CN105431697A - 空气压缩系统及方法 - Google Patents

空气压缩系统及方法 Download PDF

Info

Publication number
CN105431697A
CN105431697A CN201380026320.8A CN201380026320A CN105431697A CN 105431697 A CN105431697 A CN 105431697A CN 201380026320 A CN201380026320 A CN 201380026320A CN 105431697 A CN105431697 A CN 105431697A
Authority
CN
China
Prior art keywords
air
adsorbent
steam
compression stage
adsorbent bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380026320.8A
Other languages
English (en)
Other versions
CN105431697B (zh
Inventor
M.哈施
M.C.约翰逊
J.罗亚尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN105431697A publication Critical patent/CN105431697A/zh
Application granted granted Critical
Publication of CN105431697B publication Critical patent/CN105431697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/416Further details for adsorption processes and devices involving cryogenic temperature treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种用于空气分离装备的空气压缩系统及方法,在其中,空气在一系列压缩级中压缩,并且变温吸附单元吸附水蒸气和二氧化碳。变温吸附单元位于压缩级的位置处,使得在进入吸附剂床中时空气压力为在大约400psia至大约600psia之间。该单元的各个吸附剂床具有最小横截面流动面积,该最小横截面流动面积将空气的空气速度设置为在将发生吸附剂床流化的水平之下的水平。此操作允许吸附剂床的制造成本降低,因为需要较少的吸附剂和较小的吸附剂床,同时功率消耗将为最小的。

Description

空气压缩系统及方法
技术领域
本发明涉及一种用于空气分离装备(plant)的空气压缩系统及方法,在该空气分离装备中,变温吸附单元(temperatureswingadsorptionunit)位于一系列压缩级的中间位置上,使得吸附在400psia到600psia之间的范围内的压力下进行,以降低否则将在此范围外的压力下招致(incur)的成本。
背景技术
在低温空气分离装备中,空气被压缩、净化去掉较高沸点的污染物(诸如水蒸气和二氧化碳)并且然后冷却到适合于空气的低温蒸馏的温度。空气然后典型地在双塔空气分离单元内精馏,该双塔空气分离单元具有较高压力塔(column),以产生富氮蒸气塔顶产物(overhead)和粗液氧塔底产物(bottoms)(也已知为釜液)。粗液氧塔底产物在较低压力塔中进一步精炼,以产生富氧液体塔底产物和另一富氮塔顶产物。使用较低压力塔的富氧液体塔底产物来冷凝在较高压力塔中产生的富氮蒸气,并且一般地,使用所得的富氮液体来回流两个塔。富氧液体塔底产物由于富氮蒸气的冷凝而部分地气化,以提供较低压力塔中的沸腾(boilup)。来自此装备的产物可为氮和氧的蒸气和液体产物。此外,如果氩产物是期望的,则氩塔可附接到较低压力塔上,以精炼氩产物。
如上文所述,在将空气冷却至适合于进行蒸馏的低温温度之前,空气必须净化去掉较高沸点的污染物,例如,水蒸气和二氧化碳。这些组分中的任一者均可在空气的冷却期间凝固,并且累积在出于此类目的而使用的主热交换器的热交换通路内。水蒸气和二氧化碳因此由吸附过程和系统来除去,吸附过程和系统利用了在异相循环中操作的吸附剂的床来吸附此类污染物。当一个吸附剂床正在吸附杂质时,另一个床再生(regenerate)。在空气分离装备中,吸附单元提供为根据变温吸附周期来操作。在变温吸附循环中,吸附剂床通过使用热的气体(典型地,由空气分离装备产生的废氮)来再生。
US5,846,295中描述了变温吸附周期的示例,其在净化空气分离装备中的空气中是有用的。在该专利中,空气在主空气压缩机6中压缩至可为从28psia到250psia中的任一处的压力。空气在热交换器8和10中冷却。空气的冷却将使空气的水蒸气含量中的一些冷凝。然后,压缩空气供应至入口歧管12,取决于哪个容器(vessel)联线(online)以及哪个正在再生,该压缩空气从该入口歧管12处给送至两个吸附剂容器2或4中的一个。净化空气从出口供应至容纳了蒸馏塔的空气分离装备的冷箱。吸附剂容器2和4包含将吸附水蒸气和二氧化碳的氧化铝吸附剂。一旦吸附剂容器装满此类杂质,则允许累积在吸附剂床内的高压气体在减压或放空(blowdown)步骤中排出,并且来自冷箱的干的富氮废气随后被引入热交换器66中,在该热交换器66中,干的富氮废气被加温并供应至待再生的吸附剂床。由于热的干的富氮废气对吸附剂进行加热,杂质将从吸附剂脱附(desorb)。一旦床已再生,则其以由主空气压缩机6产生的压缩气体的一部分再加压,并且带回到联线中。联线的吸附剂床然后如上文所述那样再生。
如可领会的那样,在空气分离装备的制造和操作中,期望的是使可在装备的寿命内资本化的制造成本和通过电功率使用招致的进行中(ongoing)运行成本两者均降低。诸如上文已描述的那样,通过在常规压力下操作变温吸附单元,制造和操作成本至少在一定程度上比在较高压力下操作变温吸附单元降低。在此方面,一种成本来自于制成容纳吸附剂的容器的材料。与吸附在较高压力下进行的情况相比,较低的操作压力将允许吸附剂容器具有较薄的侧壁。因此,至此程度,在设计来在较低压力下操作时,吸附剂床的制造成本降低。如上文所述,成本还由通过电功率消耗招致的进行中操作成本引起。因为吸附剂床的减压代表了高压力空气的损失,而该高压力空气具有与排出的空气的压缩相关的特定动力成本,故在吸附剂床再生期间进行的减压或放空步骤也代表了成本。在较低压力下在对空气进行压缩而招致的动力成本小于在将空气压缩至较高压力中涉及的成本。因此,通过在较低压力下操作变温吸附过程,使在吸对附剂床进行减压中涉及的成本小于否则在较高压力下将招致的成本。
如将进一步论述的那样,在其它优点之中,本发明提供了一种用于空气分离装备的压缩系统,该空气分离装备具有位于压缩系统的位置内的变温吸附单元,以允许吸附在高于由现有技术构想的压力(即,在400psia到600psia之间)下进行,并且带来了制造成本和进行中操作成本两者上的降低,优于其中变温吸附单元在较低压力下操作的压缩系统。
发明内容
本发明提供了一种用于空气分离装备的多级空气压缩系统。该压缩系统具有一系列压缩级,以压缩空气,一系列压缩级设有压缩机和压缩机之间的中间冷却,以冷却空气并除去水蒸气。提供了变温吸附单元来吸附水蒸气和二氧化碳,变温吸附单元包括具有由分子筛形成的至少一种(one)吸附剂的吸附床。变温吸附单元位于压缩级的中间位置上,使得在进入吸附剂床中时,空气压力为大约400psia到大约600psia之间,并且水蒸气已通过空气的级间冷却或后冷却而从空气除去至250ppmv到500ppmv之间的水平。各个吸附剂床尺寸确定为包含一定体积至少一种吸附剂,其足以使水蒸气和二氧化碳降低至预定水平,并且具有将把空气的空气速度设为低于将发生吸附剂床流化的水平的最小横截面流动区域。
如在下文中将进一步详细论述的那样,在现有技术中未曾领会到的是成本(即,由功率消耗和床制造所引起的那些成本)并非必定随着压力而增大。例如,尽管较高的操作压力将由于吸附剂床在较高压力下放空或减压而导致增大的功率消耗,但由于压力下降的功率消耗将为较少的。其原因在于,尽管床内的压力下降将随着压力而增大,但压力下降代表了较高压力下的压力的较小部分,并且因此,由于压力下降的动力成本减少。如将论述的那样,在400psia到600psia之间,此类成本平衡和功率消耗是最低的。此外,将需要较少的吸附剂来将杂质吸附至用于待在冷箱中进行的低温蒸馏的足够低的水平。其原因在于,在较高压力下,压缩机之间的不变的级间冷却将引起更多水在变温吸附之前从空气流除去。此外,将需要较少的分子筛吸附剂来用于吸附二氧化碳,这在较高压力下是有利的。仅有的将增大的成本因素是在由在较高压力下所需的壁厚上的增大所引起的吸附剂容器成本。然而,这也可通过设计带有避免床流化所需的最小横截面流动面积并且因此带有较小的容器直径的床来平衡。
至少一种吸附剂可为包含在各个吸附剂床内的两层中的氧化铝吸附剂和分子筛吸附剂。压缩级可具有高速永磁电机来驱动压缩机。一系列压缩级可包括压缩级的初始系列和与该压缩级的初始系列成流动连通的两个增压器压缩级,以产生用于加热由空气分离装备产生的加压流的第一增压(boosted)空气流,以及用于在涡轮膨胀器内膨胀来向空气分离装备提供制冷的第二增压空气流。变温吸附单元位于一系列压缩级与两个增压器压缩级之间。
本发明还提供了一种压缩用于空气分离装备的空气的方法。根据此方法,空气在一系列压缩级中压缩。水蒸气和二氧化碳在位于压缩级的中间位置上的变温吸附单元内的空气中被吸附,使得水蒸气和二氧化碳在大约400psia到大约600psia之间的空气压力下被吸附。水蒸气在水蒸气和二氧化碳的吸附之前从空气除去,使得空气在进入变温吸附单元中时具有250ppmv到500ppmv之间的水蒸气。水蒸气通过定位在变温吸附单元的上游的压缩级内的空气的级间冷却或后冷却来除去。水蒸气和二氧化碳在至少一种吸附剂内被吸附,至少一种吸附剂由分子筛形成并且以足够的体积包含在吸附剂床中,以将水蒸气和二氧化碳减小至预定水平。穿过各个吸附剂床的空气的空气速度设为低于将由于各个吸附剂床的最小横截面流动面积而发生吸附剂床流化的水平,在该最小横截面流动面积以下将发生吸附剂床流化。
至少一种吸附剂可为氧化铝吸附剂和分子筛吸附剂。空气进入氧化铝吸附剂的层中,并且然后进入分子筛吸附剂的层中。压缩机可由高速永磁电机驱动。空气可首先在一系列压缩级的压缩级的初始系列中压缩,并且然后在与该压缩级的初始系列成流动连通的两个增压器压缩级中压缩,以产生用于加热由空气分离装备产生的加压流的第一增压空气流,以及用于在涡轮膨胀器内膨胀来向空气分离装备提供制冷的第二增压空气流。水蒸气和二氧化碳在变温吸附单元内在位于一系列压缩级与两个增压器压缩级之间的位置处被吸附。
附图说明
尽管说明书以清楚地指出申请人看作是其发明的主题的权利要求书来结束,所相信的是在联系附图时将更好地理解本发明,在附图中:
图1为结合了根据本发明的方法的空气分离装备的示意性图示;
图2为在图1的空气分离装备中使用的变温吸附单元的示意性图示;以及
图3为在图2中示出的变温吸附单元内的功率消耗与放空和压力下降损失相对(versus)的图形表现。
具体实施方式
参考图1,图示了空气分离装备1,其中给送空气流10在由压缩机12、14、16、18、20和22提供的六个初始压缩级中压缩,以提供压缩空气流24。级间冷却借助于级间冷却器26、28、30、32和34来在压缩机之间提供。压缩空气流24类似地由后冷却器36冷却。如本领域中广为人知的那样,此类级间冷却器以及后冷却器为水冷热交换器,以在各个压缩机之间除去压缩的热。伴随此冷却的是通过冷凝物流27、29、31、33、35和37的排放来从此类中间冷却器和后冷却器36除去水。
压缩空气流24然后借助于将在下文中更详细地论述的变温吸附单元38来净化掉剩余的水蒸气和二氧化碳。此净化产生了压缩且净化的空气流40。仅出于示例性目的,压缩且净化的空气流被划分为第一支流42、第二支流44和第三支流46。在已冷却至适合于其通过主热交换器48内的低温蒸馏来进行精馏的温度之后,第一支流42引入空气分离单元48中,空气分离单元48将具有热地联结的较高压力塔和较低压力塔,以将空气蒸馏成富氮馏分和富氧馏分。如本领域中将广为人知的那样,较高压力塔将空气分离成富氮蒸气馏分和粗液氧馏分(也已知为釜液)。粗液氧馏分的流在较低压力塔中进一步精炼,以生产富氧液体塔底产物和另一富氮蒸气塔顶产物。富氧液体塔底产物逆着使较高压力塔的富氮蒸气冷凝而沸腾,以产生用于两个塔的回流。
第一支流42引入较高压力塔中,作为到蒸馏塔系统的主要空气供给。第二支流44在增压器压缩机52中进一步压缩,以产生增压空气流54。在后冷却器56中除去压缩的热并部分穿过主热交换器48之后,此流在涡轮膨胀器58内膨胀,以产生排气流60,排气流60也引入较高压力塔中,以将制冷给予空气分离装备1中。第三支流46可在增压器压缩机62中压缩,以产生另一增压空气流64。在后冷却器66内冷却之后,此流可在主热交换器48中液化(liquefied),并且在由膨胀装置(诸如,膨胀阀)降低压力之后引入较高压力塔和较低压力塔两者中。将注意的是,尽管未图示,但后冷却器56和66可按需要来提供冷凝物去除。在任何情况下,增压空气压力流64为产物沸腾流,其可使用来使已由泵70加压的泵送产物流68气化或加热至超临界温度。泵送的产物流68可为富氧液体,其由在较低压力塔中产生的富氧液体塔底产物构成。可为来自较低压力塔的低压氮蒸气的富氮蒸气72的流可在主热交换器48内加热,以协助冷却进入的压缩空气。典型地将从较低压力塔除去的、在富氮蒸气72的水平以下的废氮流74也可在主热交换器48内加热,以协助冷却进入的压缩空气。在已加热之后,并且已在热交换器76中进一步加热之后,使用废氮流74来在变温吸附剂单元38内使吸附剂再生。
根据本发明,变温吸附单元38位于此类初始压缩级(即,压缩机12至22、它们的中间冷却器26至34和相对于压缩机22的后冷却器36)与待论述的分别由增压器压缩机52和62以及它们的后冷却器56和66所提供的下游压缩级之间。这允许压缩空气流24在400psia到600psia之间的压力下进入变温吸附单元38。此外,变温吸附单元38的布置允许空气的水蒸气含量中的一些被除去,因为伴随着级间冷却的是通过从此类中间冷却器排放冷凝物流27、29、31、33、34和37来除去空气的水蒸气含量中的一些。在此方面,应当除去的水含量应当足以提供具有在250ppmv到500ppmv之间的水平的水蒸气含量的压缩空气流。尽管压缩机12至22以及增压器压缩机52和62可由公共齿轮系(train)驱动,但优选的是它们由永磁高速电机来驱动。在此方面,电机可为两端式的,以便每个电机驱动压缩机中的两个。例如,压缩机12和14可放置于电机轴的两端处,该电机轴由位于此类压缩机之间的电机来驱动。使用驱动着级的永磁高速电机的优点是在变温吸附单元1所位于的位置方面提供了更大程度的范围。由单端或两端的永磁高速电机驱动的压缩机级为它们自己赋予了对气体的连续压缩所必需的安排,使得在构成此压缩系的级和热交换器之中的流动压力损失最小化。该相同的功效允许预净化器单元在任何最有效的位置处插入压缩系中。
因此,预净化器可在任何压力水平的选择下安置于压缩系内,此处该预净化器在使流动压力损失最小化的方式方面是最有效的。影响预净化器在系内的放置的另一个考虑在于其最佳地放置以便单个预净化器处理所有空气。也即,如果放置成以便处理该过程所需要的所有空气,则预净化器数目可最小化。将变温吸附单元38放置在初始压缩级与增压器压缩级之间为此类示例。在这里,所有空气均在管线44和46之间划分来用于分别由压缩机52和62进一步压缩之前被处理。
然而,将理解的是,前文并非意在限制本发明的应用,并且如果进入变温吸附单元38的压缩空气流在上文所阐述的压力范围内,并且除去了足够的水蒸气,则本发明可应用,以便变温吸附单元38为在初始压缩级中的两个之间,例如,在冷却器34之后并且在压缩机22之前。将进一步理解的是,参考图1描述的其它特征也并非意在为限制性的。例如,尽管本发明已经参考与空气分离装备相联系的附图来示出并描述,在该空气分离装备中产生了加压氧产物并且在该空气分离装备中使用空气膨胀来供应制冷。本发明不限于此类装备,并且将具有至其它类型的空气分离装备的应用。例如,本发明将具有至下列空气分离装备的适用性:在其中存在氮膨胀或外部地施加的制冷,或在其中产物为以较低压力获得的氧气和从较低压力塔的顶部获得的氮气。换言之,装备和所生产的产物的具体类型并不构成本发明的适用性上的限制。
另外参考图2,图示了变温吸附单元38。变温吸附单元包括两个平行的吸附剂床80和82。吸附剂床80和82包括圆柱形容器和吸附剂的填充床,吸附剂可为分子筛(诸如,NaX),或更优选地将结合氧化铝吸附剂的层84来吸附水分,紧随着分子筛吸附剂86的层,分子筛吸附剂86优选地也将为NaX。如本领域中的技术人员将领会的那样,已在本发明中使用的变温吸附单元可使用单个吸附容器或两个以上容器。
压缩空气流24可借助于导管床来分别经由流88和90引导向吸附剂床80和82中的任一者。阀92和94控制着进入吸附剂床80和82的空气的流,并且净化空气经由导管93和95来从吸附剂床80和82排出,导管93和95包含阀96和98,以控制穿过导管92和94的净化空气的流的流动。两个导管92和94均连接,以排放压缩且净化的空气流44。
在已穿过热交换器76或电加热器之后,废氮流74通过导管100和102作为清洗(purge)流进入吸附剂床80和82,以再生包含在类此床中的吸附剂。导管100和102内的流分别由阀104和106控制。载有之前在吸附剂床80和82内吸附的水蒸气和二氧化碳的较多或较少的连续的清洗流穿过导管108和110,并且作为可排至大气的清洗流112排出。导管108和110内的流分别由阀114和116控制。
对于在变温吸附单元38内进行的变温吸附过程,期望的是使干的预净化给送空气的连续流进入空气分离单元50。这通过使用多个吸附剂床来完成,例如,吸附剂床80和82,其中一个床联线并吸附空气中的杂质,而另一个床离线(offline)并正在被再生。联线的床仅可保持联线直到其达到其吸附杂质的容量,并且将发生杂质突破(breakthrough)。例如,尽管并非意在为限制性的,但可接受的裕度(margin)在一些情况下可为大约0.25ppmv的CO2。突破点由在出口处污染物(例如,水蒸气和二氧化碳)达到不可接受的水平所需的时间限定,暗示着床充满了污染物。
一旦达到突破点,则联线的吸附剂床离线,并且之前再生的床被带回联线以吸附杂质。在变温吸附过程中,通常存在各个吸附剂床所经历的六个步骤,即:吸附;混合;吸附;减压;热清洗;冷清洗;和再加压。以下的表1示出了两个吸附剂床80和82内执行这些步骤的相互关系。总共示出了用于450分钟吸附步骤的吸附过程的10个步骤。
在步骤1(“混合”步骤)中,吸附剂床80、82为“联线的”,并且阀92、96、94和98打开,而阀104、114、106和116关闭。在该步骤期间,给送流在两个床之间均匀地分开,且系统中没有再生气体。在联线时,吸附剂床80和82吸附水蒸气和其它污染物,如二氧化碳。该混合步骤的目的是稀释在再生期间留在吸附剂床中的余热的量,并且因此防止热的流给送回容纳有蒸馏塔的冷箱。
紧随着“混合”步骤,在随后的步骤2中,吸附床80经受降压“减压”并且离线,同时,吸附剂床82接收整个给送流并且经过吸附步骤,其中水蒸气和二氧化碳继续被吸附。“离线”的床常被称为经历再生。此再生通过四个不同的步骤来完成。本领域的技术人员将领会的是,还可包括其它步骤。整个地,按顺序且相对于吸附剂床82,再生步骤或状态可包括:步骤2)减压、3)热清洗、4)冷清洗,以及5)再加压。在步骤2期间,床80从给送压力减压至较低压力,典型地减压至接近大气压力。这通过关闭阀92和96并打开阀114来实现。较低压力为再生压力,并且该步骤持续10分钟,但时间的长度可取决于设备约束或过程限制而变化。一旦减压,则步骤3以使用加热器76加热的再生废氮流74来开始,以使废氮温度升高至比给送温度更高的温度,并且大多数情况下,典型地但并非总是高于300℉且低于600℉,取决于过程和吸附剂材料约束。在此时间期间,阀104打开,并且允许废氮流74通过导管100和80来穿过吸附剂床80。在经过一定时间之后(在该示例中在170分钟之后),废氮流旁通过加热器76或者如果加热器是电力加热,则加热器断路,以将废流气体温度降低至接近环境状态,典型地但并非总是在40到100℉之间。这开始了步骤4或冷清洗步骤,其保持废氮清洗但不加热。这降低了吸附剂床的温度,并使热前缘前进穿过床。在该示例中,该步骤持续250分钟。步骤5通过关闭阀114和104并打开阀92来开始再加压步骤。这允许压缩的净化空气流40的一部分使容器从接近环境压力加压至升高的给送压力。一旦加压至给送压力,则床80和82两者均进入混合步骤(步骤6),并且同样地,阀92和96打开,允许给送流在床80和82之间均匀地分开。在混合步骤中在一定量的时间(在该示例中示出为20分钟)之后,床切换,并且现在吸附剂床80在吸附步骤中联线,并且吸附剂床82经历再生步骤,即步骤7至10,步骤7至10遵循与在上文论述的步骤2至6中用于吸附剂床80的控制逻辑相同的控制逻辑。
如上文所述,根据本发明来进行的变温吸附过程优选地在400pasia到600psia之间的压力下进行。如之前已论述,此类操作压力并未在现有技术中使用,是因为成本由于下列因素而增大:在吸附剂床内的再生和压力下降期间,在吸附剂床的减压中涉及的提高的动力成本;以及由于此类较高的操作压力而引起的在吸附剂床的容器壁的厚度上的增大来引起的提高的制造成本。然而,本发明允许这些成本因素与在制造吸附剂床中降低的成本平衡,以便在400psia到600psia之间的此压力范围中操作时,空气分离装备中的空气的预净化能够以比现有技术更具成本效益的方式进行,并且在比前述压力范围更低或更高的压力下进行。
降低成本中的一个重要因素在于,当在高压力下操作变温吸附过程时,吸附剂的量可减少。如图2中所示,各个吸附剂床80、82均具有氧化铝吸附剂84的层,紧随着分子筛吸附剂86(具体而言,NaX)的层。在此方面,在空气分离的情况下,必须存在足够体积的吸附剂或多种吸附剂,以便典型地,在空气在主热交换器中冷却之前,水蒸气含量降低至低于0.1ppm的水平且二氧化碳水平降低至低于0.25ppm的水平。关于在对空气进行压缩中使用的压缩系中的氧化铝吸附剂层84,一般地将存在若干个压缩级,它们由一系列压缩机提供,其中热在压缩机级之间除去,以便更冷且因此更密集的气体在各个随后的压缩级中压缩。该级间和后冷却的效应还使水蒸气冷凝。结果,在较高压力下,不变的是将使用更多的级和更多的中间冷却器,并且因此,在400psia到600psia之间的压力下,给送到变温吸附剂单元38的空气中的水分含量将比使用现有技术的较低压力时更低。如上文所述,在进入变温吸附剂单元38时,水蒸气应当通过空气的级间冷却或后冷却来从空气除去至250ppmv到500ppmv(体积百万分之一)的水平。当然,这将降低除去水蒸气所需的吸附剂的量。在此方面,与在大约250psia的现有技术压力下所需的氧化铝吸附剂的量相比,空气的水分含量减少至此类水平将使氧化铝吸附剂的量减少大约72%和大约60%,在现有技术中,由于缺少此类中间冷却,空气典型地将含有757ppmv的水分。
使用较高压力的又一个结果在于,二氧化碳吸附将比在较低压力下更有利;并且结果,将需要较少的分子筛吸附剂来吸附二氧化碳,并且将二氧化碳空气中的含量降低至对于空气分离所需的预定的、必须的低水平。在此处已由发明人发现的是,在吸附二氧化碳所需的分子筛吸附剂上的此类减少将大致随着压力的每次增大而减小,直到压力为400psia到600psia之间的范围内。例如,NaX的体积将在此压力范围内减少17%到23%之间。随着压力增大,在600psia之上,将不存在吸附二氧化碳所必需的分子筛吸附剂的量上的实质减少。在此类较高压力下,将仅存在24%的进一步减少。尽管本论述内容已集中于使用氧化铝层和分子筛层两者的吸附剂床,但相同的论述内容将应用于仅利用了分子筛吸附剂的吸附剂床。
此处将注意到的是,尽管在本文中和在权利要求中论述了水蒸气和二氧化碳除去,但将理解的是,其它杂质(例如,一氧化二氮、乙炔和其它碳氢化合物)也将通过吸附剂或多种吸附剂来除去。然而,水蒸气和二氧化碳以远高于此类其它杂质的浓度出现,并且因此将对所需的吸附剂的量具有最大的影响。
如可领会的那样,尽管吸附剂的成本将降低,但电功率的放空成本将线性地增加。然而,由压力下降引起的成本将减少,因为此压力下降变为在较高压力下对空气进行加压的成本的较小部分。这可在图4中见到。再次地,在400psia到600psia之间的此压力范围内,总功率消耗将为最小的。
然而,在较高压力下简单地操作吸附剂床将并非必定在400psia到600psia的压力范围内允许成本降低,因为各个吸附剂床的壁厚度将必须比在较低压力下的壁厚度更大,以经得起较高的床压力。在此方面,在吸附剂床尺寸上的限制在于穿过床的气体的速度必须不超过将发生床流化的水平。然而,在较高压力下,这是协作地作用的,因为气体密度增大。由于穿过任何封闭通路(例如,管,或就那点而论,吸附剂床)的流为密度、速度和横截面流动面积的乘积,当密度增大时,对于恒定的流动速率,速度必须减小。同样地,在高压力下,吸附剂床的所需直径将在小于较低压力下的所需直径,因为作为直径的函数的吸附剂床的截面面积将为较小的,以提供将避免床流化的空气的气体速度。因此,如果吸附剂床的直径减小至将空气的空气速度设置为低于否则将发生吸附剂床流化的水平的最小直径或最小截面流动面积,则金属(典型地,钢)的厚度将为最小的,以便含有吸附剂的压力容器的制造成本对于此压力范围将为最小的。
尽管本发明已参考优选实施例来描述,但本领域中的技术人员将想到的是,可在不脱离如在所附权利要求书中阐明的本发明的精神和范围的情况下做出诸多改变和添加。

Claims (8)

1.一种用于空气分离装备的多级空气压缩系统,其包括:
一系列压缩级,以压缩空气;
所述压缩级具有压缩机、在所述压缩机之间的级间冷却,以冷却所述空气并除去水蒸气;
变温吸附单元,以吸附水蒸气和二氧化碳,并且包括吸附床,所述吸附床具有由分子筛形成的至少一种吸附剂;
所述变温吸附单元位于所述压缩级的中间位置上,使得空气压力在进入所述吸附剂床中时为大约400psia到大约600psia之间,并且水蒸气已通过所述空气的级间冷却或后冷却而从所述空气除去至250ppmv到500ppmv之间的水平;以及
各个所述吸附剂床尺寸确定为包含一定体积的所述至少一种吸附剂,其足够使所述水蒸气和二氧化碳降低至预定水平,并且具有将使所述空气的空气速度设为在将发生吸附剂床流化的水平以下的水平的最小横截面流动面积。
2.根据权利要求1所述的多级空气压缩系统,其中,所述至少一种吸附剂为包含在各个所述吸附剂床内的两层中的氧化铝吸附剂和所述分子筛吸附剂。
3.根据权利要求1或权利要求2所述的多级空气压缩系统,其中,所述压缩级具有高速永磁电机,以驱动所述压缩机。
4.根据权利要求3所述的多级空气压缩系统,其中:
所述一系列压缩级包括压缩级的初始系列和与所述压缩级的所述初始系列成流动连通的两个增压器压缩级,以产生用于加热由所述空气分离装备产生的加压流的第一增压空气流,以及用于在涡轮膨胀器内膨胀来向所述空气分离装备提供制冷的第二增压空气流;以及
所述变温吸附单元位于所述一系列压缩级与所述两个增压器压缩级之间。
5.一种用于空气分离装备的压缩空气的方法,其包括:
在一系列压缩级中压缩所述空气;
在位于所述压缩级的中间位置上的变温吸附单元内吸附所述空气中的水蒸气和二氧化碳,使得水蒸气和二氧化碳在大约400psia到大约600psia之间的空气压力下吸附;
在吸附所述水蒸气和二氧化碳之前将水蒸气从所述空气除去,使得所述空气在进入所述变温吸附单元时具有250ppmv到500ppmv之间的水蒸气,所述水蒸气由位于所述变温吸附单元的上游的压缩级内的所述空气的级间冷却或后冷却来除去;
在由分子筛形成且以足够的体积包含在各个所述吸附剂床中的至少一种吸附剂内吸附所述水蒸气和二氧化碳,以使所述水蒸气和二氧化碳降低至预定水平;以及
将穿过各个所述吸附剂床的所述空气的空气速度设成低于将由于各个所述吸附剂床的最小横截面流动面积而引起吸附剂床流化的水平,在所述最小横截面流动面积以下将发生吸附剂床流化。
6.根据权利要求5所述的方法,其中:
所述至少一种吸附剂为氧化铝吸附剂和分子筛吸附剂;以及
所述空气通入所述氧化铝吸附剂的层中,并且然后通入所述分子筛吸附剂的层中。
7.根据权利要求6或权利要求7所述的方法,其中,所述压缩机由高速永磁电机驱动。
8.根据权利要求7所述的方法,其中:
所述空气在所述一系列压缩级的压缩级的初始系列中最初地压缩,并且然后在与所述压缩级的所述初始系列成流动连通的两个增压器压缩级中压缩,以产生用于加热由所述空气分离装备产生的加压流的第一增压空气流,以及用于在涡轮膨胀器内膨胀来向所述空气分离装备提供制冷的第二增压空气流;并且
在位于所述一系列压缩级与所述两个增压器压缩级之间的位置处的所述变温吸附单元内吸附所述水蒸气和二氧化碳。
CN201380026320.8A 2012-05-24 2013-04-23 空气压缩系统及方法 Active CN105431697B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/479,678 US8647409B2 (en) 2012-05-24 2012-05-24 Air compression system and method
US13/479678 2012-05-24
PCT/US2013/037748 WO2013176816A2 (en) 2012-05-24 2013-04-23 Air compression system and method

Publications (2)

Publication Number Publication Date
CN105431697A true CN105431697A (zh) 2016-03-23
CN105431697B CN105431697B (zh) 2017-07-21

Family

ID=48326439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380026320.8A Active CN105431697B (zh) 2012-05-24 2013-04-23 空气压缩系统及方法

Country Status (7)

Country Link
US (2) US8647409B2 (zh)
EP (1) EP2861917A2 (zh)
CN (1) CN105431697B (zh)
CA (1) CA2870071C (zh)
IN (1) IN2014DN08247A (zh)
MX (1) MX2014014250A (zh)
WO (1) WO2013176816A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106150574A (zh) * 2016-06-17 2016-11-23 全球能源互联网研究院 一种空气级间冷却的深冷液态空气储能系统
CN108139144A (zh) * 2015-10-15 2018-06-08 普莱克斯技术有限公司 用于压缩低温空气分离设备中的进料空气流的方法
CN113424004A (zh) * 2019-02-21 2021-09-21 乔治洛德方法研究和开发液化空气有限公司 使用平行六面体吸附器分离空气中所含气体的设备和方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951339B2 (en) * 2011-10-21 2015-02-10 Henderson Engineering Company, Inc. Compressed gas drying system
US20160053764A1 (en) * 2012-10-03 2016-02-25 Ahmed F. Abdelwahab Method for controlling the compression of an incoming feed air stream to a cryogenic air separation plant
US10385861B2 (en) 2012-10-03 2019-08-20 Praxair Technology, Inc. Method for compressing an incoming feed air stream in a cryogenic air separation plant
US20160032935A1 (en) * 2012-10-03 2016-02-04 Carl L. Schwarz System and apparatus for compressing and cooling an incoming feed air stream in a cryogenic air separation plant
US20160032934A1 (en) * 2012-10-03 2016-02-04 Carl L. Schwarz Method for compressing an incoming feed air stream in a cryogenic air separation plant
US9433890B2 (en) * 2013-01-10 2016-09-06 Mitsubishi Heavy Industries, Ltd. Dehydration equipment, gas compression system, and dehydration method
US10464813B2 (en) * 2013-06-18 2019-11-05 Versum Materials Us, Llc Process for recovery and purification of nitrous oxide
US9803778B2 (en) * 2015-09-25 2017-10-31 New York Air Brake, LLC Heater control for an air dryer
US10981103B2 (en) * 2018-04-25 2021-04-20 Praxair Technology, Inc. System and method for enhanced recovery of liquid oxygen from a nitrogen and argon producing cryogenic air separation unit
US11202987B2 (en) 2018-10-18 2021-12-21 Honeywell International Inc. Multi-stage compression and component removal
US11137205B2 (en) * 2018-12-21 2021-10-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for eliminating heat bumps following regeneration of adsorbers in an air separation unit
US11292600B2 (en) 2019-08-26 2022-04-05 Honeywell International Inc. Aircraft cabin contaminant removal using liquid sorbent
CN111238167B (zh) * 2020-03-17 2024-04-16 北京科技大学 用于空分装置的节能加热装置及方法
CN115461584A (zh) 2020-05-11 2022-12-09 普莱克斯技术有限公司 用于从中压低温空气分离单元回收氮、氩和氧的系统和方法
CN115485519A (zh) 2020-05-15 2022-12-16 普莱克斯技术有限公司 用于产生氮和氩的低温空气分离单元的集成式氮液化器
US11619442B2 (en) 2021-04-19 2023-04-04 Praxair Technology, Inc. Method for regenerating a pre-purification vessel
US20230110874A1 (en) * 2021-10-07 2023-04-13 Jocelyn Bruno O2 Tree for Addressing Climate Change

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295587A (ja) * 1991-01-07 1992-10-20 Union Carbide Ind Gases Technol Corp 粗ネオン製造方法及び装置
US5220797A (en) * 1990-09-28 1993-06-22 The Boc Group, Inc. Argon recovery from argon-oxygen-decarburization process waste gases
CN1082509A (zh) * 1992-08-21 1994-02-23 无锡新苑集团公司 变压吸附-低温分离回收氢的方法
US5582029A (en) * 1995-10-04 1996-12-10 Air Products And Chemicals, Inc. Use of nitrogen from an air separation plant in carbon dioxide removal from a feed gas to a further process
CN1207491A (zh) * 1997-07-30 1999-02-10 普拉塞尔技术有限公司 预净化器和交流换热器相组合的空气深冷分离方法
FR2884307A1 (fr) * 2005-04-08 2006-10-13 Air Liquide Procede et installation de refroidissement d'eau
CN101099069A (zh) * 2005-01-07 2008-01-02 乔治洛德方法研究和开发液化空气有限公司 用于在将空气引入低温空气分离装置之前预处理该空气的方法及相应设备
US20100287981A1 (en) * 2009-05-18 2010-11-18 American Air Liquide, Inc. Processes For The Recovery Of High Purity Hydrogen And High Purity Carbon Dioxide
US20110296870A1 (en) * 2009-05-15 2011-12-08 Florida Turbine Technologies, Inc. Apparatus and process for separating CO2 from a flue gas
CN102405391A (zh) * 2009-04-03 2012-04-04 普莱克斯技术有限公司 制冷产生方法和系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1325881A (en) * 1969-08-12 1973-08-08 Union Carbide Corp Cryogenic separation of air
GB1520103A (en) * 1977-03-19 1978-08-02 Air Prod & Chem Production of liquid oxygen and/or liquid nitrogen
JPS62102074A (ja) * 1985-10-30 1987-05-12 株式会社日立製作所 ガス分離方法及び装置
US4711645A (en) * 1986-02-10 1987-12-08 Air Products And Chemicals, Inc. Removal of water and carbon dioxide from atmospheric air
FR2661841B1 (fr) * 1990-05-09 1992-07-17 Air Liquide Procede et appareil d'epuration par adsorption d'air destine a etre distille.
US5614000A (en) * 1995-10-04 1997-03-25 Air Products And Chemicals, Inc. Purification of gases using solid adsorbents
GB9623519D0 (en) * 1996-11-11 1997-01-08 Boc Group Plc Air separation
US5846295A (en) 1997-03-07 1998-12-08 Air Products And Chemicals, Inc. Temperature swing adsorption
US5855650A (en) 1997-09-09 1999-01-05 Air Products And Chemicals, Inc. Purification of gases using solid adsorbents
US6238460B1 (en) 1997-09-26 2001-05-29 The Boc Group, Inc. Air purification process
US7632337B2 (en) 2006-06-30 2009-12-15 Praxair Technology, Inc. Air prepurification for cryogenic air separation
FR2918578B1 (fr) * 2007-07-13 2010-01-01 Air Liquide Procede de purification d'un gaz contenant du co2
WO2009095188A2 (de) * 2008-01-28 2009-08-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperatur-luftzerlegung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220797A (en) * 1990-09-28 1993-06-22 The Boc Group, Inc. Argon recovery from argon-oxygen-decarburization process waste gases
JPH04295587A (ja) * 1991-01-07 1992-10-20 Union Carbide Ind Gases Technol Corp 粗ネオン製造方法及び装置
CN1082509A (zh) * 1992-08-21 1994-02-23 无锡新苑集团公司 变压吸附-低温分离回收氢的方法
US5582029A (en) * 1995-10-04 1996-12-10 Air Products And Chemicals, Inc. Use of nitrogen from an air separation plant in carbon dioxide removal from a feed gas to a further process
CN1207491A (zh) * 1997-07-30 1999-02-10 普拉塞尔技术有限公司 预净化器和交流换热器相组合的空气深冷分离方法
CN101099069A (zh) * 2005-01-07 2008-01-02 乔治洛德方法研究和开发液化空气有限公司 用于在将空气引入低温空气分离装置之前预处理该空气的方法及相应设备
FR2884307A1 (fr) * 2005-04-08 2006-10-13 Air Liquide Procede et installation de refroidissement d'eau
CN102405391A (zh) * 2009-04-03 2012-04-04 普莱克斯技术有限公司 制冷产生方法和系统
US20110296870A1 (en) * 2009-05-15 2011-12-08 Florida Turbine Technologies, Inc. Apparatus and process for separating CO2 from a flue gas
US20100287981A1 (en) * 2009-05-18 2010-11-18 American Air Liquide, Inc. Processes For The Recovery Of High Purity Hydrogen And High Purity Carbon Dioxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139144A (zh) * 2015-10-15 2018-06-08 普莱克斯技术有限公司 用于压缩低温空气分离设备中的进料空气流的方法
CN108139144B (zh) * 2015-10-15 2020-10-20 普莱克斯技术有限公司 用于压缩低温空气分离设备中的进料空气流的方法
CN106150574A (zh) * 2016-06-17 2016-11-23 全球能源互联网研究院 一种空气级间冷却的深冷液态空气储能系统
CN113424004A (zh) * 2019-02-21 2021-09-21 乔治洛德方法研究和开发液化空气有限公司 使用平行六面体吸附器分离空气中所含气体的设备和方法
CN113424004B (zh) * 2019-02-21 2022-12-13 乔治洛德方法研究和开发液化空气有限公司 使用平行六面体吸附器分离空气中所含气体的设备和方法

Also Published As

Publication number Publication date
WO2013176816A2 (en) 2013-11-28
CA2870071C (en) 2016-02-02
MX2014014250A (es) 2015-02-17
EP2861917A2 (en) 2015-04-22
IN2014DN08247A (zh) 2015-05-15
US20130312427A1 (en) 2013-11-28
CN105431697B (zh) 2017-07-21
WO2013176816A3 (en) 2015-06-25
US9393517B2 (en) 2016-07-19
CA2870071A1 (en) 2013-11-28
US20150283497A1 (en) 2015-10-08
US8647409B2 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
CN105431697A (zh) 空气压缩系统及方法
CN112005067B (zh) 用于从产氮低温空气分离单元增强回收氩和氧的系统和方法
JP5577044B2 (ja) 空気の精製方法
KR102261625B1 (ko) 중압 극저온 공기 분리 유닛으로부터의 질소 및 아르곤의 고 회수율을 위한 시스템 및 방법
KR100192697B1 (ko) 고체 흡착제를 사용한 기체 정제법
KR102438959B1 (ko) 질소 생성 극저온 공기 분리 유닛으로부터의 아르곤 및 산소의 향상된 회수율을 위한 시스템 및 방법
CN108348839B (zh) 组合的变压和变温吸附中的吸附剂再生方法
KR102258573B1 (ko) 질소 생성 극저온 공기 분리 유닛으로부터의 아르곤 및 산소의 향상된 회수율을 위한 시스템 및 방법
US7632337B2 (en) Air prepurification for cryogenic air separation
KR19980080582A (ko) 고순도 아르곤을 제조하는 극저온 하이브리드 시스템
JPH1057744A (ja) 多熱パルス式psa系
US10981103B2 (en) System and method for enhanced recovery of liquid oxygen from a nitrogen and argon producing cryogenic air separation unit
CN104246401A (zh) 用于借助低温蒸馏分离空气的方法
JP2003062419A (ja) ガス混合物の分離方法及びその装置
US5987918A (en) Method of separating nitrogen from air
JP2007245111A (ja) 空気液化分離における前処理方法及び装置
US11619442B2 (en) Method for regenerating a pre-purification vessel
KR102057024B1 (ko) 퍼지 가스로서 디메타나이저의 오버헤드 스트림을 사용하는 스윙 흡착을 위한 공정 및 시스템
CN107850386A (zh) 在与变压吸附系统集成的低温空气分离单元中回收氩的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant