用的纤维表面处理改性方法则鲜有报道。
发明内容
本发明的目的是提供了一种高强高模聚乙烯醇纤维的表面处理改性方法,用来调控聚乙烯醇纤维与水泥基体之间的界面,使表面改性后的高强高模聚乙烯醇纤维更好地被用于高韧性水泥基复合材料中。
本发明是通过以下步骤来实现的:
a)将高强高模聚乙烯醇纤维进行表面清洗并烘干;
b)将清洗烘干后的高强高模聚乙烯醇纤维在温度20-40℃下浸入浓度为10-100g/l的混合有聚硅氧烷、纳米二氧化硅、硅烷偶联剂和润滑剂的乳液中浸轧处理0.5-10分钟,纤维和乳液的质量浴比为1:10-1:100,之后在不高于120℃温度下焙烘1-10分钟;
c)经过b)步骤处理后再进行清洗并50-95℃烘干,完成表面处理,得到的纤维的增重率为0.1%-5%,纤维与水接触角不小于70°。
所述的高强高模聚乙烯醇纤维的强度不低于900MPa,弹性模量不低于30GPa。
所述的乳液中,聚硅氧烷的质量百分含量为60-99%,纳米二氧化硅质量百分含量为0.5-20%,硅烷偶联剂质量百分含量为0.5-2%,润滑剂质量百分含量为0-20%。
所述的聚硅氧烷为聚二甲基硅氧烷、氨基聚硅氧烷、羧基聚硅氧烷、环氧基聚硅氧烷、聚醚基聚硅氧烷或者氨基-聚醚环氧-聚醚改性聚硅氧烷中的一种或多种的混合。
所述的硅烷偶联剂为氨基硅烷或环氧基硅烷。
所述的润滑剂为石蜡、天然蜡、乙烯蜡、天然油脂或合成酯中的一种或多种的混合。
所述的纳米二氧化硅粒径在20nm以下。
上述硅氧烷和硅烷偶联剂可以从国外如道康宁、瓦克化学、Gelest、陶氏、信越等公司和国内如蓝星、南京辰工、南京曙光等公司的相关有机硅乳液和硅油制品中选择,或者通过自制合成方式制备。同样地,上述润滑剂乳液可从市场上购得或自制,上述纳米氧化硅分散液可从市场购得或通过溶胶凝胶法自制。
本发明的有益效果是:
(1)本发明技术方案中将无机纳米材料、反应性聚硅氧烷、非反应性聚硅氧烷、硅烷偶联剂巧妙配合使用,调控高强高模聚乙烯醇纤维表面能和粗糙程度,进而达到调控高强高模聚乙烯醇纤维和水泥基复合材料界面结合及高强高模聚乙烯醇纤维在水泥中的分散的效果。
(2)通过本发明提出的聚乙烯醇纤维表面改性处理方案,可以大大降低纤维在水泥中的用量,使国产化高强高模纤维可以成功应用到高韧性水泥基复合材料中去,提高水泥基复合材料的韧性,大大降低PVA-ECC复合材料的制造成本。
(3)本发明采用环保乳液作为聚乙烯醇纤维表面处理改性方法,具有环保、易行、可批量规模化制备等优势。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
本发明的实施例如下:
实施例1
聚乙烯醇纤维:强度900MPa,模量30GPa,细度100μm。
纤维清洗:AEO(脂肪醇聚氧乙烯醚)-92g/l,Na2CO32g/l,温度90℃,时间30min,水洗3遍,烘干温度90℃,时间30min。
将19.4g固含量35%的氨基聚硅氧烷乳液(蓝星C803)、6.6g固含量30%的溶胶凝胶法制备纳米二氧化硅(粒径10nm)、2g3-(2,3-环氧丙氧丙基)三甲氧基硅烷、5g固含量20%棕榈蜡乳液首先分别用去离子水稀释4-5倍,然后再补充去离子水稀释至1L,前述乳液混合时注意其离子配伍性,其中前述乳液中的有效物质总量10g。有效物质总量中氨基聚硅氧烷占比68%,二氧化硅占比20%,硅烷偶联剂占比2%,润滑剂占比10%。
在温度20℃,将清洗后的纤维在浴比1:10上述乳液中浸渍处理时间10min,然后在120℃焙烘1min。
然后将上述浸渍处理后纤维室温水洗2道,烘干温度50℃,时间3h。
