CN105428419A - 一种电阻栅薄膜晶体管及其制备方法 - Google Patents

一种电阻栅薄膜晶体管及其制备方法 Download PDF

Info

Publication number
CN105428419A
CN105428419A CN201510981786.4A CN201510981786A CN105428419A CN 105428419 A CN105428419 A CN 105428419A CN 201510981786 A CN201510981786 A CN 201510981786A CN 105428419 A CN105428419 A CN 105428419A
Authority
CN
China
Prior art keywords
grid
resistance
film transistor
layer
resistance grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510981786.4A
Other languages
English (en)
Other versions
CN105428419B (zh
Inventor
刘玉荣
姚若河
耿魁伟
韦岗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510981786.4A priority Critical patent/CN105428419B/zh
Publication of CN105428419A publication Critical patent/CN105428419A/zh
Application granted granted Critical
Publication of CN105428419B publication Critical patent/CN105428419B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • H10K10/482Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors the IGFET comprising multiple separately-addressable gate electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种电阻栅薄膜晶体管及其制备方法。电阻栅薄膜晶体管包括衬底、过渡层、栅端电极、电阻栅薄膜层、绝缘栅介质层、半导体有源层、源漏电极;所述电阻栅薄膜层位于栅端电极与绝缘栅介质层之间;所述栅端电极位于电阻栅薄膜层下方;所述源漏极在半导体有源层上,且源漏电极两端与两个栅端电极存在交叠区域。本发明可通过两个栅端电极偏压有效调控器件处于不截止、遥截止或锐截止转移特性,可根据实际应用需要获得所需的阈值电压、关态电流和跨导值,两个栅端电极可同时作为控制栅和信号栅使用,使电路得到简化,从而有效扩大了薄膜晶体管的应用范围,能有效地解决阈值电压漂移、大信号堵塞、自动增益控制动态范围窄等问题。

Description

一种电阻栅薄膜晶体管及其制备方法
技术领域
本发明涉及半导体技术领域,特别涉及一种电阻栅薄膜晶体管结构及其制备方法。
背景技术
近年来,供平板显示器件和其它图像显示器用的薄膜晶体管(TFT)方面的研究与开发极为活跃。用于有源矩阵LCD和其它显示器件的TFT需要具有高迁移率、低关态电流、高开关电流比、低阈值电压等特性,且电性能需要具有偏压应力稳定性和工作环境稳定性。本世纪以来,随着平板显示技术的快速发展,对TFT器件性能提出了更高要求。多年来,围绕器件性能的改进,已开发出多种可用于TFT的半导体薄膜材料,主要包括非晶硅、多晶硅、以并五苯为代表的有机小分子半导体材料、以聚噻吩类为代表的有机聚合物半导体材料、以氧化锌为代表的宽能隙氧化物半导体材料等。非晶硅TFT由于低迁移率在高分辨率显示方面受到限制。多晶硅TFT虽具有较高的迁移率,但具有工艺复杂、制作成本昂贵、大面积难以实现等缺点而制约其市场空间。更重要的是,硅为窄能隙半导体,硅基TFT对可见光敏感,光照条件下器件性能发生明显的变化,因此,在平板显示中需要引入黑矩阵,这不仅增加了制备工艺的复杂度,而且降低了显示器件的开口率。有机TFT尽管在低成本、柔性化方面有优势,但低迁移率和性能不稳定等难以解决的关键技术问题影响其应用前景。相对而言,采用以氧化锌材料为代表的宽能隙透明氧化物半导体材料作为TFT的有源层是目前有效解决TFT器件中迁移率、大面积、黑矩阵、开口率、亮度等问题最佳方案。比如,氧化锌基薄膜晶体管具有相对高的迁移率、低功耗、环境友好、可见光透明、低温工艺等诸多优势,在透明电子器件、液晶显示、太阳能电池、触摸屏、柔性显示、电子纸、集成电路等诸多领域具有广阔的应用前景,被认为是最有希望的下一代薄膜晶体管技术。
薄膜晶体管的电性能由材料参数、器件结构和工艺参数共同决定,强烈地依赖于栅极、栅介质、半导体有源层和源漏电极的材料特性和制备工艺,以及它们之间的界面特性。近年来,为了改善TFT器件的电性能及其稳定性,在材料选择、工艺和界面优化等方面进行了大量的研究工作,使TFT器件的迁移率、开关电流比、关态电流、亚阈值摆幅等参数得到明显提高。现有的TFT器件的电特性往往不能根据实际应用的需要进行合理调控,而且普遍存在工作电压所引起的阈值电压漂移、关态电流增加和迁移率退化等现象,从而影响电子系统的稳定性和可靠性。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种电阻栅薄膜晶体管,可通过电阻栅上的两个端电极偏压有效调控器件处于不截止、遥截止或锐截止转移特性,可根据实际应用需要获得所需的阈值电压、关态电流和跨导值,两个栅端可同时作为控制栅和信号栅使用,使电路得到简化,从而有效扩大了薄膜晶体管的应用范围,能有效地解决阈值电压漂移、大信号堵塞、自动增益控制动态范围窄等问题。
本发明的另一目的在于提供上述电阻栅薄膜晶体管的制备方法。
本发明的目的通过以下技术方案实现。
一种电阻栅薄膜晶体管,由下至上依次衬底、过渡层、栅端电极、电阻栅薄膜层、绝缘栅介质层、半导体有源层和源漏电极;所述电阻栅薄膜层的电阻率低于半导体有源层,位于栅端电极与绝缘栅介质层之间;所述栅端电极位于电阻栅薄膜层下方,其连线方向与沟道方向垂直,其结构和功能上是等效的;所述源漏极在半导体有源层上,电极长度(沟道宽度)小于两栅端电极宽度与其间距的总和,且源漏电极两端与两个栅端电极存在交叠区域(类#型)。
进一步优化地,所述半导体有源层可为厚度30~80纳米的非晶硅、多晶硅、有机和氧化物半导体薄膜中的一种。
进一步优化地,所述电阻栅薄膜层的电阻率低于半导体有源层。
进一步优化地,所述栅端电极与电阻栅薄膜层之间,源漏电电极与半导体有源层之间形成欧姆接触。-
进一步优化地,所述绝缘栅介质层为100~300纳米厚的二氧化硅、氧化铝或氧化钽绝缘介质材料中的一种,但不限于此。
进一步优化地,所述衬底为玻璃衬底或者塑料衬底。
上述电阻栅薄膜晶体管的制备方法,包括以下步骤:
(1)在衬底上沉积100~200纳米厚的二氧化硅薄膜作为过渡层;
(2)在经步骤(1)处理后的过渡层上沉积金属(或ITO)导电薄膜,光刻形成两栅端电极;
(3)在经步骤(2)处理后的两栅端电极和过渡层上通过掩膜版技术沉积100~200纳米厚的电阻型薄膜,形成电阻栅薄膜层;
(4)在电阻栅薄膜层上通过掩膜版技术沉积100~300纳米厚的绝缘薄膜形成绝缘栅介质层;
(5)在经步骤(4)处理后的绝缘栅介质层上沉积半导体薄膜,形成半导体有源层;
(6)在半导体有源层上沉积100~200纳米厚的金属薄膜,光刻形成源、漏电极;
(7)在经(6)处理后的器件在200~250oC氮氛下退火处理30~60分钟。
与现有技术相比,本发明具有以下优点和有益效果:
本发明采用电阻型薄膜作为栅,通过调整垂直沟道方向的两个栅端电极的偏压可使晶体管工作于不同的状态,呈现不截止、遥截止或锐截止的转移特性,可根据实际应用需要获得所需的阈值电压、关态电流和跨导值,两个栅端可同时作为控制栅和信号栅使用,使电路得到简化,从而有效扩大了薄膜晶体管的应用范围,能有效地解决阈值电压漂移、大信号堵塞、自动增益控制动态范围窄等问题。
附图说明
图1为本发明的实施例的电阻栅薄膜晶体管的结构示意图。
图2a~图2f分别为实例中电阻栅薄膜晶体管的一个制作过程不同步骤对应的示意图。
图3a和图3b分别为电阻栅薄膜晶体管的一个应用实例电路的示意图和对应的栅端电极偏压控制转移特性的验证曲线。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
本实施例的双有源层结构氧化锌基薄膜晶体管,由下至上依次包括衬底1、过渡层2、两栅端电极(301,302)、电阻栅薄膜层4、绝缘栅介质层5、半导体有源层6、源电极701和漏电极702,所述电阻栅薄膜层的电阻率低于半导体有源层,位于栅端电极与绝缘栅介质层之间;所述栅端电极位于电阻栅薄膜层下方,其连线方向与沟道方向垂直,其结构和功能上是等效的;所述源漏极在半导体有源层上,电极长度(沟道宽度)小于两栅端电极宽度与其间距的总和,且源漏电极两端与两个栅端电极存在交叠区域。
本实施例的衬底可为玻璃衬底或者塑料衬底。
本实施例的半导体有源层可为厚度30或80纳米的非晶硅、多晶硅、有机和氧化物半导体薄膜中的一种。
本实施例的电阻栅薄膜层为100或200纳米厚的电阻型薄膜材料,可与半导体有源层具有相同材料的高掺杂薄膜。
本实施例的两栅端电极的连线方向垂直于源、漏电极连线方向,构成类“#”型交叠区域。
本实施例的电阻栅薄膜晶体管的制备方法,包括以下步骤:
(1)采用PECVD技术在玻璃或者塑料基板上沉积100或200纳米厚的二氧化硅薄膜形成过渡层,如图2a所示。
(2)采用磁控溅射或真空蒸镀法在过渡层上沉积金属薄膜,光刻形成两个栅端电极,如图2b所示。
(3)采用PECVD技术或磁控溅射通过掩膜版技术在栅端电极和过渡层上沉积100或200纳米厚的电阻型薄膜材料,形成电阻栅薄膜层,如图2c所示。
(4)采用磁控溅射或真空蒸镀法通过掩膜版技术在电阻栅薄膜层上沉积100或300纳米厚的二氧化硅薄膜形成绝缘栅介质层,绝缘栅介质层还可以选用氮化硅、氧化铪、氧化铝、氧化钽等绝缘薄膜。如图2d所示。
(5)采用PECVD技术、磁控溅射法或旋涂工艺在绝缘栅介质层上沉积半导体薄膜,[e1],如图2e所示。
(6)采用磁控溅射法或真空蒸镀法在半导体有源层上100或200纳米厚的Al、Cr、Mo、Au或ITO导电薄膜,光刻形成源漏电极,如图2f所示。
(7)在经(6)处理后的器件在200~250oC氮氛下退火处理30分钟。
本发明采用电阻型薄膜作为栅,通过调整垂直沟道方向的两个栅端电极的偏压可使薄膜晶体管的转移特性分别处于不截止、遥截止或锐截止状态,因此可根据实际应用需要获得所需的阈值电压、关态电流和跨导值,且两个栅端电极可同时作为控制栅和信号栅使用,使电路得到简化,从而有效扩大了薄膜晶体管的应用范围,能有效地解决阈值电压漂移、大信号堵塞、自动增益控制动态范围窄等问题。本发明的电阻栅薄膜晶体管的一种实际应用电路示意图如图3a所示,图中R和Rg分别电阻栅和外接电阻的电阻值,Eg为电源电压,改变Eg的大小即改变栅端电极G1的电压VG1,从而调控输出特性(即输出电流ID与输出电压VDS的关系)和转移特性(输出电流ID与输入电压VG2的关系),图3b示意了栅端电极偏压VG1对应的转移特性曲线(ID与VG2的关系)。验证条件:N=R/Rg=1,迁移率为5cm2/V.s,沟道宽度与长度之比为20,单位面积绝缘栅介质层电容为34nF/cm2,金属栅对于的阈值电压为2V。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种电阻栅薄膜晶体管,其特征在于,由下至上依次包括衬底、过渡层、栅端电极、电阻栅薄膜层、绝缘栅介质层、半导体有源层、源漏电极,所述电阻栅薄膜层(4)位于两栅端电极(301和302)与绝缘栅介质层(5)之间,电阻栅薄膜层的电阻率低于半导体有源层;所述两栅端电极位于电阻栅薄膜层下方,其连线方向与沟道方向垂直,其结构和功能上是等效的;所述源电极(701)和漏电极(702)制作在垂直于两栅端电极连线的方向,使得源漏电极两端与两个栅端电极构成类#型交叠区域,且源漏电极长度即沟道宽度小于两栅端电极宽度与两栅端电极间距的总和。
2.根据权利要求1所述的电阻栅薄膜晶体管,其特征在于,所述半导体有源层是非晶或多晶硅薄膜、有机薄膜和氧化物薄膜中的一种。
3.根据权利要求1所述的电阻栅薄膜晶体管,其特征在于,所述半导体有源层的本体载流子浓度为1015~1018cm-3
4.根据权利要求1~3任一项所述的电阻栅薄膜晶体管,其特征在于,所述半导体有源层的厚度为30~80纳米。
5.根据权利要求1所述的电阻栅薄膜晶体管,其特征在于,所述电阻栅薄膜层为高掺杂半导体薄膜层。
6.根据权利要求5所述的电阻栅薄膜晶体管,其特征在于,所述高掺杂半导体薄膜的电阻明显低于半导体有源层薄膜的电阻。
7.根据权利要求6所述的电阻栅薄膜晶体管,其特征在于,所述电阻栅薄膜层的厚度为80~120纳米。
8.根据权利要求1所述的电阻栅薄膜晶体管,其特征在于,所述绝缘栅介质层为100~300纳米厚的二氧化硅、氮化硅、氧化铝、氧化铪或氧化钽薄膜;所述栅端电极、源极或漏极为Al、Cr、Mo、Au或ITO导电薄膜。
9.制备权利要求1~9任一项所述的电阻栅薄膜晶体管的方法,其特征在于,包括以下步骤:
(1)在衬底上沉积二氧化硅或氮化硅薄膜作为过渡层;
(2)在过渡层上沉积金属或ITO导电薄膜,光刻形成两栅端电极;
(3)在两栅端电极和过渡层上沉积高掺杂半导体薄膜,形成电阻栅薄膜层;
(4)在电阻栅薄膜层上沉积二氧化硅、氮化硅、氧化铝、氧化铪或氧化钽薄膜形成绝缘栅介质层;
(5)在绝缘栅介质层上沉积半导体薄膜层,形成半导体有源层;
(6)在半导体沟道有源层上通过掩膜版技术于沟道有源层两端沉积Cr、Mo、Au或ITO导电薄膜,光刻形成源漏电极,并使得源、漏电极的连线方向与两栅端电极的连线方向垂直;
(7)将(6)制得的器件在200~250oC氮氛下退火处理30~60分钟。
CN201510981786.4A 2015-12-22 2015-12-22 一种电阻栅薄膜晶体管及其制备方法 Expired - Fee Related CN105428419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510981786.4A CN105428419B (zh) 2015-12-22 2015-12-22 一种电阻栅薄膜晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510981786.4A CN105428419B (zh) 2015-12-22 2015-12-22 一种电阻栅薄膜晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN105428419A true CN105428419A (zh) 2016-03-23
CN105428419B CN105428419B (zh) 2018-06-22

