CN105384439A - 一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法 - Google Patents

一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法 Download PDF

Info

Publication number
CN105384439A
CN105384439A CN201510694552.1A CN201510694552A CN105384439A CN 105384439 A CN105384439 A CN 105384439A CN 201510694552 A CN201510694552 A CN 201510694552A CN 105384439 A CN105384439 A CN 105384439A
Authority
CN
China
Prior art keywords
graphene
zinc
cobalt oxide
carbon nano
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510694552.1A
Other languages
English (en)
Other versions
CN105384439B (zh
Inventor
刘天西
张龙生
樊玮
缪月娥
张由芳
左立增
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201510694552.1A priority Critical patent/CN105384439B/zh
Publication of CN105384439A publication Critical patent/CN105384439A/zh
Application granted granted Critical
Publication of CN105384439B publication Critical patent/CN105384439B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明属于过渡金属氧化物-碳材料技术领域,具体为一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法。本发明的制备方法包括:通过静电纺丝制备得到聚丙烯腈纳米纤维膜,经过溶液浸泡法在聚丙烯腈纳米纤维上包裹氧化石墨烯,再通过高温碳化制备得到石墨烯/碳纳米纤维复合膜,最后通过一步水热法在石墨烯/碳纳米纤维上原位生长氧化钴锌纳米颗粒。本发明制备的氧化钴锌/石墨烯/碳纳米纤维复合材料形貌可控,具有较高的比表面积和优良的导电性,可作为一种理想的高性能电催化材料,以及锂离子电池和太阳能电池等新能源器件的电极材料。

Description

一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法
技术领域
本发明属于过渡金属硒化物-碳材料技术领域,具体涉及一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法。
背景技术
石墨烯是一种由碳原子组成的只有一个原子厚度的二维材料,具有十分优异的物理化学性能,如优异的力学性能、高的导电性和良好的导热性能等,被认为是当今最具有潜力的纳米材料之一。作为一种一维碳纳米材料,碳纳米纤维具有良好的力学性能、较大的比表面积和良好的化学稳定性等优点,这些特殊性质使其广泛应用于催化剂载体、高分子纳米复合材料、能量转换与储存器件的柔性基底材料等领域。静电纺丝是一种简单而有效制备碳纳米纤维的技术,通过高压静电将聚合物溶液进行纺丝,再进行预氧化和高温碳化可制备得到具有三维多孔结构和高比表面积的静电纺碳纳米纤维膜。本专利采用静电纺丝工艺,将聚丙烯腈溶液进行纺丝,并通过预氧化制备得到聚丙烯腈纳米纤维膜,然后经过溶液浸泡法在聚丙烯腈纳米纤维上包裹氧化石墨烯,再通过高温碳化制备得到石墨烯/碳纳米纤维复合膜,并以此为基底材料进一步制备高性能复合材料。
氧化钴锌是一种典型的双金属氧化物,具有无毒、环境友好、易于制备、自身导电性好和理论容量值高等优点。与单金属的氧化锌或氧化钴相比,氧化钴锌具有更高的导电性能和理论储锂容量值,在催化、超级电容器及锂离子电池电极材料等领域受到广泛的关注和应用。但是,纯的氧化钴锌颗粒易于团聚,使其活性位点无法得到充分暴露,严重影响了其催化特性和能量存储的循环稳定性。因此,将氧化钴锌与稳定性优异的碳纳米材料进行有效复合具有重要意义。
本发明通过简单的工艺设计,制备得到一种新型的氧化钴锌/石墨烯/碳纳米纤维复合材料。该复合材料具有如下优势:静电纺碳纳米纤维具有独特的三维多孔结构、较高的比表面积和优良的力学性能;石墨烯包裹碳纳米纤维可提高石墨烯/碳纳米纤维复合膜整体的导电性,促进电子的快速传输;氧化钴锌纳米颗粒均匀地生长在石墨烯/碳纳米纤维上,可有效抑制氧化钴锌自身的团聚,使氧化钴锌纳米颗粒的活性边缘得到更加充分的暴露;碳纳米纤维优异的力学性能使复合材料可作为柔性电极材料应用于催化和能源存储器件;氧化钴锌纳米颗粒本身具备较高的催化活性和理论储能容量值,可提高复合材料整体的催化性能和能量存储性能。因此,将石墨烯/碳纳米纤维与氧化钴锌纳米颗粒进行有效复合,可以实现三者之间良好的协同作用,以制备出性能优异的复合材料。
发明内容
本发明的目的在于提供一种电化学性能优异的氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法。
本发明所提供的氧化钴锌/石墨烯/碳纳米纤维复合材料,其制备原料组成包括:聚丙烯腈、N,N-二甲基甲酰胺、氧化石墨烯、钴盐、锌盐、尿素等。
本发明所提供的氧化钴锌/石墨烯/碳纳米纤维复合材料,其制备过程包括:通过静电纺丝制备得到聚丙烯腈纳米纤维膜,经过溶液浸泡法在聚丙烯腈纳米纤维上包裹氧化石墨烯,再通过高温碳化制备得到石墨烯/碳纳米纤维复合膜,最后通过一步水热法在石墨烯/碳纳米纤维上原位生长氧化钴锌纳米颗粒,具体步骤如下:
(1)将聚丙烯腈粉末加入到N,N-二甲基甲酰胺溶剂中,持续搅拌,得到均一的粘稠分散液;
(2)将得到的聚丙烯腈分散液进行静电纺丝,得到聚丙烯腈纳米纤维膜;
(3)将聚丙烯腈纺丝膜在空气气氛下进行预氧化,得到预氧化后的聚丙烯腈纳米纤维膜;
(4)将所得预氧化后的聚丙烯腈纳米纤维膜在氧化石墨烯溶液里浸泡,得到聚丙烯腈纳米纤维/氧化石墨烯复合膜;
(5)将所得聚丙烯腈纳米纤维/石墨烯复合膜在惰性气体保护下进行高温碳化,得到石墨烯/碳纳米纤维复合膜;
(6)将钴盐、锌盐和尿素溶于去离子水中,制备得到均一的盐溶液;
(7)将制备得到的盐溶液与石墨烯/碳纳米纤维复合膜通过水热法反应,得到氧化钴锌/石墨烯/碳纳米纤维复合材料。
本发明中,步骤(2)所述的静电纺丝过程,其调节工艺参数为:静电场电压15~25kV,纺丝速度0.2~0.4mmmin-1,接收距离15~25cm。
本发明中,步骤(3)所述的预氧化,预氧化的温度为250~300℃,升温速率为1~2℃min-1,预氧化时间为1~2h,优选1.5h。
本发明中,步骤(4)所述溶液浸泡,氧化石墨烯溶液的浓度为0.5~2mgmL-1,浸泡时间为12~36h。
本发明中,步骤(5)所述的高温碳化过程中,所用的惰性气体为高纯氩气或高纯氮气,高温碳化温度为1000~1500℃,高温碳化时间为1~3h,优选2h。
本发明中,步骤(6)所述的盐溶液制备过程,钴盐包括硝酸钴、硫酸钴、氯化钴、醋酸钴;锌盐包括硝酸锌、硫酸锌、氯化锌、醋酸锌;钴盐的质量范围为10~50mgmL-1,优选20~30mgmL-1;锌盐的质量范围为5~25mgmL-1,优选10~15mgmL-1;尿素的质量浓度为10~30mgmL-1,优选15~25mgmL-1
本发明中,步骤(7)所述的水热反应温度为180~240℃,优选200~220℃,反应时间为10~24h,优选12~15h。
使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)来表征本发明所获得的氧化钴锌/石墨烯/碳纳米纤维复合材料的结构形貌,其结果如下:
(1)SEM测试结果表明:在石墨烯/碳纳米纤维复合膜中,石墨烯片层紧密地包裹在碳纳米纤维表面上。在氧化钴锌/石墨烯/碳纳米纤维复合材料中,氧化钴锌纳米颗粒均匀地生长在石墨烯/碳纳米纤维上,有效抑制了氧化钴锌自身的团聚,使氧化钴锌纳米颗粒层的活性边缘得到充分暴露。这得益于石墨烯/碳纳米纤维三维空间结构和较高的比表面积,为氧化钴锌的生长提供了更多的位点。参见附图1和附图2;
(2)XRD测试结果表明,所制备的石墨烯/碳纳米纤维复合膜在2θ=26°处有一个较宽的衍射峰,对应于碳纳米纤维和石墨烯的(002)晶面。所制备的氧化钴锌/石墨烯/碳纳米纤维复合材料显示出氧化钴锌的特征峰,在2θ=31°,37°,44°,57°,62°和66°处出现衍射峰,分别对应于氧化钴锌的(220),(311),(400),(422),(511)和(440)晶面。参见附图3。
本发明的优点在于:
(1)制备过程简单,易于操作,是一种便捷有效的制备方法;
(2)实验设计巧妙。通过静电纺丝、溶液浸泡和高温碳化技术,简单有效地制备得到了具有三维多孔结构和高比表面积的石墨烯/碳纳米纤维复合膜,并以此为基底材料,通过一步水热法法在石墨烯/碳纳米纤维上原位生长氧化钴锌纳米颗粒,有效抑制了氧化钴锌自身的团聚,实现了一维材料与二维材料的有效复合,从而构筑了具有多级结构的新型高性能复合材料;
(3)所制备的氧化钴锌/石墨烯/碳纳米纤维复合材料具有较好的柔韧性,较高的导电性和较高的催化性能和能量存储性能。将石墨烯/碳纳米纤维和氧化钴锌纳米颗粒进行有效复合,可使两者的优势得以充分发挥,从而构建了具有优异性能的新型复合材料。
本发明制备的氧化钴锌/石墨烯/碳纳米纤维复合材料,可用作高性能催化剂材料以及锂离子电池、太阳能电池等新能源器件的理想电极材料。
附图说明
图1是本发明中的石墨烯/碳纳米纤维复合材料的SEM图。
图2是本发明中氧化钴锌/石墨烯/碳纳米纤维复合材料的SEM图。
图3是本发明石墨烯/碳纳米纤维和氧化钴锌/石墨烯/碳纳米纤维复合材料的XRD图。
具体实施方式
下面结合具体实例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1、本实施例包括以下步骤:
(1)将1g聚丙烯腈粉末加入到5mLN,N-二甲基甲酰胺溶剂中,持续搅拌,制备得到均一的粘稠分散液;
(2)将得到的聚丙烯腈分散液进行静电纺丝,其调节工艺参数为:静电场电压20kV,纺丝速度0.3mmmin-1,接收距离20cm,制备得到聚丙烯腈纳米纤维膜;
(3)将得到的聚丙烯腈纺丝膜在空气气氛下进行预氧化,预氧化的温度为250℃,升温速率为1℃min-1,预氧化时间为1.5h,制备得到预氧化后的聚丙烯腈纳米纤维膜;
(4)将所得预氧化后的聚丙烯腈纳米纤维膜在1mgmL-1氧化石墨烯溶液里浸泡24h,制备得到聚丙烯腈纳米纤维/氧化石墨烯复合膜;
(5)将所得聚丙烯腈纳米纤维/氧化石墨烯复合膜在高纯氮气中进行高温碳化,高温碳化温度为1200℃,高温碳化时间为2h,制备得到石墨烯/碳纳米纤维复合膜;
(6)将580mg硝酸钴,290mg硝酸锌和500mg尿素溶于25mL去离子水中,超声5min,制备得到均一的盐溶液;
(7)将制备得到的盐溶液与石墨烯/碳纳米纤维复合膜放入水热釜中,在200℃中反应15h,待自然降温后,取出纤维膜并用去离子水和乙醇反复清洗多次并干燥,制备得到氧化钴锌/石墨烯/碳纳米纤维复合材料,记为ZCS/GNS/CNF-1。
实施例2、将实施例1中的硝酸钴的质量变为290mg,硝酸锌的质量变为145mg,其余均同实施例1,最终所获得的复合材料记为ZCS/GNS/CNF-2。实施结果:氧化钴锌纳米颗粒均匀地生长在石墨烯/碳纳米纤维上;与ZCS/GNS/CNF-1相比,ZCS/GNS/CNF-2中的氧化钴锌纳米颗粒的片层较小,含量也较少。
实施例3、将实施例1中的硝酸钴的质量变为1160mg,硝酸锌的质量变为580mg,其余均同实施例1,最终所获得的复合材料记为ZCS/GNS/CNF-2,最终所获得的复合材料记为ZCS/GNS/CNF-3。实施结果:氧化钴锌纳米颗粒均匀地生长在石墨烯/碳纳米纤维上;与ZCS/GNS/CNF-1相比,ZCS/GNS/CNF-3中的氧化钴锌纳米颗粒的片层较大,含量也较多。
实施例4、将实施例1中的水热反应温度变为240℃,反应时间变为24h,其余均同实施例1,最终所获得的复合材料记为ZCS/GNS/CNF-4。实施结果:氧化钴锌纳米颗粒均匀地生长在石墨烯/碳纳米纤维上;与ZCS/GNS/CNF-1相比,ZCS/GNS/CNF-4中的氧化钴锌纳米颗粒的片层较大,厚度较大,结晶程度更高。

Claims (9)

1.一种氧化钴锌/石墨烯/碳纳米纤维复合材料的制备方法,其特征在于:通过静电纺丝制备得到聚丙烯腈纳米纤维膜,经过溶液浸泡法在聚丙烯腈纳米纤维上包裹氧化石墨烯,再通过高温碳化制备得到石墨烯/碳纳米纤维复合膜,最后通过一步水热法在石墨烯/碳纳米纤维上原位生长氧化钴锌纳米颗粒,具体步骤如下:
(1)将聚丙烯腈粉末加入到N,N-二甲基甲酰胺溶剂中,持续搅拌,得到均一的粘稠分散液;
(2)将得到的聚丙烯腈分散液进行静电纺丝,得到聚丙烯腈纳米纤维膜;
(3)将聚丙烯腈纺丝膜在空气气氛下预氧化,得到预氧化后的聚丙烯腈纳米纤维膜;
(4)将所得预氧化后的聚丙烯腈纳米纤维膜在氧化石墨烯溶液里浸泡,得到聚丙烯腈纳米纤维/氧化石墨烯复合膜;
(5)将所得聚丙烯腈纳米纤维/石墨烯复合膜在惰性气体保护下进行高温碳化,得到石墨烯/碳纳米纤维复合膜;
(6)将钴盐、锌盐和尿素溶于去离子水中,制备得到均一的盐溶液;
(7)将制备得到的盐溶液与石墨烯/碳纳米纤维复合膜通过水热反应,得到氧化钴锌/石墨烯/碳纳米纤维复合材料。
2.根据权利要求1所述的氧化钴锌/石墨烯/碳纳米纤维复合材料的制备方法,其特征在于步骤(2)中所述的静电纺丝,其工艺参数为:静电场电压15~25kV,纺丝速度0.2~0.4mmmin-1,接收距离15~25cm。
3.根据权利要求1所述的氧化钴锌/石墨烯/碳纳米纤维复合材料的制备方法,其特征在于步骤(3)中所述的预氧化,预氧化的温度为250~300℃,升温速率为1~2℃min-1,预氧化时间为1~2h。
4.根据权利要求1所述的氧化钴锌/石墨烯/碳纳米纤维复合材料的制备方法,其特征在于步骤(4)中所述的在氧化石墨烯溶液里浸泡,氧化石墨烯溶液的浓度为0.5~2mgmL-1,浸泡时间为12~36h。
5.根据权利要求1所述的氧化钴锌/石墨烯/碳纳米纤维复合材料的制备方法,其特征在于步骤(5)中所述的高温碳化,所用惰性气体为高纯氩气或高纯氮气,高温碳化温度为1000~1500℃,高温碳化时间为1~3h。
6.根据权利要求1所述的氧化钴锌/石墨烯/碳纳米纤维复合材料的制备方法,其特征在于步骤(6)所述的盐溶液制备过程,钴盐选自硝酸钴、硫酸钴、氯化钴、醋酸钴;锌盐选自硝酸锌、硫酸锌、氯化锌、醋酸锌;钴盐的质量范围为10~50mgmL-1;锌盐的质量范围为5~25mgmL-1;尿素的质量浓度为10~30mgmL-1
7.根据权利要求1所述的氧化钴锌/石墨烯/碳纳米纤维复合材料的制备方法,其特征在于步骤(7)所述的水热反应,其反应温度为180~240℃,反应时间为10~24h。
8.一种由权利要求1-7之一所述制备方法制备得到的氧化钴锌/石墨烯/碳纳米纤维复合材料。
9.如权利要求8所述的氧化钴锌/石墨烯/碳纳米纤维复合材料作为高性能电催化材料,以及作为锂离子电池和太阳能电池的电极材料的应用。
CN201510694552.1A 2015-10-25 2015-10-25 一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法 Expired - Fee Related CN105384439B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510694552.1A CN105384439B (zh) 2015-10-25 2015-10-25 一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510694552.1A CN105384439B (zh) 2015-10-25 2015-10-25 一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105384439A true CN105384439A (zh) 2016-03-09
CN105384439B CN105384439B (zh) 2018-07-13

Family

ID=55417274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510694552.1A Expired - Fee Related CN105384439B (zh) 2015-10-25 2015-10-25 一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105384439B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192081A (zh) * 2016-06-30 2016-12-07 天津工业大学 一种石墨烯骨架多孔纳米纤维的制备方法
CN107021549A (zh) * 2017-04-06 2017-08-08 上海电力学院 石墨烯/碳纳米管/碳纳米纤维膜三元复合电容型脱盐电极的制备方法
CN107059248A (zh) * 2017-03-29 2017-08-18 东华大学 一种氧化石墨烯单分子层修饰聚丙烯腈纳米纤维膜的制备方法
CN108607594A (zh) * 2018-05-08 2018-10-02 河北北方学院 一种铁酸铜/碳纳米纤维/氮掺杂石墨烯复合电催化材料
CN109546110A (zh) * 2018-11-13 2019-03-29 大同新成新材料股份有限公司 一种复合石墨电极制备方法及制备装置
CN109950508A (zh) * 2019-04-08 2019-06-28 朱焕光 一种碳纤维布柔性锂离子电池负极材料及其制备方法
CN110120436A (zh) * 2019-04-26 2019-08-13 圣晖莱南京能源科技有限公司 一种双节型cigs太阳能电池及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100032033A1 (it) * 2021-12-21 2023-06-21 Fiamm Energy Tech S P A Additivo per massa attiva negativa di batterie al piombo acido basato su materiali nanostrutturati

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451952A (zh) * 2014-10-28 2015-03-25 大连理工大学 一种还原性石墨烯包裹四氧化三钴复合纳米纤维及其制备工艺
CN104599858A (zh) * 2013-11-01 2015-05-06 无锡华臻新能源科技有限公司 储能用四氧化三钴纤维/石墨烯复合物的制备方法
CN104820008A (zh) * 2015-04-13 2015-08-05 东华大学 一种氧化锌纳米管/石墨烯复合膜修饰电极的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104599858A (zh) * 2013-11-01 2015-05-06 无锡华臻新能源科技有限公司 储能用四氧化三钴纤维/石墨烯复合物的制备方法
CN104451952A (zh) * 2014-10-28 2015-03-25 大连理工大学 一种还原性石墨烯包裹四氧化三钴复合纳米纤维及其制备工艺
CN104820008A (zh) * 2015-04-13 2015-08-05 东华大学 一种氧化锌纳米管/石墨烯复合膜修饰电极的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192081A (zh) * 2016-06-30 2016-12-07 天津工业大学 一种石墨烯骨架多孔纳米纤维的制备方法
CN106192081B (zh) * 2016-06-30 2018-07-13 天津工业大学 一种石墨烯骨架多孔纳米纤维的制备方法
CN107059248A (zh) * 2017-03-29 2017-08-18 东华大学 一种氧化石墨烯单分子层修饰聚丙烯腈纳米纤维膜的制备方法
CN107021549A (zh) * 2017-04-06 2017-08-08 上海电力学院 石墨烯/碳纳米管/碳纳米纤维膜三元复合电容型脱盐电极的制备方法
CN108607594A (zh) * 2018-05-08 2018-10-02 河北北方学院 一种铁酸铜/碳纳米纤维/氮掺杂石墨烯复合电催化材料
CN109546110A (zh) * 2018-11-13 2019-03-29 大同新成新材料股份有限公司 一种复合石墨电极制备方法及制备装置
CN109950508A (zh) * 2019-04-08 2019-06-28 朱焕光 一种碳纤维布柔性锂离子电池负极材料及其制备方法
CN110120436A (zh) * 2019-04-26 2019-08-13 圣晖莱南京能源科技有限公司 一种双节型cigs太阳能电池及其制备方法
CN110120436B (zh) * 2019-04-26 2021-02-05 圣晖莱南京能源科技有限公司 一种双节型cigs太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN105384439B (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
CN105384439A (zh) 一种氧化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法
CN105293590A (zh) 硫化钴镍/石墨烯/碳纳米纤维复合材料及其制备方法
Li et al. Reduced CoNi2S4 nanosheets with enhanced conductivity for high-performance supercapacitors
CN105297405A (zh) 一种硫化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法
Liang et al. Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation
Xu et al. Nanofoaming to boost the electrochemical performance of Ni@ Ni (OH) 2 nanowires for ultrahigh volumetric supercapacitors
Li et al. Nickel cobalt sulfide nanosheets uniformly anchored on porous graphitic carbon nitride for supercapacitors with high cycling performance
Guo et al. Metal–organic framework template-directed fabrication of well-aligned pentagon-like hollow transition-metal sulfides as the anode and cathode for high-performance asymmetric supercapacitors
Wang et al. Band gap-tunable porous borocarbonitride nanosheets for high energy-density supercapacitors
CN105280896A (zh) 硫化钴镍/碳纳米纤维复合材料及其制备方法和应用
CN105322146A (zh) 一种硒化钼/碳纳米纤维/石墨烯复合材料及其制备方法
Xu et al. Facilely hierarchical growth of N-doped carbon-coated NiCo2O4 nanowire arrays on Ni foam for advanced supercapacitor electrodes
Song et al. Large-scale porous hematite nanorod arrays: direct growth on titanium foil and reversible lithium storage
CN105244482A (zh) 硫化钴镍/石墨烯/碳纳米管复合材料及其制备方法和应用
CN105293581A (zh) 一种硫化钼/石墨烯/碳纳米球复合材料及其制备方法
CN105463831A (zh) 一种二硫化钼/石墨烯/碳纳米纤维复合材料及其制备方法
CN105304876A (zh) 硫化钼/石墨烯/碳纳米纤维复合材料及其制备方法
Yu et al. Promising high-performance supercapacitor electrode materials from MnO2 nanosheets@ bamboo leaf carbon
CN105322147A (zh) 一种二硫化钨/碳纳米纤维/石墨烯复合材料及其制备方法
Peng et al. Designed functional systems for high-performance lithium-ion batteries anode: from solid to hollow, and to core–shell NiCo2O4 nanoparticles encapsulated in ultrathin carbon nanosheets
CN105600745A (zh) 一种二硫化钴/碳纳米纤维复合材料及其制备方法
CN105597791A (zh) 一种硒化钼/多孔碳纳米纤维复合材料及其制备方法和应用
Sun et al. Novel bake-in-salt method for the synthesis of mesoporous Mn3O4@ C networks with superior cycling stability and rate performance
El-Khodary et al. Sonochemical assisted fabrication of 3D hierarchical porous carbon for high-performance symmetric supercapacitor
Wang et al. Plant polyphenols induced the synthesis of rich oxygen vacancies Co3O4/Co@ N-doped carbon hollow nanomaterials for electrochemical energy storage and conversion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180713

Termination date: 20201025

CF01 Termination of patent right due to non-payment of annual fee