实施例1得到的纤维增重率为1.5%,接触角为102°。在水、400号水泥、III级粉煤灰、硅灰、细度模数1.5精细砂、木质素磺酸盐减水剂比例分别为1300:2700:2800:110:1100:17的混凝土中添加体积百分率为2.5%经过上述表面处理的高强高模聚乙烯纤维,高强高模聚乙烯醇纤维在其中分散均匀,无团聚,所制备复合材料28天后拉伸断裂伸长率达到3.2%,断裂时出现多微细裂纹,裂纹宽度小于0.1mm。同样混凝土配方和纤维添加量,未经过表面处理的高强高模聚乙烯纤维所制备的水泥基复合材料的断裂伸长率仅为1.1%,断裂特征为几个主要裂纹,裂纹宽度大于5mm。
断裂变性大
实施例2
聚乙烯醇纤维:强度1000MPa,模量35GPa,细度60μm
纤维清洗:AEO-92g/l,Na2CO32g/l,温度90℃,时间30min,水洗3遍,烘干温度90℃,时间30min。
将58.5g聚醚改性氨基聚硅氧烷CTA(瓦克化学)、30.8g固含量65%粒径20nm纳米二氧化硅分散液、1.5g3-(2,3-环氧丙氧丙基)三乙氧基硅烷、50g固含量40%石蜡乳化液首先分别用去离子水稀释4-5倍,然后再补,加去离子水稀释至1L,前述乳液混合时注意其离子配伍性,其中前述乳液中的有效物质总量100g。有效物质总量中聚醚改性氨基聚硅氧烷占比58.5%,二氧化硅占比20%,硅烷偶联剂占比1.5%,润滑剂占比20%。
在温度40℃,将清洗后的纤维在浴比1:10上述乳液中浸渍处理时间0.5min,然后在110℃焙烘5min。
然后将上述浸渍处理后纤维室温水洗2道,烘干温度95℃,时间5min。纤维增重率5%,接触角70°。
在水、400号水泥、III级粉煤灰、硅灰、细度模数1.5精细砂、木质素磺酸盐减水剂比例分别为1300:2700:2800:110:1100:17的混凝土中添加体积百分率为2.5%经过上述表面处理的高强高模聚乙烯纤维,高强高模聚乙烯醇纤维在其中分散均匀,无团聚,所制备复合材料28天后拉伸断裂伸长率达到3.4%,断裂时出现多微细裂纹,裂纹宽度小于0.1mm。同样混凝土配方和纤维添加量,未经过表面处理的高强高模聚乙烯纤维所制备的水泥基复合材料的断裂伸长率仅为0.8%,纤维在混泥土中有部分团聚现象,断裂特征为几个主要裂纹,裂纹宽度大于10mm。
实施例3
聚乙烯醇纤维:强度1200MPa,模量40GPa,细度40μm
纤维清洗:AEO-92g/l,Na2CO32g/l,温度90℃,时间30min,水洗3遍,烘干温度90℃,时间30min。
将30.4g固含量65%道康宁MEM-0349聚二甲基硅氧烷乳液、29.7g聚醚改性氨基聚硅氧烷CTA(瓦克化学)、0.56g固含量45%粒径15nm纳米二氧化硅分散液、0.25g2-(3,4-环氧环己烷)乙基三甲氧基硅烷首先分别用去离子水稀释4-5倍,然后再补加去离子水稀释至1L,前述乳液混合时注意其离子配伍性,其中前述乳液中的有效物质总量50g。有效物质总量中聚硅氧烷占比99%,二氧化硅占比0.5%,硅烷偶联剂占比0.5%,润滑剂占比0%。
在温度30℃,将清洗后的纤维在浴比1:50上述乳液中浸渍处理时间5min,然后在100℃焙烘10min。
然后将上述浸渍处理后纤维室温水洗2道,烘干温度75℃,时间30min。纤维增重率0.5%,接触角98°。
在水、400号水泥、III级粉煤灰、硅灰、细度模数1.5精细砂、木质素磺酸盐减水剂比例分别为1300:2700:2800:110:1100:17的混凝土中添加体积百分率为2%经过上述表面处理的高强高模聚乙烯纤维,高强高模聚乙烯醇纤维在其中分散均匀,无团聚,所制备复合材料28天后拉伸断裂伸长率达到3.5%,断裂时出现多微细裂纹,裂纹宽度小于0.05mm。同样混凝土配方和纤维添加量,未经过表面处理的高强高模聚乙烯纤维所制备的水泥基复合材料的断裂伸长率仅为1.2%,纤维在混泥土中有明显团聚现象,断裂特征为几个主要裂纹,裂纹宽度大于5mm。
实施例4
聚乙烯醇纤维:强度1260MPa,模量45GPa,细度35μm