Family

ID=55506484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510981786.4A Expired - Fee Related CN105428419B (zh) 2015-12-22 2015-12-22 一种电阻栅薄膜晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN105428419B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154713A (zh) * 2006-09-26 2008-04-02 精工爱普生株式会社 薄膜晶体管、电光装置及电子设备
US20100164854A1 (en) * 2008-12-26 2010-07-01 Kyung-Wook Kim Gate Drive Circuit, Display Device Having the Same and Method of Manufacturing the Gate Drive Circuit
CN102104049A (zh) * 2009-12-04 2011-06-22 三星电子株式会社 薄膜晶体管阵列面板及其制造方法
CN205335262U (zh) * 2015-12-22 2016-06-22 华南理工大学 一种电阻栅薄膜晶体管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154713A (zh) * 2006-09-26 2008-04-02 精工爱普生株式会社 薄膜晶体管、电光装置及电子设备
US20100164854A1 (en) * 2008-12-26 2010-07-01 Kyung-Wook Kim Gate Drive Circuit, Display Device Having the Same and Method of Manufacturing the Gate Drive Circuit
CN102104049A (zh) * 2009-12-04 2011-06-22 三星电子株式会社 薄膜晶体管阵列面板及其制造方法
CN205335262U (zh) * 2015-12-22 2016-06-22 华南理工大学 一种电阻栅薄膜晶体管

Also Published As

Publication number Publication date
CN105428419B (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
Park et al. High performance amorphous oxide thin film transistors with self-aligned top-gate structure
CN108807546B (zh) 氧化物薄膜晶体管及其制造方法
CN105405893B (zh) 一种平面分离双栅薄膜晶体管及其制备方法
Lu et al. One-shadow-mask self-assembled ultralow-voltage coplanar homojunction thin-film transistors
CN104966722A (zh) Tft基板结构及其制作方法
KR101694270B1 (ko) 고속전자센서용 기판 및 그 제조방법
CN104064688A (zh) 具有存储电容的tft基板的制作方法及该tft基板
CN103000530B (zh) 顶栅氧化物薄膜晶体管的制造方法
CN107634102B (zh) 薄膜晶体管及其制造方法及驱动方法、显示装置
CN105390551A (zh) 薄膜晶体管及其制造方法、阵列基板、显示装置
Zhou et al. Flexible transparent junctionless TFTs with oxygen-tuned indium-zinc-oxide channels
CN105789117A (zh) Tft基板的制作方法及制得的tft基板
Chen et al. High performance self-aligned top-gate ZnO thin film transistors using sputtered Al2O3 gate dielectric
CN105374749A (zh) 一种薄膜晶体管及其制造方法
CN103762244A (zh) 薄膜晶体管及其制造方法、薄膜晶体管阵列基板及液晶面板
Han et al. H 2 O induced hump phenomenon in capacitance–voltage measurements of a-IGZO thin-film transistors
CN104157610A (zh) 氧化物半导体tft基板的制作方法及其结构
CN104934444B (zh) 共平面型氧化物半导体tft基板结构及其制作方法
CN104752517A (zh) 一种薄膜晶体管及其制备方法和应用
CN205335262U (zh) 一种电阻栅薄膜晶体管
CN102779855B (zh) 双肖特基结氧化锌半导体薄膜晶体管及制作方法
CN102544369A (zh) 一种复合结构的有机薄膜晶体管
Wilson et al. A thin‐film transistor with no apparent channel for simplified, high aperture ratio pixel architectures
CN102468338A (zh) 一种氧化锌基肖特基薄膜晶体管
CN105428419A (zh) 一种电阻栅薄膜晶体管及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180622

Termination date: 20211222