CN105418064A - 一种纳米复合钇钡铜氧超导块材的制备方法 - Google Patents

一种纳米复合钇钡铜氧超导块材的制备方法 Download PDF

Info

Publication number
CN105418064A
CN105418064A CN201510791429.1A CN201510791429A CN105418064A CN 105418064 A CN105418064 A CN 105418064A CN 201510791429 A CN201510791429 A CN 201510791429A CN 105418064 A CN105418064 A CN 105418064A
Authority
CN
China
Prior art keywords
block
powder
solid phase
liquid phase
copper oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510791429.1A
Other languages
English (en)
Inventor
熊菊莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510791429.1A priority Critical patent/CN105418064A/zh
Publication of CN105418064A publication Critical patent/CN105418064A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种纳米复合钇钡铜氧超导块材的制备方法,包括步骤:以Y2O3纳米粉和BaCuO2粉末制备固相先驱块;Ba3Cu5O8粉体压制成液相先驱块,且液相先驱块与固相先驱块的质量比为1:1;将固相先驱块、液相先驱块自下而上依次同轴放置在由Yb2O3粉体制成的支撑块的正上方,再将一块钕钡铜氧籽晶嵌入至液相先驱块下末端的中心位置,且钕钡铜氧籽晶的下表面与固相先驱块的上表面平行,完成前驱块的装配;通过熔渗生长纳米复合钇钡铜氧单畴块材及渗氧处理即可。本申请在超导块材的表面无任何液相残留,所用的稀土元素较少,制备成本较低。

Description

一种纳米复合钇钡铜氧超导块材的制备方法
技术领域
本发明涉及超导材料制备技术,尤其是涉及一种纳米复合钇钡铜氧超导块材的制备方法。
背景技术
传统的TSIG是(TopSeededInfiltrationGrowth,简称TSIG,顶部籽晶熔渗生长工艺)法液相源为YBa2Cu3Oy和Ba3Cu5O8的混合物,在钇钡铜氧(YBCO)超导块材熔化生长的过程中,虽然液相源中的Ba-Cu-O液相大部分都被熔渗到固相源中并用于单畴YBCO超导块材的生长,但是仍有少量Ba-Cu-O液相会与液相源中的Y元素反应生成如Y2BaCuO5和YBa2Cu3Oy固态液相源残留物,造成Y元素的浪费。另外,残留的液相源很难被完全切割干净,不便于钇钡铜氧(YBCO)超导块材的进一步应用。
发明内容
为克服现有技术的缺陷,本发明提出一种无液相源残留且使用稀土元素较少、成本较低的纳米复合钇钡铜氧超导块材的制备方法。
一种纳米复合钇钡铜氧超导块材的制备方法,包括步骤:将BaCO3及CuO按原子摩尔比Ba:Cu=1:1混合,制备BaCuO2粉体,将平均粒径50nm且纯度大于99.9%的Y2O3纳米粉和BaCuO2粉末按照摩尔比1:1混合,同时添加0.5%~1.5%(w/w)的CeO2初始粉,混合均匀后作为固相粉,取固相粉压制成固相先驱块;
将BaCuO2和CuO粉体按摩尔比3:2均匀混合制成Ba3Cu5O8粉体,将Ba3Cu5O8粉体压制成液相先驱块,且液相先驱块与固相先驱块的质量比为1:1;
将固相先驱块、液相先驱块自下而上依次同轴放置在由Yb2O3粉体制成的支撑块的正上方,再将一块钕钡铜氧籽晶嵌入至液相先驱块下末端的中心位置,且钕钡铜氧籽晶的下表面与固相先驱块的上表面平行,完成前驱块的装配;
将装配好的前驱块放在Al2O3垫片上,在Al2O3垫片与支撑块之间隔以多个等高的MgO单晶粒,然后放入井式炉中熔渗生长纳米复合钇钡铜氧单畴块材;
将纳米复合钇钡铜氧单畴超导块材放入石英管式炉中,在流通氧气气氛中渗氧处理,最终得到纳米复合钇钡铜氧超导块材。
其中,井式炉以每小时300℃的升温速率升温至800~900℃,保温5~15小时;再以每小时60℃的升温速率升温至1030~1040℃,保温0.5~1.5小时;然后以每小时60℃的降温速率降温至1000~1010℃,再以每小时0.2~0.5℃的降温速率慢冷至970~980℃,随井式炉自然冷却至室温,得到纳米复合钇钡铜氧单畴超导块材。
其中,纳米复合钇钡铜氧单畴超导块材在石英管式炉中以470~400℃的温区中慢冷200小时,使其完成从非超导的四方相向具有超导电性的正交相转变,得到纳米复合钇钡铜氧单畴超导块材。
其中,固相粉中添加1%(w/w)的CeO2初始粉。
与现有技术相比,本发明具有如下有益效果:
本申请将液相先驱块设置在固相先驱块的上方,则可使液相先驱块在重力和毛细作用力的双重作用下渗到固相先驱块中,从而提高了液相渗入到固相块中的速度和效果,这也是本申请中固相先驱块与液相先驱块按质量比为1:1较现有技术更小的原因。本申请在液相先驱块中为使用任何的稀土金属作为液相源,仅使用Ba3Cu5O8作为液相源,并通过设置液相先驱块与固相先驱块的最佳指标比为1:1时,制备出的纳米复合YBCO超导块材的表面无任何液相残留,从而避免了现有技术中液相源残留而无法去除干净的难题。因此,本申请明在Ba、Cu质量相同的情况下,在制备纳米复合钇钡铜氧单畴超导块材时所用的稀土元素较少,相比现有技术而言,本申请有利于降低制备YBCO超导块材的成本,减少稀有金属的浪费。
附图说明
图1是前驱块的装配结构示意图。
图2是固相先驱块与液相先驱块按质量比为1:1时制备的样品外表示意图。
图3是固相先驱块与液相先驱块按质量比为1:1时制备的样品表面的XRD图谱示意图,横坐标为角度,纵坐标为Intensity(counts),即信号角度计数。
具体实施方式
在一个实施例中,本发明包括如下步骤:
(1)制备固相先驱块。使用现有的固相烧结法,先将纯度均大于99%的BaCO3及CuO按原子摩尔比Ba:Cu=1:1进行混合,通过多次高温烧结与多次球磨便可制成碳含量低及纯净的BaCuO2粉体;将平均粒径50nm且纯度大于99.9%的Y2O3纳米粉和BaCuO2先驱粉按照摩尔比1:1混合,同时添加0.5%~1.5%(w/w)的CeO2初始粉,混合均匀,作为固相粉;取固相粉放入圆柱型模具中压制成圆柱状的固相先驱块。
其中,上述配比中的CeO2初始粉直接添加到固相粉中,在熔渗生长过程中起到抑制Y2BaCuO5纳米粒子粗化长大、细化Y2BaCuO5粒度的作用,保证了纳米复合钇钡铜氧超导块材的成功制备。
(2)制备液相先驱块:将BaCuO2和CuO粉体按摩尔比3:2均匀混合制成Ba3Cu5O8粉体,将Ba3Cu5O8粉体放入圆柱型模具中压制成圆柱状的液相先驱块。
(3)制备氧化镱支撑块。用Yb2O3粉体压制成厚约2mm的圆柱形的支撑块。
(4)装配前驱块。如图1所示,按中心轴对齐的重叠方式,将固相先驱块2、液相先驱块3自下而上依次同轴放置在支撑块1的正上方,再将一块钕钡铜氧(NdBCO)籽晶4嵌入至液相先驱块3下末端的中心位置,且钕钡铜氧籽晶4的下表面与固相先驱块2的上表面平行,完成前驱块的装配。
(5)熔渗生长纳米复合钇钡铜氧单畴块材。将装配好的前驱块放在Al2O3垫片5上,在Al2O3垫片5与支撑块1之间隔以多个等高的MgO单晶粒6,然后整体放入井式炉中,以每小时300℃的升温速率升温至800~900℃,保温5~15小时;再以每小时60℃的升温速率升温至1030~1040℃,保温0.5~1.5小时;然后以每小时60℃的降温速率降温至1000~1010℃,再以每小时0.2~0.5℃的降温速率慢冷至970~980℃,随炉自然冷却至室温,得到纳米复合钇钡铜氧单畴超导块材。
(6)渗氧处理。将纳米复合钇钡铜氧单畴超导块材放入石英管式炉中,在流通氧气(以200ml/min的流量通入氧气)气氛中,在470~400℃的温区中慢冷200小时,使其完成从非超导的四方相向具有超导电性的正交相转变,最终得到纳米复合钇钡铜氧超导块材。
在一个最佳实施例中:在本发明的配制固相粉步骤(1)中,将平均粒径50nm的Y2O3纳米粉与BaCuO2前驱粉按摩尔比为1:1的比例混合,最佳添加1%(w/w)的CeO2初始粉;在压制前驱块步骤(4)中,所用固相先驱块与液相先驱块最佳质量比为1:1;在熔渗生长纳米复合钇钡铜氧单畴块材步骤(5)中,最佳以每小时300℃的升温速率升温至850℃,保温10小时;再以每小时60℃的升温速率升温至1035℃,保温1小时;然后以每小时60℃的降温速率降温至1005℃,再以每小时0.33℃的降温速率慢冷至975℃,随炉自然冷却至室温,得到纳米复合钇钡铜氧单畴块材。通过该最佳实施例制备的样品表面示意图即对应的XRD图谱分别如图2和图3所示。
按固相先驱块与液相先驱块按质量比为1:1时制备的样品表面(见图2所示)无任何液相源残留,且样品表面的XRD图谱如图3所示,其只有(00L)系列的衍射峰(L=2、3、4、5、6、7),表面利用本申请上述该方法制备的样品是单畴YBCO超导块材。
另外,本申请采用最佳固液质量比样品的原子比为Y:Ba:Cu=0.14:0.28:0.43。这是因为本申请将液相先驱块设置在固相先驱块的上方,则可使液相先驱块在重力和毛细作用力的双重作用下渗到固相先驱块中,从而提高了液相渗入到固相块中的速度和效果,这也是本申请中固相先驱块与液相先驱块按质量比为1:1较现有技术更小的原因。本申请在液相先驱块中为使用任何的稀土金属作为液相源,仅使用Ba3Cu5O8作为液相源,并通过设置液相先驱块与固相先驱块的最佳质量比为1:1时,制备出的纳米复合YBCO超导块材的表面无任何液相残留,从而避免了现有技术中液相源残留而无法去除干净的难题。因此,本申请明在Ba、Cu质量基本相同的情况下,本申请在制备纳米复合钇钡铜氧单畴超导块材时所用的Y元素较少,相比现有技术而言,本申请有利于降低制备YBCO超导块材的成本,减少稀有金属的浪费。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种纳米复合钇钡铜氧超导块材的制备方法,其特征在于,包括步骤:
将BaCO3及CuO按原子摩尔比Ba:Cu=1:1混合,制备BaCuO2粉体,将平均粒径50nm且纯度大于99.9%的Y2O3纳米粉和BaCuO2粉末按照摩尔比1:1混合,同时添加0.5%~1.5%(w/w)的CeO2初始粉,混合均匀后作为固相粉,取固相粉压制成固相先驱块;
将BaCuO2和CuO粉体按摩尔比3:2均匀混合制成Ba3Cu5O8粉体,将Ba3Cu5O8粉体压制成液相先驱块,且液相先驱块与固相先驱块的质量比为1:1;
将固相先驱块、液相先驱块自下而上依次同轴放置在由Yb2O3粉体制成的支撑块的正上方,再将一块钕钡铜氧籽晶嵌入至液相先驱块下末端的中心位置,且钕钡铜氧籽晶的下表面与固相先驱块的上表面平行,完成前驱块的装配;
将装配好的前驱块放在Al2O3垫片上,在Al2O3垫片与支撑块之间隔以多个等高的MgO单晶粒,然后放入井式炉中熔渗生长纳米复合钇钡铜氧单畴块材;
将纳米复合钇钡铜氧单畴超导块材放入石英管式炉中,在流通氧气气氛中渗氧处理,最终得到纳米复合钇钡铜氧超导块材。
2.根据权利要求1所述一种纳米复合钇钡铜氧超导块材的制备方法,其特征在于,井式炉以每小时300℃的升温速率升温至800~900℃,保温5~15小时;再以每小时60℃的升温速率升温至1030~1040℃,保温0.5~1.5小时;然后以每小时60℃的降温速率降温至1000~1010℃,再以每小时0.2~0.5℃的降温速率慢冷至970~980℃,随井式炉自然冷却至室温,得到纳米复合钇钡铜氧单畴超导块材。
3.根据权利要求1所述一种纳米复合钇钡铜氧超导块材的制备方法,其特征在于,纳米复合钇钡铜氧单畴超导块材在石英管式炉中以470~400℃的温区中慢冷200小时,使其完成从非超导的四方相向具有超导电性的正交相转变,得到纳米复合钇钡铜氧单畴超导块材。
4.根据权利要求1所述一种纳米复合钇钡铜氧超导块材的制备方法,其特征在于,固相粉中添加1%(w/w)的CeO2初始粉。
CN201510791429.1A 2015-11-16 2015-11-16 一种纳米复合钇钡铜氧超导块材的制备方法 Pending CN105418064A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510791429.1A CN105418064A (zh) 2015-11-16 2015-11-16 一种纳米复合钇钡铜氧超导块材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510791429.1A CN105418064A (zh) 2015-11-16 2015-11-16 一种纳米复合钇钡铜氧超导块材的制备方法

Publications (1)

Publication Number Publication Date
CN105418064A true CN105418064A (zh) 2016-03-23

Family

ID=55496683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510791429.1A Pending CN105418064A (zh) 2015-11-16 2015-11-16 一种纳米复合钇钡铜氧超导块材的制备方法

Country Status (1)

Country Link
CN (1) CN105418064A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222749A (zh) * 2016-08-19 2016-12-14 陕西师范大学 易除液相源残留的单畴钆钡铜氧超导块材及其制备方法
CN107059127A (zh) * 2017-03-17 2017-08-18 陕西师范大学 一种底部籽晶熔渗生长法制备单畴稀土钡铜氧超导环的方法及其制备的超导环
CN113818071A (zh) * 2021-10-25 2021-12-21 天津师范大学 一种纳米复合钇钡铜氧超导块材生长过程中阻止顶部籽晶移动的方法
CN113912389A (zh) * 2021-10-25 2022-01-11 天津师范大学 通过固相块中添加358钡铜氧提高钇钡铜氧超导块材性能的方法
CN114214728A (zh) * 2021-11-19 2022-03-22 陕西师范大学 一种楼层式的smg提高籽晶利用率的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725035A (zh) * 2015-03-02 2015-06-24 天津师范大学 一种纳米复合钇钡铜氧超导块材的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725035A (zh) * 2015-03-02 2015-06-24 天津师范大学 一种纳米复合钇钡铜氧超导块材的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222749A (zh) * 2016-08-19 2016-12-14 陕西师范大学 易除液相源残留的单畴钆钡铜氧超导块材及其制备方法
CN106222749B (zh) * 2016-08-19 2018-09-28 陕西师范大学 易除液相源残留的单畴钆钡铜氧超导块材的制备方法
CN107059127A (zh) * 2017-03-17 2017-08-18 陕西师范大学 一种底部籽晶熔渗生长法制备单畴稀土钡铜氧超导环的方法及其制备的超导环
CN107059127B (zh) * 2017-03-17 2019-04-16 陕西师范大学 一种底部籽晶熔渗生长法制备单畴稀土钡铜氧超导环的方法
CN113818071A (zh) * 2021-10-25 2021-12-21 天津师范大学 一种纳米复合钇钡铜氧超导块材生长过程中阻止顶部籽晶移动的方法
CN113912389A (zh) * 2021-10-25 2022-01-11 天津师范大学 通过固相块中添加358钡铜氧提高钇钡铜氧超导块材性能的方法
CN113818071B (zh) * 2021-10-25 2024-01-26 天津师范大学 一种纳米复合钇钡铜氧超导块材生长过程中阻止顶部籽晶移动的方法
CN114214728A (zh) * 2021-11-19 2022-03-22 陕西师范大学 一种楼层式的smg提高籽晶利用率的方法
CN114214728B (zh) * 2021-11-19 2024-04-02 陕西师范大学 一种楼层式的smg提高籽晶利用率的方法

Similar Documents

Publication Publication Date Title
CN105418064A (zh) 一种纳米复合钇钡铜氧超导块材的制备方法
CN107059127B (zh) 一种底部籽晶熔渗生长法制备单畴稀土钡铜氧超导环的方法
CN101665980A (zh) 用熔渗法制备单畴钆钡铜氧超导块材的方法
CN104725035B (zh) 一种纳米复合钇钡铜氧超导块材的制备方法
CN106222749B (zh) 易除液相源残留的单畴钆钡铜氧超导块材的制备方法
CN101503822A (zh) 纯氧气氛下稀土钡铜氧超导块体材料的制备方法
CN101279847A (zh) 微量稀土元素掺杂钇钡铜氧超导块体材料的制备方法
JP4113113B2 (ja) 酸化物超電導体の接合方法及び酸化物超電導体接合体
CN104313691A (zh) 单畴(Gd/Y)-Ba-Cu-O超导块材的制备方法
CN103614775B (zh) 一种嵌入式籽晶生长rebco准单晶体的方法
CN101319379A (zh) 45°稀土钡铜氧薄膜籽晶高速生长超导块材的方法
CN103396114B (zh) 简化制备单畴ybco超导块材的方法
CN103526283B (zh) 一种制备纯a轴取向的YBCO液相外延膜的方法
CN110373717B (zh) 一种利用组分分层控制法生长rebco高温超导块材的方法
CN103541011A (zh) 一种生长rebco高温超导准单晶体的方法
CN104313692A (zh) 用液相熔渗法制备单畴(Gd/Y)-Ba-Cu-O超导块材的方法
CN103361710B (zh) 提高单畴钇钡铜氧超导块材制备效率的方法
CN105133014A (zh) 一种生长rebco高温超导准单晶体的方法
CN103086709A (zh) 钇钡铜氧超导薄膜的制备方法
CN113430646B (zh) 利用单籽晶桥式结构诱导生长rebco超导块材的方法
CN103396115B (zh) 降低单畴钆钡铜氧超导块材成本的制备方法
CN103243383B (zh) 一种冷速控制高温超导块体材料的生长方法
JP4628041B2 (ja) 酸化物超電導材料及びその製造方法
CN105177712A (zh) 一种生长rebco高温超导块材的方法
CN106348747B (zh) 易除液相源残留的单畴钇钡铜氧超导块材制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160323

WD01 Invention patent application deemed withdrawn after publication