纤维清洗:AEO-91g/l,Na2CO31g/l,温度95℃,时间20min,水洗3遍,烘干温度95℃,时间15min。
将102.6g固含量38%信越POLON-MF-18T环氧改性聚硅氧烷乳液、16.7g固含量45%粒径15nm纳米二氧化硅分散液、1g3-氨基丙基三乙氧基硅烷偶联剂、7.1g固含量35%氧化聚乙烯蜡乳液首先分别用去离子水稀释4-5倍,然后再补加去离子水稀释至1L,前述乳液混合时注意其离子配伍性,其中前述乳液中的有效物质总量50g。有效物质总量中聚硅氧烷占比78%,二氧化硅占比15%,硅烷偶联剂占比2%,润滑剂占比5%。
在温度25℃,将清洗后的纤维在浴比1:20上述乳液中浸渍处理时间1min,100℃焙烘10min。
然后将上述浸渍处理后纤维室温水洗2道,烘干温度90℃,时间30min。纤维增重率1%,接触角85°。
在水、400号水泥、III级粉煤灰、硅灰、细度模数1.5精细砂、木质素磺酸盐减水剂比例分别为1300:2700:2800:110:1100:17的混凝土中添加体积百分率为2.0%经过上述表面处理的高强高模聚乙烯纤维,高强高模聚乙烯醇纤维在其中分散均匀,无团聚,所制备复合材料28天后拉伸断裂伸长率达到4.2%,断裂时出现多微细裂纹,裂纹宽度小于0.04mm。同样混凝土配方和纤维添加量,未经过表面处理的高强高模聚乙烯纤维所制备的水泥基复合材料的断裂伸长率仅为1.2%,纤维在混泥土中有明显团聚现象,断裂特征为几个主要裂纹,裂纹宽度大于5mm。
实施例5
聚乙烯醇纤维:强度1260MPa,模量45GPa,细度50μm
纤维清洗:AEO-91g/l,Na2CO31g/l,温度95℃,时间20min,水洗3遍,烘干温度95℃,时间15min。
将31.5固含量61%蓝星360甲基聚硅氧烷乳液、117.9g固含量38%信越POLON-MF-18T环氧改性聚硅氧烷乳液、18.3g固含量35%粒径10nm纳米二氧化硅分散液、1g3-氨基丙基三甲氧基硅烷、18.3g固含量35%三羟基丙烷三癸酸酯乳液首先分别用去离子水稀释3-4倍,然后再补加去离子水稀释至1L,前述乳液混合时注意其离子配伍性,其中前述乳液中的有效物质总量80g。有效物质总量中聚硅氧烷占比80%,二氧化硅占比10%,硅烷偶联剂占比1%,润滑剂占比10%。
在温度30℃,将清洗后的纤维在浴比1:80上述乳液中浸渍处理时间5min,110℃焙烘10min。
然后将上述浸渍处理后纤维室温水洗2道,烘干温度90℃,时间30min。纤维增重率2%,接触角92°。
在水、400号水泥、III级粉煤灰、硅灰、细度模数1.5精细砂、木质素磺酸盐减水剂比例分别为1300:2700:2800:110:1100:17的混凝土中添加体积百分率为2.0%经过上述表面处理的高强高模聚乙烯纤维,高强高模聚乙烯醇纤维在其中分散均匀,无团聚,所制备复合材料28天后拉伸断裂伸长率达到5.2%,断裂时出现多微细裂纹,裂纹宽度小于0.03mm。同样混凝土配方和纤维添加量,未经过表面处理的高强高模聚乙烯纤维所制备的水泥基复合材料的断裂伸长率仅为1.2%,纤维在混泥土中有明显团聚现象,断裂特征为几个主要裂纹,裂纹宽度大于4mm。
经过上述实施例可见,经过本发明提出经过表面改性的高强高模聚乙烯醇纤维,在同样混凝土配方和掺量情况下,纤维在水泥中的分散性大大提高,所制备的纤维增强水泥基复合材料韧性明显提高,其技术效果显著突出。通过调整表面处理乳液中有效物质含量的配比,进而调控纤维表面接触角和纤维上有效物质含量,可以实现水泥基复合材料的高韧性、多微细裂纹开裂,裂缝宽度小于0.1mm,而未表面改性高强高模聚乙烯醇纤维需要更大的掺量才能实现水泥基韧性的增加,裂纹开裂宽度较大,裂纹数目较少。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (7)

1.一种高强高模聚乙烯醇纤维的表面处理改性方法,其特征在于,包括以下步骤:
a)将高强高模聚乙烯醇纤维进行表面清洗并烘干;
b)将清洗烘干后的高强高模聚乙烯醇纤维在温度20-40℃下浸入浓度为10-100g/l的混合有聚硅氧烷、纳米二氧化硅、硅烷偶联剂和润滑剂的乳液中浸轧处理0.5-10分钟,纤维和乳液的质量浴比为1:10-1:100,之后在不高于120℃温度下焙烘1-10分钟;
c)经过b)步骤处理后再进行清洗并50-95℃烘干,完成表面处理,得到的纤维的增重率为0.1%-5%,纤维与水接触角不小于70°。
2.根据权利要求1所述的一种高强高模聚乙烯醇纤维的表面处理改性方法,其特征在于:所述的高强高模聚乙烯醇纤维的强度不低于900MPa,弹性模量不低于30GPa。
3.根据权利要求1所述的一种高强高模聚乙烯醇纤维的表面处理改性方法,其特征在于:所述的乳液中,聚硅氧烷的质量百分含量为60-99%,纳米二氧化硅质量百分含量为0.5-20%,硅烷偶联剂质量百分含量为0.5-2%,润滑剂质量百分含量为0-20%。
4.根据权利要求1或3所述的一种高强高模聚乙烯醇纤维的表面处理改性方法,其特征在于:
所述的聚硅氧烷为聚二甲基硅氧烷、氨基聚硅氧烷、羧基聚硅氧烷、环氧基聚硅氧烷、聚醚基聚硅氧烷或者氨基-聚醚环氧-聚醚改性聚硅氧烷中的一种或多种的混合。
5.根据权利要求1或3所述的一种高强高模聚乙烯醇纤维的表面处理改性方法,其特征在于:所述的硅烷偶联剂为氨基硅烷或环氧基硅烷。
6.根据权利要求1或3所述的一种高强高模聚乙烯醇纤维的表面处理改性方法,其特征在于:所述的润滑剂为石蜡、天然蜡、乙烯蜡、天然油脂或合成酯中的一种或多种的混合。
7.根据权利要求1或3所述的一种高强高模聚乙烯醇纤维的表面处理改性方法,其特征在于:所述的纳米二氧化硅粒径在20nm以下。
CN201610064429.6A 2016-01-29 2016-01-29 一种高强高模聚乙烯醇纤维的表面处理改性方法 Active CN105506999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610064429.6A CN105506999B (zh) 2016-01-29 2016-01-29 一种高强高模聚乙烯醇纤维的表面处理改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610064429.6A CN105506999B (zh) 2016-01-29 2016-01-29 一种高强高模聚乙烯醇纤维的表面处理改性方法

Publications (2)

Publication Number Publication Date
CN105506999A true CN105506999A (zh) 2016-04-20
CN105506999B CN105506999B (zh) 2018-01-30

Family

ID=55715279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610064429.6A Active CN105506999B (zh) 2016-01-29 2016-01-29 一种高强高模聚乙烯醇纤维的表面处理改性方法

Country Status (1)

Country Link
CN (1) CN105506999B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145811A (zh) * 2016-06-28 2016-11-23 蚌埠市方阵商品混凝土有限公司 一种抗冲折混凝土
CN108249798A (zh) * 2018-01-11 2018-07-06 东南大学 一种用于高延性水泥基复合材料的聚乙烯醇纤维的改性方法
CN109574528A (zh) * 2018-08-01 2019-04-05 南通大学 混凝土用高强高模pva纤维改性方法及复合材料的制备方法
CN109914001A (zh) * 2019-03-28 2019-06-21 浙江千禧龙纤特种纤维股份有限公司 一种高韧性高强聚乙烯纤维的制造方法
CN111704399A (zh) * 2020-06-30 2020-09-25 郑州大学 一种高流变性地聚合物砂浆及其制备方法
CN111848020A (zh) * 2020-05-29 2020-10-30 北京交通大学 一种高韧性超高性能混凝土及其制备方法
CN112095340A (zh) * 2020-09-03 2020-12-18 华北电力大学(保定) 一种具有极低覆冰粘附力超疏水聚酰胺网的制备方法
CN114751699A (zh) * 2022-05-06 2022-07-15 重庆大学溧阳智慧城市研究院 基于3d打印的固废资源化轻质高延性混凝土
CN114775285A (zh) * 2022-03-17 2022-07-22 中交四航工程研究院有限公司 一种制备ecc混凝土的pva纤维分散处理方法
CN115304335A (zh) * 2022-09-05 2022-11-08 兰州宏方新型建材科技有限公司 一种用于加固修补的高性能特种混凝土及其制备方法
CN115557765A (zh) * 2022-09-19 2023-01-03 江苏中建商品混凝土有限公司 一种石灰石粉复合掺合料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257368A (ja) * 1991-02-08 1992-09-11 Kanebo Ltd ガラス繊維又はガラス繊維構造物のカップリング剤処理方法
CN1473987A (zh) * 2003-07-25 2004-02-11 东华大学 纳米粒子改性化学纤维的制备方法
CN102619091A (zh) * 2012-03-22 2012-08-01 上海罗洋新材料科技有限公司 一种用于增韧水泥混凝土的聚乙烯醇纤维用纺丝油剂
CN103554408A (zh) * 2013-11-25 2014-02-05 淮南矿业(集团)有限责任公司 聚乙烯醇纤维增强的聚氨酯注浆加固材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257368A (ja) * 1991-02-08 1992-09-11 Kanebo Ltd ガラス繊維又はガラス繊維構造物のカップリング剤処理方法
CN1473987A (zh) * 2003-07-25 2004-02-11 东华大学 纳米粒子改性化学纤维的制备方法
CN102619091A (zh) * 2012-03-22 2012-08-01 上海罗洋新材料科技有限公司 一种用于增韧水泥混凝土的聚乙烯醇纤维用纺丝油剂
CN103554408A (zh) * 2013-11-25 2014-02-05 淮南矿业(集团)有限责任公司 聚乙烯醇纤维增强的聚氨酯注浆加固材料及其制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145811A (zh) * 2016-06-28 2016-11-23 蚌埠市方阵商品混凝土有限公司 一种抗冲折混凝土
CN108249798B (zh) * 2018-01-11 2021-01-12 东南大学 一种用于高延性水泥基复合材料的聚乙烯醇纤维的改性方法
CN108249798A (zh) * 2018-01-11 2018-07-06 东南大学 一种用于高延性水泥基复合材料的聚乙烯醇纤维的改性方法
CN109574528A (zh) * 2018-08-01 2019-04-05 南通大学 混凝土用高强高模pva纤维改性方法及复合材料的制备方法
CN109914001A (zh) * 2019-03-28 2019-06-21 浙江千禧龙纤特种纤维股份有限公司 一种高韧性高强聚乙烯纤维的制造方法
CN109914001B (zh) * 2019-03-28 2022-01-14 浙江千禧龙纤特种纤维股份有限公司 一种高韧性高强聚乙烯纤维的制造方法
CN111848020A (zh) * 2020-05-29 2020-10-30 北京交通大学 一种高韧性超高性能混凝土及其制备方法
CN111704399A (zh) * 2020-06-30 2020-09-25 郑州大学 一种高流变性地聚合物砂浆及其制备方法
CN112095340A (zh) * 2020-09-03 2020-12-18 华北电力大学(保定) 一种具有极低覆冰粘附力超疏水聚酰胺网的制备方法
CN112095340B (zh) * 2020-09-03 2022-10-28 华北电力大学(保定) 一种具有极低覆冰粘附力超疏水聚酰胺网的制备方法
CN114775285A (zh) * 2022-03-17 2022-07-22 中交四航工程研究院有限公司 一种制备ecc混凝土的pva纤维分散处理方法
CN114751699A (zh) * 2022-05-06 2022-07-15 重庆大学溧阳智慧城市研究院 基于3d打印的固废资源化轻质高延性混凝土
CN115304335A (zh) * 2022-09-05 2022-11-08 兰州宏方新型建材科技有限公司 一种用于加固修补的高性能特种混凝土及其制备方法
CN115304335B (zh) * 2022-09-05 2023-08-29 兰州宏方新型建材科技有限公司 一种用于加固修补的高性能特种混凝土及其制备方法
CN115557765A (zh) * 2022-09-19 2023-01-03 江苏中建商品混凝土有限公司 一种石灰石粉复合掺合料及其制备方法和应用
CN115557765B (zh) * 2022-09-19 2023-09-12 江苏中建商品混凝土有限公司 一种石灰石粉复合掺合料及其制备方法和应用

Also Published As

Publication number Publication date
CN105506999B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
CN105506999A (zh) 一种高强高模聚乙烯醇纤维的表面处理改性方法
Soltan et al. Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior
Kushwaha et al. Effect of silanes on mechanical properties of bamboo fiber-epoxy composites
Wang et al. Investigation on the alkali resistance of basalt fiber and its textile in different alkaline environments
Akhlaghi et al. Application of bacterial nanocellulose fibers as reinforcement in cement composites
Ali Natural fibres as construction materials
CN113668237B (zh) 一种制备硅烷偶联剂-二氧化硅-植物纤维复合物的方法
CN103850353B (zh) 一种玄武纤维网格布包覆岩棉复合保温板及其制作方法
CN101100356A (zh) 直接无捻粗纱浸润剂
Singh et al. Tensile behavior of sisal/hemp reinforced high density polyethylene hybrid composite
Deng et al. Study on the dispersibility of modified basalt fiber and its influence on the mechanical properties of concrete
Liu et al. Experimental study on mechanical properties and durability of grafted nano-SiO2 modified rice straw fiber reinforced concrete
CN111777348B (zh) 一种耐碱性水泥混凝土用玄武岩纤维及其制备方法
CN108395131A (zh) 一种可修复建筑混凝土微裂缝的钢纤维及制备方法
CN105776976A (zh) 一种改性纤维增韧水泥基材料及其制备方法
Shen et al. Development of durable shrink-resist coating of wool with sol-gel polymer processing
Števulová et al. Chemically treated hemp shives as a suitable organic filler for lightweight composites preparing
CN105330175A (zh) 一种玻璃钢抽油杆用无碱玻璃纤维直接纱的浸润剂
CN115572145B (zh) 一种改性玄武岩纤维增强碱式硫酸镁水泥及其制备方法
Lu et al. Investigation on performance of engineered cementitious composites (ECC) based on surface modification of PET fibers using graphene oxide (GO) and polydopamine (PDA)
CN112062481A (zh) 一种玄武岩纤维浸润剂及其制备方法
Liu et al. Study on wood chips modification and its application in wood-cement composites
Femandez Flax fiber reinforced concrete-a natura1 fiber biocomposite for sustainable building materials
Chen et al. Crack propagation analysis and mechanical properties of basalt fiber reinforced cement composites with changing fiber surface characteristics
Natrayan et al. Influence of nanosilica particle addition on mechanical and water retention properties of natural flax-and sisal-based hybrid nanocomposites under NaOH conditions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200122

Address after: 310052, Zhejiang province Hangzhou Binjiang District Long River Street East stream road 1276, 1 buildings, 9, 903 rooms

Patentee after: HANGZHOU GUYIQIANG NEW MATERIAL TECHNOLOGY CO., LTD.

Address before: Binjiang District River Street Hangzhou City, Zhejiang province Jiang Er Lu 310052 No. 400 Building 1 room 1011 10

Patentee before: HANGZHOU SAIQISI TECHNOLOGY CO., LTD.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210401

Address after: 310053 Room 903, 9 / F, building 1, 1276 Dongliu Road, Changhe street, Binjiang District, Hangzhou City, Zhejiang Province

Patentee after: HANGZHOU GUYIQIANG NEW MATERIAL TECHNOLOGY Co.,Ltd.

Patentee after: Zhejiang Zhongrui New Material Technology Co.,Ltd.

Address before: Room 903, 9 / F, building 1, 1276 Dongliu Road, Changhe street, Binjiang District, Hangzhou City, Zhejiang Province, 310052

Patentee before: HANGZHOU GUYIQIANG NEW MATERIAL TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right