CN105403696A - 一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法 - Google Patents

一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法 Download PDF

Info

Publication number
CN105403696A
CN105403696A CN201510919955.1A CN201510919955A CN105403696A CN 105403696 A CN105403696 A CN 105403696A CN 201510919955 A CN201510919955 A CN 201510919955A CN 105403696 A CN105403696 A CN 105403696A
Authority
CN
China
Prior art keywords
unmarked
nanometer
chemiluminescence
analogue enztme
copper sulphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510919955.1A
Other languages
English (en)
Other versions
CN105403696B (zh
Inventor
杨占军
曹越
李娟�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201510919955.1A priority Critical patent/CN105403696B/zh
Publication of CN105403696A publication Critical patent/CN105403696A/zh
Application granted granted Critical
Publication of CN105403696B publication Critical patent/CN105403696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法:首先将壳聚糖溶液分散的硫化铜纳米粒子修饰于环氧基活化的载体片表面;再将链酶亲和素固定于硫化铜纳米粒子表面;随后通过链酶亲和素对生物素的特异识别作用,将生物素化的抗体固定于载体片表面,牛血清蛋白封闭后制备得到无标记化学发光免疫传感器。硫化铜纳米模拟酶的使用,改善了传统化学发光免疫分析中天然酶稳定性差,易受环境影响等缺点,使得构建的化学发光体系的稳定性和灵敏度得到显著的提高,并且大大降低了检测费用,具有非常重要的应用价值和实际意义。

Description

一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法
技术领域
本发明涉及免疫学领域和化学发光分析领域,具体涉及一种基于纳米模拟酶的无标记化学发光免疫传感器及其制备方法。
背景技术
自1928年Albrecht提出鲁米诺的化学发光现象以来,鲁米诺的化学发光体系在生命分析、临床诊断、环境监测、食品安全、药物分析等领域得到了广泛应用。传统的化学发光免疫分析中,辣根过氧化酶(HRP)被广泛运用于催化鲁米诺(异鲁米诺)-过氧化氢化学发光体系。虽然HRP能够高效催化过氧化氢已经被应用于各个领域,但是天然酶的稳定性差,易受温度等环境因素影响,在保存过程中因其结构的变化很容易丧失催化活性,而且其催化活性也会因为大分子肽的活性位点包埋而被制约。与天然酶相比,模拟酶具有合成简单,稳定性好,修饰方法简易等优点。因而,人们努力开发具有高催化活性和底物选择性的人工模拟酶,例如金属离子、DNAzyme和卟啉都有很好的过氧化物酶催化活性,在化学发光免疫分析中均已得到运用。
由于功能纳米材料的设计和纳米技术的进步,一些具有特殊氧化还原催化能力的纳米粒子,如Fe3O4、CuO、Fe2O3、CeO2等作为一种新型的模拟酶得到了深入的研究。硫化铜纳米颗粒作为一种重要的半导体纳米材料,因为其出色的物理和化学性质而受到越来越多的关注。由于硫化铜纳米颗粒是一种廉价、充足的材料,其在催化,太阳能电池,锂离子二次电池的高容量负极材料和纳米尺度的开关等领域得到了广泛的应用。研究(He,W.W.;Jia,H.M.;Li,X.X.;Lei,Y.;Li,J.;Zhao,H.X.;Mi,L.W.;Zhang,L.Z.;Zheng,Z.“UnderstandingtheformationofCuSconcavesuperstructureswithperoxidase-likeactivity”;Nanoscale,2012,4,3501-3506)表明,硫化铜纳米粒子具有高效催化过氧化氢的模拟酶性质,但尚未运用到化学发光免疫分析领域中。
目前无标记免疫分析技术在免疫分析领域中引起了人们极大的研究兴趣。无标记型免疫分析通过直接测定抗原抗体复合物形成时的物理、化学变化,极大地简化制备和操作过程,因此它具有检测成本低,样品用量少,检测时间短等显著优势,可以实现直接、实时、原位、在线的痕量免疫分析。发明申请“一种无标记化学发光传感器及其免疫分析方法”(专利申请号:2014106705523)通过在界面上共固定辣根过氧化酶(HRP)和捕获抗体,虽然实现了对抗原的无标记化学发光检测,但是这个无标记检测策略有着如下需要改进之处:1)需要同时使用传统的天然酶(HRP)和固定载体(金纳米粒子),增加了分析费用;2)存在着HRP天然酶在化学发光检测和储存制备中容易失去生物活性的问题,造成化学发光不稳定;3)共固定辣根过氧化酶(HRP)和捕获抗体在界面上,形成免疫复合物后,不能高效地在酶表面形成一层复合物层来抑制化学发光底物向酶的扩散,造成抑制效率的降低。因此,将成本非常低的硫化铜纳米粒子应用于鲁米诺-过氧化氢化学发光体系,发展基于硫化铜纳米模拟酶的无标记化学发光免疫分析方法,具有非常重要的科学意义。
发明内容
本发明的目的是提供一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法。其基本思路为:首先将壳聚糖溶液分散的硫化铜纳米粒子修饰于环氧基活化的载体片表面;再将链酶亲和素固定于硫化铜纳米粒子表面;随后通过链酶亲和素对生物素的特异识别作用,将生物素化的抗体固定于载体片表面,牛血清蛋白封闭后制备得到无标记化学发光免疫传感器。当通入抗原样品后,抗原-抗体特异反应形成的免疫复合物会阻碍化学发光底物向信号界面扩散,抑制了硫化铜纳米模拟酶催化的化学发光反应,从而引起化学发光强度降低。利用化学发光信号的降低和抗原浓度直接的线性关系,可实现对抗原样品的检测。
为了达到上述目的,本发明的技术方案如下:
本发明提供了一种基于纳米模拟酶的无标记化学发光免疫传感器,其特征在于,在环氧硅烷化的载体片上制备化学发光免疫传感界面,其中,环氧硅烷层作为载体连接层,所述化学发光免疫传感界面包括纳米模拟酶层作为化学发光信号层、链霉亲合素层作为抗体连接层,以及生物素化抗体层作为免疫识别层,其中,所述纳米模拟酶层包括硫化铜纳米粒子和壳聚糖。
本发明还提供了一种制备上述基于纳米模拟酶的无标记化学发光免疫传感器的方法,其特征在于,包括以下步骤:
(1)将硫化铜纳米粒子超声分散于蒸馏水中,取硫化铜纳米粒子悬浮液与壳聚糖溶液等体积混合后用超声至完全分散,将上述混合溶液滴涂到环氧硅烷化的载体片表面,并在室温下反应直至晾干,在载体片表面形成一层硫化铜纳米粒子的固体膜;
(2)取链酶亲和素溶液均匀滴涂于上述硫化铜纳米粒子膜表面,室温下反应后,再放置在4℃下直至晾干;用磷酸盐缓冲液冲洗;
(3)取生物素化的抗体均匀滴涂于上述链酶亲和素功能化的载体片表面,室温下反应后,用磷酸盐缓冲溶液冲洗;
(4)将封闭液,牛血清白蛋白溶液,均匀滴涂于上述载体片表面,在4℃下封闭后,用磷酸盐缓冲溶液冲洗后,制得该无标记免疫传感器。
进一步地,所述的纳米模拟酶无标记免疫传感器的制备方法的步骤(1)中,所述的硫化铜纳米粒子用量为1.0~3.0mg,壳聚糖溶液的浓度为1.0-2.0wt%。
进一步地,所述的纳米模拟酶无标记免疫传感器的制备方法的步骤(2)中,所述链酶亲和素溶液的浓度为20~50μg/mL。
进一步地,所述的纳米模拟酶无标记免疫传感器的制备方法的步骤(3)中,所述生物素化的抗体的浓度为2~10μg/mL。
进一步地,所述的纳米模拟酶无标记免疫传感器的制备方法的步骤(4)中,所述封闭液为1.0~5.0%牛血清白蛋白溶液。
本发明还提供了的一种基于纳米模拟酶的无标记化学发光免疫分析方法,包括如下分析步骤:
(a)将上述制备方法中得到的无标记免疫传感器固定于薄层流通池中;
(b)将带抗原的样品以0.5mL/min的速度注入流通池,在线温育;
(c)用PBST溶液以1mL/min的速度冲洗流通池,除去未反应的免疫试剂;
(d)将化学发光底物溶液以0.5mL/min的速度通入流通池,产生的化学发光信号由化学发光检测器记录。
可选地,上述步骤(a)中,将制得到的无标记免疫传感器固定于薄层流通池中,流通池的体积为60~80μL。
可选地,上述步骤(c)中所使用的化学发光检测器为光电倍增管,设置负高压为500~700V。
本发明达到了如下的有益效果:
本发明成功构建了基于硫化铜纳米模拟酶的化学发光新体系;该发明首先将壳聚糖溶液分散的硫化铜纳米粒子修饰于环氧基活化的载体片表面,接下来将链酶亲和素固定于硫化铜纳米粒子表面,通过链酶亲和素对生物素的特异识别作用,最后将生物素化的抗体固定于载体片表面,制备得到无标记化学发光免疫传感器。此外,构建了一种基于硫化铜纳米模拟酶的无标记化学发光免疫分析方法。本发明具有如下优点:
(1)本发明使用CuS模拟酶,一方面利用其高效催化过氧化氢的模拟酶性质,引入化学发光体系来取代传统的天然酶(HRP),改善了天然酶稳定性差,易受环境影响等缺点,构建了基于纳米模拟酶的化学发光新体系,使得构建的化学发光体系的稳定性和灵敏度得到显著的提高;另一方面硫化铜纳米粒子具有纳米尺寸,高的比表面积,能够作为界面上的固定载体,固定更多链霉亲和素,从而构建更高效的传感界面;此外,CuS制备方法简单,原料便宜。这些优点,使得CuS纳米粒子的使用有效地降低了成本。
(2)本发明先将CuS纳米模拟酶固定到界面上,然后通过链酶亲和素与生物素结合(即:生物素-链霉亲和素系统,BSAS),将抗体成功固定到CuS纳米模拟酶表面。相对于在固相界面上共固定探针和抗体,本发明在化学发光信号层上面修饰免疫识别层,免疫分析时,捕获抗原后能在酶表面更有效的形成免疫复合物,从而更有效地阻碍化学发光底物向CuS模拟酶的扩散而抑制化学发光。
(3)此外,生物素-链酶亲和素系统由于其高特异性、强亲和力的优点,一个链霉亲和素可以连接四个生物素的放大作用,可以更有效地在链霉亲和素功能化的CuS纳米模拟酶表面固定大量生物素化抗体,从而构建更高效的传感界面,形成的免疫复合物可以显著抑制模拟酶催化的化学发光反应。
附图说明
图1为本发明免疫传感器的制作和免疫分析示意图。
图2为本发明AFP标准样品检测的线性曲线。
图中,1.硫化铜纳米粒子;2.壳聚糖;3.链霉亲和素;4.生物素化的抗体;5.抗原;6.化学发光底液;7.GPTMS(γ-环氧丙氧丙基三甲氧基硅烷);a.强化学发光;b.弱化学发光。
具体实施方式
为了阐明本发明的技术方案及技术目的,下面结合附图及具体实施方式对本发明做进一步的介绍。
实施例1
本发明提供了一种基于硫化铜纳米模拟酶的无标记化学发光免疫分析方法用于检测甲胎蛋白(AFP),其特征在于该AFP无标记免疫传感器的制备方法包括以下步骤:
(1)将2.0mg硫化铜纳米粒子超声分散于1.0mL蒸馏水中,取硫化铜纳米粒子悬浮液与1.0wt%壳聚糖溶液等体积混合后用超声至完全分散;取20.0μL上述混合溶液,将其滴涂到环氧硅烷化的玻璃片表面,并在室温下反应直至晾干,在玻璃表面形成一层硫化铜纳米粒子的固体膜;
(2)取50μg/mL链酶亲和素溶液20μL均匀滴涂与上述硫化铜纳米粒子膜表面,室温下反应30min,然后在4℃放置10-12h;用磷酸盐缓冲液冲洗三次;
(3)取1μg/mL生物素化的AFP抗体20μL均匀滴涂于上述链酶亲和素功能化的玻璃片表面,室温下反应3h;用磷酸盐缓冲溶液冲洗三次;
(4)将1.0%牛血清白蛋白溶液20μL均匀滴涂于上述玻璃片表面,在4℃下封闭10h,用磷酸盐缓冲溶液冲洗三次后,制得该无标记免疫传感器。
实施例2
对实施例1中所获得的基于硫化铜纳米模拟酶的无标记化学发光免疫传感器进行免疫分析方法包括:
(1)将上述制备方法中得到的AFP无标记免疫传感器固定于薄层流通池中,流通池置于固定于薄层流通池化学发光检测器之上;
(2)将带AFP抗原的样品通过溶液传送装置以0.5mL/min的速度注入流通池,在线温育20~30分钟;
(3)将冲洗缓冲液PBST溶液以1mL/min的速度冲洗流通池2~3分钟,除去未反应的免疫试剂;
(4)将化学发光底物溶液(luminol(5mM)-PIP(0.6mM)-H2O2(4mM))通过以0.5mL/min的速度通入流通池,流通池中的无标记免疫传感器产生化学发光信号,产生的化学发光信号由处于传感器下方的化学发光检测器记录,设置负高压为600V。
如图2所示,测定不同浓度的AFP标准样品,制得AFP标准样品的线性曲线。制得标准曲线后,为考察该基于硫化铜纳米模拟酶的无标记化学发光免疫分析新方法的实际应用的可靠性,进行了人血清样品的检测,并与标准方法(表1中样品1-5的参考值由江苏省肿瘤医院提供,由商品化的电化学发光免疫分析仪测量)进行了比较,实验结果如表1所示:
表1
实施例3
本发明提供了一种基于硫化铜纳米模拟酶的无标记化学发光免疫分析方法用于检测癌胚抗原(CEA),其特征在于,其CEA无标记免疫传感器的制备方法包括以下步骤:
(1)将3.0mg硫化铜纳米粒子超声分散于1.0mL蒸馏水中,取硫化铜纳米粒子悬浮液与2.0wt%壳聚糖溶液等体积混合后用超声至完全分散;取20.0μL上述混合溶液,将其滴涂到环氧硅烷化的玻璃片表面,并在室温下反应直至晾干,在玻璃表面形成一层硫化铜纳米粒子的固体膜;
(2)取30μg/mL链酶亲和素溶液20μL均匀滴涂与上述硫化铜纳米粒子膜表面,室温下反应30min,然后在4℃放置12h;用磷酸盐缓冲液冲洗三次;
(3)取1μg/mL生物素化的CEA抗体20μL均匀滴涂于上述链酶亲和素功能化的玻璃片表面,室温下反应3h;用磷酸盐缓冲溶液冲洗三次;
(4)将2.0%牛血清白蛋白溶液20μL均匀滴涂于上述玻璃片表面,在4℃下封闭12h,用磷酸盐缓冲溶液冲洗三次后,制得该无标记免疫传感器;
随后,将制得到的无标记免疫传感器固定于薄层流通池中,流通池的体积60μL,使用该无标记免疫传感器进行免疫分析的方法如实施例2。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,本发明要求保护范围由所附的权利要求书、说明书及其等效物界定。

Claims (10)

1.一种基于纳米模拟酶的无标记化学发光免疫传感器,其特征在于,在环氧硅烷化的载体片上制备化学发光免疫传感界面,所述化学发光免疫传感界面包括纳米模拟酶层、链霉亲和素层以及生物素化抗体层,其中,所述纳米模拟酶层包括硫化铜纳米粒子和壳聚糖。
2.如权利要求1所述的一种基于纳米模拟酶的无标记化学发光免疫传感器,其特征在于,所述载体片为玻璃片。
3.一种制备如权利要求1或2所述的基于纳米模拟酶的无标记化学发光免疫传感器的方法,其特征在于,包括以下步骤:
(1)将硫化铜纳米粒子超声分散于蒸馏水中,取硫化铜纳米粒子悬浮液与壳聚糖溶液等体积混合后用超声至完全分散;将上述混合溶液滴涂到环氧硅烷化的载体片表面,并在室温下反应直至晾干;
(2)取链酶亲和素溶液均匀滴涂于上述硫化铜纳米粒子膜表面,室温下反应后,再放置在4℃直至晾干,随后用磷酸盐缓冲液冲洗;
(3)取生物素化的抗体均匀滴涂于步骤(2)中的制得的链酶亲和素功能化的载体片表面,室温下反应后,用磷酸盐缓冲溶液冲洗;
(4)将作为封闭液的牛血清白蛋白溶液,均匀滴涂于步骤(3)中得到的载体片表面,在4℃下封闭后,用磷酸盐缓冲溶液冲洗。
4.如权利要求3所述的一种制备基于纳米模拟酶的无标记化学发光免疫传感器的方法,其特征在于,步骤(1)中,所述的硫化铜纳米粒子用量为1.0~3.0mg,壳聚糖溶液的浓度为1.0~2.0wt%。
5.如权利要求4所述的一种制备基于纳米模拟酶的无标记化学发光免疫传感器的方法,其特征在于,步骤(2)中,所述链酶亲和素溶液的浓度为20~50μg/mL。
6.如权利要求5所述的一种制备基于纳米模拟酶的无标记化学发光免疫传感器的方法,其特征在于,步骤(3)中,所述生物素化的抗体的浓度为2~10μg/mL。
7.如权利要求6所述的一种制备基于纳米模拟酶的无标记化学发光免疫传感器的方法,其特征在于,步骤(4)中,所述封闭液为1.0~5.0%牛血清白蛋白溶液。
8.一种基于纳米模拟酶的无标记化学发光免疫分析方法,其特征在于,包括如下分析步骤:
(a)将如权利要求1或2中所述的基于纳米模拟酶的无标记化学发光免疫传感器固定于薄层流通池中;
(b)将带抗原的样品以0.5mL/min的速度注入流通池,在线温育;
(c)用PBST溶液以1mL/min的速度冲洗流通池,除去未反应的免疫试剂;
(d)将化学发光底物溶液以0.5mL/min的速度通入流通池,产生的化学发光信号由化学发光检测器记录。
9.如权利要求8所述的基于纳米模拟酶的无标记化学发光免疫分析方法,其特征在于,步骤(a)中,将制得到的无标记免疫传感器固定于薄层流通池中,流通池的体积为60~80μL。
10.如权利要求8或9所述的基于纳米模拟酶的无标记化学发光免疫分析方法,其特征在于,步骤(c)中所使用的化学发光检测器为光电倍增管,设置负高压为500~700V。
CN201510919955.1A 2015-12-11 2015-12-11 一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法 Active CN105403696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510919955.1A CN105403696B (zh) 2015-12-11 2015-12-11 一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510919955.1A CN105403696B (zh) 2015-12-11 2015-12-11 一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法

Publications (2)

Publication Number Publication Date
CN105403696A true CN105403696A (zh) 2016-03-16
CN105403696B CN105403696B (zh) 2017-09-19

Family

ID=55469309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510919955.1A Active CN105403696B (zh) 2015-12-11 2015-12-11 一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法

Country Status (1)

Country Link
CN (1) CN105403696B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866105A (zh) * 2016-04-06 2016-08-17 扬州大学 一种检测多种鸡细胞因子化学发光成像免疫传感器的制备及分析方法
CN105891483A (zh) * 2016-04-06 2016-08-24 扬州大学 一种基于石墨烯包裹聚苯乙烯复合纳米球的无标记电化学免疫传感器的制备方法
CN106353500A (zh) * 2016-10-21 2017-01-25 扬州大学 一种多肿瘤标志物无标记化学发光成像免疫传感器的制备及分析方法
CN107328928A (zh) * 2017-06-09 2017-11-07 扬州大学 基于Hemin@Fe3O4MPs模拟酶的化学发光免疫检测鸡细胞因子的方法
CN108303537A (zh) * 2018-01-24 2018-07-20 扬州大学 基于三维笼型氢氧化铜模拟酶的多组分无标记化学发光成像免疫阵列传感器
CN108333345A (zh) * 2018-02-05 2018-07-27 扬州大学 双模拟酶信号放大的多鸡细胞因子化学发光免疫分析方法
CN111693689A (zh) * 2019-03-14 2020-09-22 中国科学院生物物理研究所 一种用于酶促化学发光检测的纳米酶及其用途
CN111830100A (zh) * 2020-06-12 2020-10-27 济南大学 一种基于钒酸银/钒酸铟的电化学发光传感器制备方法及应用
CN111879920A (zh) * 2020-08-06 2020-11-03 扬州大学 一种基于单金属Cu-MOF模拟酶的多组分无标记的免疫传感器
CN112326955A (zh) * 2020-11-09 2021-02-05 华中农业大学 基于一水蓝铜矾的固定和偶联蛋白复合材料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023748A1 (en) * 1992-05-08 1993-11-25 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
CN101530798A (zh) * 2008-03-12 2009-09-16 中国科学院生物物理研究所 检测过氧化氢含量的新试剂和新方法
CN101706504A (zh) * 2009-11-27 2010-05-12 东南大学 金纳米粒子模拟酶应用于生物检测的方法
US20130233729A1 (en) * 2012-03-06 2013-09-12 Industry-University Cooperation Foundation Sogang University Sensor for Detecting Hydrogen Peroxide
CN103645316A (zh) * 2013-12-25 2014-03-19 扬州大学 一种基于链霉亲和素功能化半导体纳米材料的肿瘤标志物电化学免疫传感器及其制备方法
CN104330553A (zh) * 2014-11-20 2015-02-04 扬州大学 一种无标记化学发光免疫传感器及其免疫分析方法
US20150093840A1 (en) * 2013-09-27 2015-04-02 National Tsing Hua University Enzyme-free colorimetric immunoassay
CN104502614A (zh) * 2015-01-26 2015-04-08 湖南科技大学 一种基于金纳米簇模拟酶试剂盒及其制备方法及应用
CN104907085A (zh) * 2015-05-12 2015-09-16 山东科技大学 一种硫化铜-蒙脱土纳米复合材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023748A1 (en) * 1992-05-08 1993-11-25 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
CN101530798A (zh) * 2008-03-12 2009-09-16 中国科学院生物物理研究所 检测过氧化氢含量的新试剂和新方法
CN101706504A (zh) * 2009-11-27 2010-05-12 东南大学 金纳米粒子模拟酶应用于生物检测的方法
US20130233729A1 (en) * 2012-03-06 2013-09-12 Industry-University Cooperation Foundation Sogang University Sensor for Detecting Hydrogen Peroxide
US20150093840A1 (en) * 2013-09-27 2015-04-02 National Tsing Hua University Enzyme-free colorimetric immunoassay
CN103645316A (zh) * 2013-12-25 2014-03-19 扬州大学 一种基于链霉亲和素功能化半导体纳米材料的肿瘤标志物电化学免疫传感器及其制备方法
CN104330553A (zh) * 2014-11-20 2015-02-04 扬州大学 一种无标记化学发光免疫传感器及其免疫分析方法
CN104502614A (zh) * 2015-01-26 2015-04-08 湖南科技大学 一种基于金纳米簇模拟酶试剂盒及其制备方法及应用
CN104907085A (zh) * 2015-05-12 2015-09-16 山东科技大学 一种硫化铜-蒙脱土纳米复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AMIT KUMAR DUTTA ET AL.: "CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level", 《TALANTA》 *
WEI CHEN ET AL.: "Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic", 《TALANTA》 *
WEIWEI HE ET AL.: "Understanding the formation of CuS concave superstructures with peroxidase-like activity", 《NANOSCALE》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866105A (zh) * 2016-04-06 2016-08-17 扬州大学 一种检测多种鸡细胞因子化学发光成像免疫传感器的制备及分析方法
CN105891483A (zh) * 2016-04-06 2016-08-24 扬州大学 一种基于石墨烯包裹聚苯乙烯复合纳米球的无标记电化学免疫传感器的制备方法
CN106353500A (zh) * 2016-10-21 2017-01-25 扬州大学 一种多肿瘤标志物无标记化学发光成像免疫传感器的制备及分析方法
CN107328928B (zh) * 2017-06-09 2019-08-09 扬州大学 基于Hemin@Fe3O4MPs模拟酶的化学发光免疫检测鸡细胞因子的方法
CN107328928A (zh) * 2017-06-09 2017-11-07 扬州大学 基于Hemin@Fe3O4MPs模拟酶的化学发光免疫检测鸡细胞因子的方法
CN108303537A (zh) * 2018-01-24 2018-07-20 扬州大学 基于三维笼型氢氧化铜模拟酶的多组分无标记化学发光成像免疫阵列传感器
CN108333345A (zh) * 2018-02-05 2018-07-27 扬州大学 双模拟酶信号放大的多鸡细胞因子化学发光免疫分析方法
CN108333345B (zh) * 2018-02-05 2021-05-14 扬州大学 双模拟酶信号放大的多鸡细胞因子化学发光免疫分析方法
CN111693689A (zh) * 2019-03-14 2020-09-22 中国科学院生物物理研究所 一种用于酶促化学发光检测的纳米酶及其用途
CN111693689B (zh) * 2019-03-14 2024-01-30 中国科学院生物物理研究所 一种用于酶促化学发光检测的纳米酶及其用途
CN111830100A (zh) * 2020-06-12 2020-10-27 济南大学 一种基于钒酸银/钒酸铟的电化学发光传感器制备方法及应用
CN111830100B (zh) * 2020-06-12 2022-12-20 济南大学 一种基于钒酸银/钒酸铟的电化学发光传感器制备方法及应用
CN111879920A (zh) * 2020-08-06 2020-11-03 扬州大学 一种基于单金属Cu-MOF模拟酶的多组分无标记的免疫传感器
CN112326955A (zh) * 2020-11-09 2021-02-05 华中农业大学 基于一水蓝铜矾的固定和偶联蛋白复合材料及其制备方法和应用
CN112326955B (zh) * 2020-11-09 2021-09-14 华中农业大学 基于一水蓝铜矾的固定和偶联蛋白复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN105403696B (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
CN105403696A (zh) 一种基于纳米模拟酶的无标记化学发光免疫传感器及制备和分析方法
CN103245656B (zh) 甲胎蛋白和癌胚抗原电致化学发光传感器的制备及应用
CN102507953B (zh) 一种测定甲胎蛋白的电化学免疫传感器的制备方法
CN102262125B (zh) 检测己烯雌酚的电化学免疫传感器及其制备方法和应用
CN104133069B (zh) 一种双功能标记光电化学传感器的制备方法及应用
Ehsani et al. Comparison of CuO nanoparticle and CuO/MWCNT nanocomposite for amplification of chemiluminescence immunoassay for detection of the hepatitis B surface antigen in biological samples
CN106442994B (zh) 一种基于Ag@Au纳米复合材料的电化学免疫传感器的制备方法及应用
CN102520195B (zh) 一种嗜铬粒蛋白a化学发光免疫分析试剂盒及其制备方法
Li et al. Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein
CN104330553B (zh) 一种无标记化学发光免疫传感器及其免疫分析方法
CN105044083A (zh) 一种基于Au-g-C3N4纳米复合材料的甲胎蛋白的电致化学发光免疫传感器的制备方法及应用
Taebi et al. A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter
CN108469461B (zh) 一种夹心型肺癌标志物电化学传感器的制备方法及应用
CN110927238A (zh) 一种检测前列腺特异性抗原的夹心型光电化学传感器的制备方法及应用
CN105891189A (zh) 一种铜离子检测试剂盒及其应用
CN105954339A (zh) 一种基于CeO2@Cu2O/Au@Pt的夹心型免疫传感器的制备方法及应用
ATE331953T1 (de) Immunassayverfahren
CN104931698A (zh) 一种基于NP-NiGd@Au的胃癌标志物金纳米簇电致化学发光传感器的制备方法及应用
CN101498719A (zh) 酶功能化纳米免疫标记物的制备方法及其应用
CN104316704A (zh) 一种采用大豆过氧化氢酶标记的生物芯片及其制备方法
CN105842460A (zh) 一种基于银杂化硫化铋的电致化学发光免疫传感器的制备方法
CN109613244A (zh) 一种Ag@Pt-CuS标记的免疫传感器的制备方法及应用
CN101532980B (zh) 检测志贺氏菌的酶免疫传感器及其制备方法和运用
CN114965994A (zh) 一种基于铜铁双金属有机框架纳米酶的无标记电化学免疫传感器的制备方法及免疫分析方法
CN102183647A (zh) 一种乙型肝炎病毒表面抗原的检测试剂及检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Yang Zhanjun

Inventor after: Wang Lei

Inventor after: Cao Yue

Inventor after: Li Juan

Inventor before: Yang Zhanjun

Inventor before: Cao Yue

Inventor before: Li Juan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant