CN105504617B - 一种制备(1‑乙烯基‑3‑乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料的方法 - Google Patents

一种制备(1‑乙烯基‑3‑乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料的方法 Download PDF

Info

Publication number
CN105504617B
CN105504617B CN201511015959.3A CN201511015959A CN105504617B CN 105504617 B CN105504617 B CN 105504617B CN 201511015959 A CN201511015959 A CN 201511015959A CN 105504617 B CN105504617 B CN 105504617B
Authority
CN
China
Prior art keywords
vietim
vinyl
ethyl imidazol
polymer
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511015959.3A
Other languages
English (en)
Other versions
CN105504617A (zh
Inventor
杜海燕
李启庚
梁镇海
邹娜
王忠德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201511015959.3A priority Critical patent/CN105504617B/zh
Publication of CN105504617A publication Critical patent/CN105504617A/zh
Application granted granted Critical
Publication of CN105504617B publication Critical patent/CN105504617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/12Shape memory
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种制备(1‑乙烯基‑3‑乙基咪唑硼酸盐)聚离子液体/聚乙烯醇聚合物复合材料的方法,通过合成乙烯基咪唑功能性离子液体单体,在聚乙烯醇溶液中对离子液体单体进行原位聚合,将聚离子液体引入到交联聚乙烯醇以形成网络状复合材料。由于聚离子液体结构中具有较大的阴阳离子基团,有较高的极化密度和极化率,是很好的微波吸收介质,所以该聚合物复合材料在微波驱动下具有很好的形状记忆效应。与该领域当前研究的靠添加无机填料实现光、电、磁等远程响应的形状记忆聚合物相比,本案所公开的聚合物复合材料是完全基于聚合物的,且是非直接接触的微波驱动型形状记忆聚合物,可避免因无机填料填充聚合物所带来的相容性差及受热不均匀等问题。

Description

一种制备(1-乙烯基-3-乙基咪唑硼酸盐)聚离子液体/聚乙烯 醇聚合物复合材料的方法
技术领域
本发明涉及形状记忆聚合物技术领域,特别涉及一种微波驱动型形状记忆聚合物的制备方法。
背景技术
形状记忆材料是20世纪80年代以来不断发展起来的一类可对外界环境刺激做出响应的智能高分子材料。它以质轻、易加工、形变量大、记忆效应显著等优点被广泛应用于机械系统和医疗器械等领域。近年来,研究者不断在探索可使形状记忆材料发生形变回复的多种驱动方式(参见:Shape memory polymers:Past,present and futuredevelopments,Martin D.Hager,Stefan Bode,Christine Weber,Ulrich S.Schubert,Progress in Polymer Science 49(2015)3-33;New directions in the chemistry ofshape memory polymers,Gayla J.Berg,Matthew K.McBride,Chen Wang,ChristopherN.Bowman,Polymer 55(2014)5849-5872;以及,A review of stimuli-responsive shapememory polymer composites,Harper Meng,Guoqiang Li,Polymer 54(2013)2199-2221),并取得了很好的研究成果。如冷劲松和Koerner等人分别将碳纳米颗粒和碳纳米管引入到聚合物基体中(参见:J.Leng,X.Wu,Y.Liu,Infrared light-active shape memorypolymer filled with nanocarbon particles,Journal of Applied Polymer Science,2009,114:2455-2460.;以及,H.Koerner,G.Price,N.A.Pearce,M.Alexander,R.A.Vaia,Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers,Nature Materials,2004,3:115-120),利用碳填料对红外光的吸收起间接加热的作用从而得到能对红外光响应的形状记忆聚合物(SMPs),前者在红外辐照下经过约200s后可完全回复;朱光明等人以短切碳纤为导电填料引入到聚合物基体中,靠无机填料形成导电网络,通过电流生热使体系温度升高实现材料的形变回复,得到电响应型SMPs复合材料(魏堃,朱光明,唐玉生,电致型形状记忆聚合物复合材料的研究进展,材料导报,2011,25:9-12);Lendlein等人将SiO2改性磁性纳米粒子与聚醚型聚氨酯复合,得到通过磁场远程诱导磁性粒子生热驱动材料形状的回复(参见:R.Mohr,K.Kratz,T.Weigel,M.L.Gabor,M.Moneke,A.Lendlein,Initiation of shape-memory effect byinductive heating of magnetic nanoparticles in thermoplastic polymers,Proceeding of the National Academy of Sciences of the United States ofAmerica.2006,103,3540-3545)。
从已有的报道来看,多数是通过在高分子基体中添加无机功能填料使复合材料在相应的刺激下实现导电、导热等功能。但这类复合材料在一定程度上存在无机填料与聚合物相容性差、受热不均、升温速率慢、形状记忆性能不理想等问题。然而,尽管目前形状记忆聚合物材料(SMPs)的驱动方式已实现多样化,但将微波这种高效、快速、具有潜力的刺激源作为形状记忆聚合物的驱动力的研究鲜有报道。因此,为了提高形状记忆材料的稳定性,本论文结合了微波热效应的特点和聚合物的结构特性,对微波具有强吸收能力的聚离子液体(PIL)引入到聚乙烯醇(PVA)基体中,构筑PIL/PVA聚合物网络,制备完全基于聚合物体系且性能稳定的微波响应型形状记忆聚合物复合材料(SMPC)。而将PIL引入到本研究的一个重要依据是离子液体(IL)具有较好的介电性能、较低的挥发性、高热化学稳定性等特点,近年来被用作微波辐射有机化学合成中的反应介质(参见:S.Mallakpour,Z.Rafiee,Newdevelopments in polymer science and technology using combination of ionicliquids and microwave irradiation,Progress in Polymer Science,2011,36:1754–1765.;以及,K.Kempe,C.R.Becer,U.S.Schubert,Microwave-assisted polymerizations:recent status and future perspectives,Macromolecules,2011,44:5825–5842),这一方法不仅缩短了反应时间同时也提高了反应物的产率。而聚离子液体(PIL)是由含离子液体的单体聚合而成的,一个很大的优势在于分子结构中存在体积较大且极化率较高的有机阳离子和阴离子基团,因此有较高的离子密度,这使得PIL成为微波吸收材料的最佳选择。我们在预研中初步探索发现微波可驱动含有少量水分子的PVA发生形变回复,是因为极性分子水的介电常数和介电损耗较高,可将电磁能转变成热能。因此对于结构单元是由具有较高介电性能的离子液体(IL)构成的PIL(参见:J.Tang,M.Radosz,Y.Shen,Poly(ionicliquid)s as optically transparent microwave-absorbing materials,Macromolecules,2008,41:493-496;以及,D.Mecerreyes,Polymeric ionic liquids:Broadening the properties and applications of polyelectrolytes,Progress inPolymer Science,2011,36:1629–1648),在微波辐照下离子基团会因交变电场的方向极化产生热量,为SMPs的形变回复提供所需能量。利用微波这种加热效率高、无需预热,且可实现远程控制的清洁能源作为形变回复新的驱动力在形状记忆材料领域具有重要的意义。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种制备(1-乙烯基-3-乙基咪唑硼酸盐)聚离子液体/聚乙烯醇聚合物复合材料的方法,其通过在复合材料中引入微波吸收介质,使聚合物材料在微波驱动下能够产生很好的形状记忆效应,以解决靠添加无机填料的方法制得的形状记忆聚合物存在的无机填料与聚合物相容性差、受热不均、升温速率慢、形状记忆性能不理想等问题。
本发明还有一个目的是为了提供一种(1-乙烯基-3-乙基咪唑硼酸盐)聚离子液体/聚乙烯醇聚合物复合材料的制备方法,通过在聚乙烯醇(PVA)溶液中对离子液体单体(ILM)进行原位聚合将聚离子液体(PIL)引入到交联PVA形成具有网络结构的聚乙烯基咪唑PIL/PVA聚合物复合材料。
为实现上述目的及其他相关目的,本发明提供一种制备(1-乙烯基-3-乙基咪唑硼酸盐)聚离子液体/聚乙烯醇聚合物复合材料的方法,其通过以下步骤合成,
步骤一、以N-乙烯基咪唑为原料,按照下述路径合成1-乙烯基-3-乙基咪唑硼酸盐离子液体单体[ViEtIm][BF4]及其聚合物P[ViEtIm][BF4];
步骤二、将聚合物P[ViEtIm][BF4]与PVA采用原位聚合反应制备聚(1-乙烯基-3-乙基咪唑硼酸盐)聚离子液体/聚乙烯醇聚合物复合材料P[ViEtIm][BF4]PIL/PVA;
其中,步骤一中聚合物P[ViEtIm][BF4]是通过NaBF4与P[ViEtIm][Br]以1:1~15:1的摩尔比反应制得。
优选地,步骤一采用N-乙烯基咪唑和溴乙烷进行反应合成1-乙烯基-3-乙基咪唑溴([ViEtIm][Br]),其中,所述N-乙烯基咪唑和溴乙烷的添加量质量比为1:2。
优选地,将2g N-乙烯基咪唑和4g溴乙烷依次加入50mL的圆底烧瓶中,80℃油浴中回流反应至出现白色浑浊,保持反应使白色浑浊消失至反应产物变成固体,然后继续回流反应,待回流不明显时,停止加热,用乙醚洗涤2~3次,真空干燥后得白黄色固体单体[ViEtIm][Br]。
优选地,步骤一中聚合生成聚(1-乙烯基-3-乙基咪唑溴)(P[ViEtIm][Br])的方法为:取1-乙烯基-3-乙基咪唑溴,加入引发剂偶氮二异丁腈(AIBN),以三氯甲烷为溶剂,氮气保护下反应,经洗涤干燥得到聚(1-乙烯基-3-乙基咪唑溴),其中,AIBN的添加量为1-乙烯基-3-乙基咪唑溴质量的0.1~3%。
优选地,取2g所述单体[ViEtIm][Br]、0.04g引发剂AIBN,以三氯甲烷为溶剂,氮气保护下80℃油浴中回流反应6h,得黄色固体产物,将所得固体产物用三氯甲烷洗涤3次并真空干燥,得到P[ViEtIm][Br]。
优选地,步骤一中合成聚(1-乙烯基-3-乙基咪唑硼酸盐)P[ViEtIm][BF4]的具体方法为:取6g NaBF4溶于12mL水并与溶有1g P[ViEtIm][Br]的20mL水溶液混合,室温下搅拌30min,抽滤,得黄色固体P[ViEtIm][BF4]。
优选地,P[ViEtIm][BF4]的保存方式为:经真空干燥后存于冰箱。
优选地,步骤二中所述原位聚合反应为:P[ViEtIm][BF4]的DMSO溶液与8%的PVA水溶液混合,氮气保护,70℃搅拌3h反应后,冷却。
优选地,P[ViEtIm][BF4]的添加量为PVA质量的5%~50%。
优选地,将聚合物P[ViEtIm][BF4]溶解于2ml DMSO中得到浅红色溶液,然后与8%的PVA水溶液混合,氮气保护,70℃继续搅拌3h;待反应结束后,冷却,调节溶液至酸性,加入戊二醛(GA,wt%=1),室温下缓慢磁搅拌3~5min;将搅拌均匀的混合溶液注入玻璃管中成棒状样品,在室温下(25℃)交联反应36~48h,制得P[ViEtIm][BF4]。
如上所述,本发明所述的(1-乙烯基-3-乙基咪唑硼酸盐)聚离子液体/聚乙烯醇聚合物复合材料及其制备方法具有以下有益效果:
(1)由于聚离子液体结构中具有较大的阴阳离子基团,有较高的极化密度和极化率,是很好的微波吸收介质,所以该聚合物复合材料在微波驱动下具有很好的形状记忆效应;
(2)与该领域当前研究的靠添加无机填料实现光、电、磁等远程响应的形状记忆聚合物相比,本研究工作设计的聚(1-乙烯基-3-乙基咪唑硼酸盐)PIL/PVA复合材料是完全基于聚合物的,且可实现非直接接触的微波驱动型形状记忆聚合物,可避免因无机填料填充聚合物所带来的相容性差及受热不均匀等问题。
附图说明
图1a为本发明实施例所述的[ViEtIm][Br]的核磁谱图;
图1b为本发明实施例所述的P[ViEtIm][Br]的核磁谱图;
图2为本发明实施例所述的PVA、P[ViEtIm][BF4]和P[ViEtIm][BF4]PIL/PVA的红外光谱;
图3为本发明实施例所述的聚(1-乙烯基-3-乙基咪唑硼酸盐)PIL/PVA复合材料微波驱动下的宏观形变恢复行为(30%PIL,400W辐照量)(A:红外热成像,B:数码照片);
图4a为本发明实施例所述的不同P[ViEtIm][BF4]含量的PIL/PVA复合膜的动态力学性能曲线一;
图4b为本发明实施例所述的不同P[ViEtIm][BF4]含量的PIL/PVA复合膜的动态力学性能曲线二;
图5为本发明实施例所述的损耗角正切tanσ与P[ViEtIm][BF4]含量的关系;
图6为本发明实施例所述的不同P[ViEtIm][BF4]含量的SMPC在微波(420W)驱动下的形状记忆性能。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
1、1-乙烯基-3-乙基咪唑硼酸盐离子液体单体[ViEtIm][BF4]的合成及聚合
P[ViEtIm][BF4]的合成步骤如下所示:
第一步:1-乙烯基-3-乙基咪唑溴[ViEtIm][Br]的合成:
将2g N-乙烯基咪唑和4g溴乙烷依次加入50mL的圆底烧瓶中,80℃油浴中回流反应至出现白色浑浊,保持反应使白色浑浊消失至反应产物变成固体,然后继续回流反应,待回流不明显时,停止加热,用乙醚洗涤2~3次,真空干燥后得白黄色固体[ViEtIm][Br];
第二步:聚(1-乙烯基-3-乙基咪唑溴)P[ViEtIm][Br]的合成:
2g单体[ViEtIm][Br]、0.04g引发剂AIBN,以三氯甲烷为溶剂,氮气保护下80℃油浴中回流反应6h,得黄色固体,将所得产物用三氯甲烷洗涤3次,真空干燥,制得P[ViEtIm][Br];
第三步:聚(1-乙烯基-3-乙基咪唑硼酸盐)P[ViEtIm][BF4]的合成:
取6g NaBF4溶于12mL水并与溶有1g P[ViEtIm][Br]的20mL水溶液混合,室温下搅拌30min,抽滤,得黄色固体P[ViEtIm][BF4],经真空干燥后存于冰箱。
2、P[ViEtIm][BF4]PIL/PVA聚合物复合材料制备
称取一定量聚合物P[ViEtIm][BF4]溶解于2ml DMSO中得到浅红色溶液,然后与8%的PVA水溶液混合,氮气保护,70℃继续搅拌3h;待反应结束后,冷却,调节溶液至酸性,加入戊二醛(GA,wt%=1),室温下缓慢磁搅拌3~5min;将搅拌均匀的混合溶液注入玻璃管中成棒状样品,最后所有样品在室温下(25℃)交联反应36~48h,得到P[ViEtIm][BF4]PIL/PVA聚合物复合材料。
依照同样方法,制备P[ViEtIm][BF4]含量分别为0%、10%、20%、30%(相比于PVA)的样品。用核磁、红外手段分析验证合成产物的结构变化;用扫描电镜观察材料截面形貌。
①核磁分析
采用美国Bruker公司的DPX300型核磁共振仪来测定待测物质结构。以DMSO为核磁试剂,在300MHz下对其离子液体及聚离子液体得结构进行氢核磁表征。其中离子液体及聚离子液体的浓度均为10mg/ml。
乙烯基咪唑离子液体单体及聚合物的核磁图谱分析:所合成的离子液体单体[ViEtIm][Br]及其聚合物P[ViEtIm][Br]的结构用氢核磁共振(1H NMR),以氘代DMSO为溶剂进行了分析,产物的结构得到进一步的证实。1H NMR图谱及主要数据见图1a、图1b和表1。
表1离子液体的核磁数据(δ,ppm)
②FTIR分析
利用60XSB型傅立叶红外光谱仪分别对PVA、P[ViEtIm][BF4]、P[ViEtIm][BF4]PIL/PVA复合模结构组成进行红外光谱分析。
结果分析:图2显示了PVA、P[ViEtIm][BF4]和P[ViEtIm][BF4]PIL/PVA三种聚合物的红外吸收光谱。与PVA相比,P[ViEtIm][BF4]及P[ViEtIm][BF4]PIL/PVA在662cm-1附近吸收峰为咪唑正鎓离子环上的C-H健面外弯曲振动峰;1554cm-1处的吸收峰对应咪唑环C=N的伸缩振动;1640cm-1处出现了咪唑环上C=C伸缩振动峰。另外三种聚合物在1050cm-1附近都有吸收,该范围内的吸收是由主链上C-H弯曲振动引起的。2960-2850cm-1处是聚合主链上C-H的伸缩振动吸收峰;3440cm-1处除了靠物理键键合的水分子吸收外,还有咪唑环上N-H伸缩振动产生的吸收峰(参见:蒋春花,王宏宇,齐力等.PVA接枝离子液体聚合物电解质的制备及性能[J].高等学校化学学报,2013,34(1):231-235.;以及,Rebeca Marcilla,J.Albertoblazquez,Javier Rodriguez,et al.Tuning the solubility of polymerized ionicliquids by simple anion-exchange reactions.Journal Polymer Science:Part A:Polymer Chemistry,2004,42:208-212.)。
③形状记忆性能
为了观察SMPC的宏观形状回复行为,将起始形状为直棒状的样品在80℃下受热外力作用下赋形为螺旋状,之后样品用来进行微波辐照观察其形变回复过程。样品的瞬间形状用数码摄像机进行录制处理。同时采用红外热像仪(E4,American)记录在回复过程中不同时刻样品的温度。
结果分析:为了更好地观察整个回复过程的形变回复,通过红外热像仪来记录样品在不同回复时间下的瞬间形状。如图3所示临时形状为螺旋的样品在温度达到74℃时形状就开始发生变化,并在30s内逐渐回复到起始的直棒形状,回复过程中样品温度也在逐渐升高,当完全回复时样品的平衡温度可高达120℃。这说明对于PIL/PVA形状记忆复合材料来说微波是一种非常高效的驱动力,复合材料的转变温度应该是PVA的Tg
④热力学性能测试
差示扫描量热分析(DSC)使用NETZSCH DSC 204仪器进行测试。测试条件:大约10mg样品以10℃/min的升温速率从25℃升高到250℃。热失重分析(TGA)使用Dupont 2100热分析仪器进行测试。测试条件:约10mg的样品以10℃/min的升温速率从25℃升高到550℃,记录热分析曲线。动态机械性能测试(DMA)使用DMA Q800V7.1仪器,在拉伸模式下测得。测试条件:频率为1Hz,以2℃/min的升温速率从-20℃加热到200℃,氮气氛围。
结果分析:从图4a及图4b中DMA结果中不同P[ViEtIm][BF4]含量的PIL/PVA储能模量(E0)和损耗正切角(tanδ)随温度变化之间的关系也可看出PIL/PVA复合膜在65℃和125℃存在两个损耗峰,分别对应于PVA和PIL的玻璃化转变温度。此外当温度升高到PVA的Tg附近时E0均降低约两个数量级,这正是SMPs的典型特征,储能模量的降低意味着PIL/PVA复合材料具备形状记忆效应的特征。此外PIL的引入略微降低了PIL/PVA的E0,当PIL含量为30%时E0的降低比较明显。这是因为聚合物在低于Tg时的储能模量主要归因于聚合物晶区和无定形区玻璃态的弹性。PVA是一种典型的部分结晶聚合物,由于侧链羟基间形成很强的氢键作用,聚合物链间形成的较高的物理相互作用致使SM-PVA材料在较低的温度具有较高的储能模量。当PIL的引入一定程度上削弱了分子间的氢键作用,阻碍了PVA分子链的有序排列从而降低了PVA的结晶度。
⑤介电性能测试
不同聚离子液体含量的SMPC的介电常数(ε')和损耗因子(ε")用自动网络分析仪(PNA3621,30MHz-3200MHz)在2450MHz室温下进行测量。微波辐照和加热样品之间的关系与材料的介电性能有关,其中介电损耗正切角tanσ(tanσ=ε"/ε')代表材料被极化和被加热的能力。
表2形状记忆互穿网络复合材料介电性能和回复性能与P[ViEtIm][BF4]含量的关系
正如表2和图5所示,与PVA相比,PIL/PVA复合材料有较高的介电损耗因子和介电损耗常数。
图6显示与未添加聚离子液体的PVA相比,不同P[ViEtIm][BF4]含量的复合材料均有高达95%以上的形变回复率。
本文合成了乙烯咪唑类离子液体单体及其聚合物,通过红外、核磁分析对其结构进行了表征。在PVA水溶液中加入聚离子液体同时用GA交联PVA,得到具有交联网络的形状记忆聚合物复合材料,即P[ViEtIm][BF4]PIL/PVA。由于PIL结构中存在较大体积的阴阳离子基团,有较高的极化密度和极化率,因此PIL是一种很好的微波吸收介质,弯曲法测试结果表明该复合材料在微波驱动下具有很好的形状记忆效应。
PIL的含量对形变回复时间有显著影响,当P[ViEtIm][BF4]含量从0%增加到30%,P[ViEtIm][BF4]PIL/PVA复合膜介电损耗因子呈增大趋势,回复时间逐步缩短,回复率逐步提高。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

1.一种(1-乙烯基-3-乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料在微波驱动型形状记忆聚合物复合材料中的应用,其特征在于,所述(1-乙烯基-3-乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料通过以下步骤合成,
步骤一、以N-乙烯基咪唑为原料,按照下述路径合成1-乙烯基-3-乙基咪唑硼酸盐离子液体聚合物P[ViEtIm][BF4],
其中,步骤一中聚合物P[ViEtIm][BF4]是通过NaBF4与P[ViEtIm][Br] 以1:1~15:1的摩尔比反应制得;
步骤二、将聚合物P[ViEtIm][BF4] 溶解于2 ml DMSO中得到浅红色溶液,然后与8%的PVA水溶液混合,P[ViEtIm][BF4]的添加量为PVA质量的10%~50%,氮气保护,70 ℃继续搅拌3 h;待反应结束后,冷却,调节溶液至酸性,加入戊二醛,室温下缓慢磁搅拌3~5 min;将搅拌均匀的混合溶液注入玻璃管中成棒状样品,在室温下交联反应36~48 h,制得(1-乙烯基-3-乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料。
2.根据权利要求1所述的应用,其特征在于,步骤一采用N-乙烯基咪唑和溴乙烷进行反应合成1-乙烯基-3-乙基咪唑溴([ViEtIm][Br]),其中,所述N-乙烯基咪唑和溴乙烷的添加量质量比为1:2。
3.根据权利要求2所述的应用,其特征在于,将2 g N-乙烯基咪唑和 4 g溴乙烷依次加入50 mL的圆底烧瓶中,80 ℃油浴中回流反应至出现白色浑浊,保持反应使白色浑浊消失至反应产物变成固体,然后继续回流反应,待回流不明显时,停止加热,用乙醚洗涤2~3次,真空干燥后得白黄色固体单体[ViEtIm][Br]。
4.根据权利要求1至3任一项所述的应用,其特征在于,步骤一中聚合生成聚(1-乙烯基-3-乙基咪唑溴)(P[ViEtIm][Br])的方法为:取1-乙烯基-3-乙基咪唑溴,加入引发剂偶氮二异丁腈(AIBN),以三氯甲烷为溶剂,氮气保护下反应,经洗涤干燥得到聚(1-乙烯基-3-乙基咪唑溴),其中,AIBN的添加量为1-乙烯基-3-乙基咪唑溴质量的0.1~3%。
5.根据权利要求4所述的应用,其特征在于,取2 g所述单体 [ViEtIm][Br]、0.04 g 引发剂AIBN,以三氯甲烷为溶剂,氮气保护下80 ℃油浴中回流反应6 h,得黄色固体产物,将所得固体产物用三氯甲烷洗涤3次并真空干燥,得到P[ViEtIm][Br]。
6.根据权利要求5所述的应用,其特征在于,步骤一中合成聚(1-乙烯基-3-乙基咪唑硼酸盐) P[ViEtIm][BF4]的具体方法为:取6 g NaBF4溶于12mL水并与溶有1g P[ViEtIm][Br]的20mL 水溶液混合,室温下搅拌30 min,抽滤,得黄色固体P[ViEtIm][BF4]。
7.根据权利要求6所述的应用,其特征在于,P[ViEtIm][BF4]的保存方式为:经真空干燥后存于冰箱。
CN201511015959.3A 2015-12-29 2015-12-29 一种制备(1‑乙烯基‑3‑乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料的方法 Active CN105504617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511015959.3A CN105504617B (zh) 2015-12-29 2015-12-29 一种制备(1‑乙烯基‑3‑乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511015959.3A CN105504617B (zh) 2015-12-29 2015-12-29 一种制备(1‑乙烯基‑3‑乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料的方法

Publications (2)

Publication Number Publication Date
CN105504617A CN105504617A (zh) 2016-04-20
CN105504617B true CN105504617B (zh) 2018-02-16

Family

ID=55712944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511015959.3A Active CN105504617B (zh) 2015-12-29 2015-12-29 一种制备(1‑乙烯基‑3‑乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料的方法

Country Status (1)

Country Link
CN (1) CN105504617B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586649A (zh) * 2018-05-18 2018-09-28 中国工程物理研究院化工材料研究所 系列含能聚离子液体及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968279B (zh) * 2016-06-27 2018-05-04 杭州圣传新材料科技有限公司 一种可重塑可回收聚离子液体网络材料及制备方法
CN106832705B (zh) * 2017-02-27 2020-03-17 四川大学 可热塑性加工聚乙烯醇树脂及其制备方法和应用
CN110590675B (zh) * 2019-08-30 2020-06-16 成都市明典世家生物科技有限公司 新型离子液体单体及其聚合物的制备并应用于分离茶多酚
CN112958151B (zh) * 2021-02-26 2022-05-10 曲阜师范大学 用于催化合成螺吲哚酮类化合物的介孔聚l-脯氨酸催化剂及其制备方法和应用
CN114478886B (zh) * 2022-02-16 2023-09-26 烟台新特路新材料科技有限公司 一种咪唑类聚离子液体及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831023B (zh) * 2010-03-18 2011-07-27 苏州大学 一种燃料电池质子交换膜及其制备方法
CN101786988B (zh) * 2010-03-19 2012-05-23 中国矿业大学 多孔离子液体聚合物的合成方法
TW201400540A (zh) * 2012-06-22 2014-01-01 Univ Nat Kaohsiung Applied Sci 具有交聯聚乙烯醇的複合固態電解質膜
RU2509064C1 (ru) * 2012-09-05 2014-03-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Полимерный композиционный материал и способ его получения
CN103657450B (zh) * 2013-11-08 2016-07-06 江南大学 聚醋酸乙烯酯/聚离子液体半互穿聚合物网络膜及其热固化制备方法
CN103924313B (zh) * 2014-03-18 2015-10-28 东南大学 一种聚离子液体功能化纳米纤维的制备方法及其应用技术
CN104892839A (zh) * 2015-06-23 2015-09-09 嘉兴学院 用于检测双酚a的还原氧化石墨烯的表面分子印迹聚离子液体及其制备方法和应用
CN105140408B (zh) * 2015-08-02 2018-03-23 北京天恒盛通科技发展有限公司 柔性透明复合离子液体凝胶导电电极的制备方法
CN105056772B (zh) * 2015-09-18 2017-05-31 淮阴师范学院 聚乙烯醇/凹土‑聚离子液体催化酯化复合膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586649A (zh) * 2018-05-18 2018-09-28 中国工程物理研究院化工材料研究所 系列含能聚离子液体及其制备方法

Also Published As

Publication number Publication date
CN105504617A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN105504617B (zh) 一种制备(1‑乙烯基‑3‑乙基咪唑硼酸盐) 聚离子液体/聚乙烯醇聚合物复合材料的方法
CN105482327B (zh) (1‑乙烯基‑3‑乙基咪唑硼酸盐)聚离子液体/聚乙烯醇聚合物复合材料及其制备方法
Wang et al. Multifunctional liquid‐free ionic conductive elastomer fabricated by liquid metal induced polymerization
JP4848735B2 (ja) 重合性イミダゾール塩の電気化学ディバイス用重合体
KR100579650B1 (ko) 액정성 이온전도체와 그 제조방법
Guan et al. Influence of spacer lengths on the morphology of biphenyl-containing liquid crystalline block copolymer nanoparticles via polymerization-induced self-assembly
WO2006053083A2 (en) Polymers and copolymers of ionic liquids as radio frequency absorbing materials
Hu et al. Self-curing triphenol A-based phthalonitrile resin precursor acts as a flexibilizer and curing agent for phthalonitrile resin
CN111303575B (zh) 聚合物、固-固相变材料及制备方法和用途
Wang et al. Rapid preparation of auto-healing gels with actuating behaviour
CN103772861B (zh) 一种微波响应型形状记忆聚合物复合材料及其制备方法
Jeon et al. Fully recyclable covalent adaptable network composite with segregated hexagonal boron nitride structure for efficient heat dissipation
Zou et al. Near-infrared light-responsive shape memory hydrogels with remolding and excellent mechanical performance
Luu et al. Shape-Persistent Liquid Crystal Elastomers with Cis-Stable Crosslinkers Containing Ortho-Methyl-Substituted Azobenzene
Ning et al. Thermally stable and deformation-reversible eugenol-derived bismaleimide resin: Synthesis and structure-property relationships
Na et al. Synthesis of a novel biphenyl epoxy resin and its hybrid composite with high thermal conductivity
CN113501907A (zh) 一种调控热响应离子液体凝胶模量变化范围的方法和热响应离子液体凝胶
CN105968364B (zh) 基于Click反应的咪唑盐型聚离子液体交联膜及其制备、应用
Chen et al. The curing and degradation kinetics of modified epoxy–SiO 2 composite
Heise et al. Gelation in thermosets formed by chain addition polymerization
Park et al. Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene
Assem et al. Synthesis and characterization of hybrid clay/poly (N, N‐dimethylaminoethyl methacrylate) nanocomposites
CN108676173B (zh) 以离子键为骨架的聚离子液体及其制备方法
CN110563926A (zh) 含氟环氧树脂固化剂及其制备方法和环氧树脂材料及其制备方法
CN109370571B (zh) 一种poss基聚离子液体/稀土荧光材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Du Haiyan

Inventor after: Li Qigeng

Inventor after: Liang Zhenhai

Inventor after: Zou Na

Inventor after: Wang Zhongde

Inventor before: Du Haiyan

Inventor before: Liang Zhenhai

Inventor before: Zou Na

Inventor before: Wang Zhongde

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant