CN105336954B - 正极复合材料及其制备方法以及锂离子电池 - Google Patents

正极复合材料及其制备方法以及锂离子电池 Download PDF

Info

Publication number
CN105336954B
CN105336954B CN201410323788.XA CN201410323788A CN105336954B CN 105336954 B CN105336954 B CN 105336954B CN 201410323788 A CN201410323788 A CN 201410323788A CN 105336954 B CN105336954 B CN 105336954B
Authority
CN
China
Prior art keywords
maleimide
bismaleimide
lithium ion
ion battery
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410323788.XA
Other languages
English (en)
Other versions
CN105336954A (zh
Inventor
钱冠男
何向明
王莉
尚玉明
李建军
刘榛
高剑
张宏生
王要武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Jiangsu Huadong Institute of Li-ion Battery Co Ltd
Original Assignee
Tsinghua University
Jiangsu Huadong Institute of Li-ion Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Jiangsu Huadong Institute of Li-ion Battery Co Ltd filed Critical Tsinghua University
Priority to CN201410323788.XA priority Critical patent/CN105336954B/zh
Priority to PCT/CN2015/081511 priority patent/WO2016004811A1/zh
Publication of CN105336954A publication Critical patent/CN105336954A/zh
Priority to US15/401,480 priority patent/US20170117590A1/en
Application granted granted Critical
Publication of CN105336954B publication Critical patent/CN105336954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/121Preparatory processes from unsaturated precursors and polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种正极复合材料,包括正极活性物质及与该正极活性物质复合的聚合物,该聚合物由有机二胺类化合物与马来酰亚胺类单体通过聚合反应得到,该马来酰亚胺类单体包括马来酰亚胺单体、双马来酰亚胺单体、多马来酰亚胺单体及马来酰亚胺类衍生物单体中的至少一种。本发明还涉及一种正极复合材料的制备方法,以及一种锂离子电池。

Description

正极复合材料及其制备方法以及锂离子电池
技术领域
本发明涉及一种正极复合材料及其制备方法以及应用该正极复合材料的锂离子电池。
背景技术
随着便携式电子产品的快速发展和普遍化,锂离子电池的市场需求与日俱增。与传统二次电池相比,锂离子电池具有能量密度高、循环寿命长、无记忆效应和环境污染小等优点。然而,近年来用于手机、笔记本电脑中的锂电池爆炸伤人事件屡屡发生,锂离子电池的安全问题已引起人们的广泛关注。锂离子电池在过度充放电、短路以及大电流长时间工作的情形下会释放出大量的热,可能发生热失控引起电池燃烧或爆炸,而电动汽车等应用领域对电池有更加严苛的安全要求。因此,锂离子电池的安全性研究具有重要意义。
发明内容
有鉴于此,确有必要提供一种能够提高锂离子电池安全性能的正极复合材料及其制备方法以及应用该正极复合材料的锂离子电池。
一种正极复合材料,包括正极活性物质及与该正极活性物质复合的聚合物,该聚合物由有机二胺类化合物与马来酰亚胺类单体通过聚合反应得到,该马来酰亚胺类单体包括马来酰亚胺单体、双马来酰亚胺单体、多马来酰亚胺单体及马来酰亚胺类衍生物单体中的至少一种,该有机二胺类化合物的分子通式由式(3)或式(4)表示,其中R3与R4为二价有机取代基,
(3);
(4)。
一种锂离子电池,包括正极、负极、隔膜及电解质溶液,该正极包括如所述正极复合材料。
一种所述正极复合材料的制备方法,包括将该马来酰亚胺类单体与该有机二胺类化合物聚合并与该正极活性物质复合,该将该马来酰亚胺类单体与该有机二胺类化合物聚合的方法为:将有机二胺类化合物在有机溶剂中溶解形成二胺溶液;将马来酰亚胺类单体与有机溶剂混合并预加热,形成马来酰亚胺类单体的溶液;以及将二胺溶液加入预加热的马来酰亚胺类单体的溶液中,混合搅拌使反应充分进行,得到所述聚合物。
本发明采用有机二胺类化合物与马来酰亚胺类单体通过聚合反应得到的聚合物,将该聚合物加入到正极材料中,能够提高锂离子电池的电极稳定性及热稳定性,起到过充保护的作用。
附图说明
图1为本发明实施例1与比较例1的锂离子电池的循环性能曲线。
图2为本发明实施例2的锂离子电池的过充电时电池的电压及温度随时间变化曲线,图2的内插图为过充电后的电池照片。
图3为比较例2的锂离子电池的过充电时电池的电压及温度随时间变化曲线,图3的内插图为过充电后的电池照片。
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的正极复合材料及其制备方法以及应用该正极复合材料的锂离子电池作进一步的详细说明。
本发明实施方式提供一种正极复合材料,包括正极活性物质及与该正极活性物质复合的聚合物,该聚合物由有机二胺类化合物与马来酰亚胺类单体通过聚合反应得到。该聚合物可以与该正极活性物质均匀混合,或者包覆于正极活性物质表面。该聚合物在该正极复合材料中的质量百分含量可以为0.01%~10%,优选为0.1%~5%。
该马来酰亚胺类单体包括马来酰亚胺单体、双马来酰亚胺单体、多马来酰亚胺单体及马来酰亚胺类衍生物单体中的至少一种。
该马来酰亚胺单体的分子通式可以由式(1)表示。
(1)
R1为单价有机取代基,具体地,可以为-R, -RNH2R, -C(O)CH3,-CH2OCH3, -CH2S(O)CH3, 单价形式的环脂族基团,单价形式的取代芳香族基团,或单价形式的未取代芳香族基团,如-C6H5, -C6H4C6H5,或-CH2(C6H4)CH3。R为1~6个碳的烃基,优选为烷基。所述取代优选是以卤素,1~6个碳的烷基或1~6个碳的硅烷基进行取代。该未取代芳香族基团优选为苯基、甲基苯基或二甲基苯基。该芳香族的苯环的数量优选为1~2个。
具体地,该马来酰亚胺单体可以选自N-苯基马来酰亚胺、N-(邻甲基苯基)-马来酰亚胺、N-(间甲基苯基)-马来酰亚胺、N-(对甲基苯基)-马来酰亚胺、N-环己烷基马来酰亚胺、马来酰亚胺、马来酰亚胺基酚、马来酰亚胺基苯并环丁烯、二甲苯基马来酰亚胺、N-甲基马来酰亚胺、乙烯基马来酰亚胺、硫代马来酰亚胺、马来酰亚胺酮、亚甲基马来酰亚胺、马来酰亚胺甲醚、马来酰亚胺基乙二醇及4-马来酰亚胺苯砜中的一种或多种。
该双马来酰亚胺单体的分子通式可以由式(2)表示。
(2)
R2为二价有机取代基,具体地,可以为-R-,-RNH2R-,-C(O)CH2-,-CH2OCH2-,-C(O)-,-O-,-O-O-,-S-,-S-S-,-S(O)-,-CH2S(O)CH2-,-(O)S(O)-, -R-Si(CH3)2-O-Si(CH3)2-R-,二价形式的环脂族基团,二价形式的取代芳香族基团,或二价形式的未取代芳香族基团,如伸苯基(-C6H4-),伸联苯基(-C6H4C6H4-),取代的伸苯基,取代的伸联苯基,-(C6H4)-R5-(C6H4)-,-CH2(C6H4)CH2-,或-CH2(C6H4)(O)-。R5为-CH2-,-C(O)-,-C(CH3)2-,-O-,-O-O-,-S-,-S-S-,-S(O)-,或-(O)S(O)-。R为1~6个碳的烃基,优选为烷基。所述取代优选是以卤素,1~6个碳的烷基或1~6个碳的硅烷基进行取代。该芳香族的苯环的数量优选为1~2个。
具体地,该双马来酰亚胺单体可以选自N,N’-双马来酰亚胺-4,4’-二苯基代甲烷、1,1’-(亚甲基双-4,1-亚苯基)双马来酰亚胺、N,N’-(1,1’-二苯基-4,4’-二亚甲基)双马来酰亚胺、N,N’-(4-甲基-1,3-亚苯基)双马来酰亚胺、1,1’-(3,3’-二甲基-1,1’-二苯基-4,4’-二亚甲基)双马来酰亚胺、N,N’-乙烯基双马来酰亚胺、N,N’-丁烯基双马来酰亚胺、N,N’-(1,2-亚苯基)双马来酰亚胺、N,N’-(1,3-亚苯基)双马来酰亚胺、N,N’-双马来酰亚胺硫、N,N’-双马来酰亚胺二硫、N,N’-双马来酰亚胺亚胺酮、N,N’-亚甲基双马来酰亚胺、双马来酰亚胺甲醚、1,2-双马来酰亚胺基-1,2-乙二醇、N,N’-4,4’-二苯醚-双马来酰亚胺及4,4’-双马来酰亚胺-二苯砜中的一种或多种。
该马来酰亚胺类衍生物单体可通过将上述马来酰亚胺单体、双马来酰亚胺单体或多马来酰亚胺单体中马来酰亚胺基团中的H原子以卤素原子取代。
该有机二胺类化合物的分子通式可以由式(3)或式(4)表示。
(3)
(4)
其中R3与R4为二价有机取代基。
具体地,R3可以为-(CH2)n-,-CH2-O-CH2-,-CH(NH)-(CH2)n-,二价形式的环脂族基团,二价形式的取代芳香族基团,或二价形式的未取代芳香族基团,如伸苯基(-C6H4-),伸联苯基(-C6H4C6H4-),取代的伸苯基或取代的伸联苯基。R4可以为-(CH2)n-,-O-,-S-,-S-S-,-CH2-O-CH2-,-CH(NH)-(CH2)n-或-CH(CN)(CH2)n-。n=1~12。所述取代优选是以卤素,1~6个碳的烷基或1~6个碳的硅烷基进行取代。该芳香族的苯环的数量优选为1~2个。
具体地,该有机二胺类化合物可以包括但不限于乙二胺、苯二胺、二氨基二苯甲烷及二氨基二苯醚中的至少一种。
该聚合物的分子量可以为1000~500000。
在一实施例中,当该马来酰亚胺单体为双马来酰亚胺,有机二胺类化合物为二氨基二苯甲烷,该添加剂可以由式(5)表示。
(5)
本申请进一步提供一种正极复合材料的制备方法,包括将马来酰亚胺类单体与该有机二胺类化合物聚合并与该正极活性物质复合的步骤。
该聚合物的制备方法为:将有机二胺类化合物在有机溶剂中溶解形成二胺溶液;将马来酰亚胺类单体与有机溶剂混合并预加热,形成马来酰亚胺类单体的溶液;将二胺溶液加入预加热的马来酰亚胺类单体的溶液中,混合搅拌使反应充分进行,得到所述聚合物。
该马来酰亚胺类单体与该有机二胺类化合物的摩尔比可以为1:10~10:1,优选为1:2~4:1。该马来酰亚胺类单体的溶液中马来酰亚胺类单体与有机溶剂的质量比可以为1:100~1:1,优选为1:10~1:2。该马来酰亚胺类单体的溶液的预加热温度可以为30℃~180℃,优选为50℃~150℃。该二胺溶液中有机二胺类化合物与有机溶剂的质量比可以为1:100~1:1,优选为1:10~1:2。该有机二胺类化合物的溶液可以通过输送泵以一定速率输送至马来酰亚胺类单体的溶液中,输送完毕后持续搅拌一定时间,使反应充分进行,该混合搅拌的时间可以为0.5小时~48小时,优选为1小时~24小时。该溶剂为能够溶解该马来酰亚胺类单体与该有机二胺类化合物的有机溶剂,例如γ-丁内酯、碳酸丙烯酯及N-甲基吡咯烷酮(NMP)。
在一实施例中,该马来酰亚胺类单体与该有机二胺类化合物先通过聚合形成所述聚合物,再将该聚合物与正极活性物质混合,或者包覆于该正极活性物质表面。在另一实施例中,可将该马来酰亚胺类单体的溶液与该正极活性物质先进行混合并预加热,再加入该二胺溶液,混合搅拌使反应充分进行,直接在该正极活性物质表面形成所述聚合物,从而使包覆更加完整。
该正极活性物质可以为层状结构的锂-过渡金属氧化物,尖晶石型结构的锂-过渡金属氧化物以及橄榄石型结构的锂-过渡金属氧化物中的至少一种,例如,橄榄石型磷酸铁锂、层状结构钴酸锂、层状结构锰酸锂、尖晶石型锰酸锂、锂镍锰氧化物及锂镍钴锰氧化物。
该正极复合材料可进一步包括导电剂和/或粘结剂。该导电剂可以为碳素材料,如碳黑、导电聚合物、乙炔黑、碳纤维、碳纳米管及石墨中的一种或多种。该粘结剂可以是聚偏氟乙烯(PVDF)、聚偏(二)氟乙烯、聚四氟乙烯(PTFE)、氟类橡胶、三元乙丙橡胶及丁苯橡胶(SBR)中的一种或多种。
本发明实施例进一步提供一种锂离子电池,包括正极、负极、隔膜及电解质溶液。该正极与负极通过所述隔膜相互间隔。所述正极可进一步包括一正极集流体及设置在该正极集流体表面的所述正极复合材料。所述负极可进一步包括一负极集流体及设置在该负极集流体表面的负极材料。该负极材料与上述正极复合材料相对且通过所述隔膜间隔设置。
该负极材料可包括负极活性物质,并可进一步包括导电剂及粘结剂。该负极活性物质可以为钛酸锂、石墨、相碳微球(MCMB)、乙炔黑、微珠碳、碳纤维、碳纳米管及裂解碳中的至少一种。该导电剂可以为碳素材料,如碳黑、导电聚合物、乙炔黑、碳纤维、碳纳米管及石墨中的一种或多种。该粘结剂可以是聚偏氟乙烯(PVDF)、聚偏(二)氟乙烯、聚四氟乙烯(PTFE)、氟类橡胶、三元乙丙橡胶及丁苯橡胶(SBR)中的一种或多种。
所述隔膜可以为聚烯烃多孔膜、改性聚丙烯毡、聚乙烯毡、玻璃纤维毡、超细玻璃纤维纸维尼纶毡或尼龙毡与可湿性聚烯烃微孔膜经焊接或粘接而成的复合膜。
该电解质溶液包括锂盐及非水溶剂。该非水溶剂可包括环状碳酸酯、链状碳酸酯、环状醚类、链状醚类、腈类及酰胺类中的一种或多种,如碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸丁烯酯、γ-丁内酯、γ-戊内酯、碳酸二丙酯、N-甲基吡咯烷酮(NMP)、N-甲基甲酰胺、N-甲基乙酰胺、二甲基甲酰胺、二乙基甲酰胺、二乙醚、乙腈、丙腈、苯甲醚、丁二腈、己二腈、戊二腈、二甲亚砜、亚硫酸二甲酯、碳酸亚乙烯酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、氟代碳酸乙烯酯、氯代碳酸丙烯酯、酸酐、环丁砜、甲氧基甲基砜、四氢呋喃、2-甲基四氢呋喃、环氧丙烷、乙酸甲酯、乙酸乙酯、乙酸丙酯、丁酸甲酯、丙酸乙酯、丙酸甲酯、二甲基甲酰胺、1,3-二氧戊烷、1,2-二乙氧基乙烷、1,2-二甲氧基乙烷、或1,2-二丁氧基中的一种或几种的组合。
该锂盐可包括氯化锂(LiCl)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、甲磺酸锂(LiCH3SO3)、三氟甲磺酸锂(LiCF3SO3)、六氟砷酸锂(LiAsF6)、六氟锑酸锂(LiSbF6)、高氯酸锂(LiClO4)、Li[BF2(C2O4)]、Li[PF2(C2O4)2]、Li[N(CF3SO2)2]、Li[C(CF3SO2)3]及双草酸硼酸锂(LiBOB)中的一种或多种。
实施例1
将4g双马来酰亚胺(BMI)及2.207g二氨基二苯甲烷溶解在NMP中,去除溶液中的氧气,加热至130℃反应6小时,冷却后用乙醇沉淀,洗涤烘干,得到的产物1由式(5)表示。
按质量百分比,将78%的LiNi1/3Co1/3Mn1/3O2、2%的产物1、10%的PVDF和10%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6 溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
实施例2
按质量百分比,将92%的LiNi1/3Co1/3Mn1/3O2、2%的产物1、3%的PVDF和3%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥,压缩并裁剪制成电池正极。
按质量百分比,将94%的石墨负极、3.5%的PVDF和2.5%的导电石墨混合,用NMP分散,将此浆料涂布于铜箔上,于100℃真空干燥,压缩并裁剪制成电池负极。将正负极匹配,采用卷绕工艺制成63.5mm*51.5mm*4.0mm的软包电池。
比较例1
按质量百分比,将80%的LiNi1/3Co1/3Mn1/3O2、10%的PVDF和10%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极材料。以锂片作为对电极,电解液为1M LiPF6 溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
比较例2
按质量百分比,将94%的LiNi1/3Co1/3Mn1/3O2、3%的PVDF和3%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥,压缩并裁剪制成电池正极。
按质量百分比,将94%的石墨负极、3.5%的PVDF和2.5%的导电石墨混合,用N-甲基吡咯烷酮分散,将此浆料涂布于铜箔上,于100℃真空干燥,压缩并裁剪制成电池负极。将正负极匹配,采用卷绕工艺制成63.5mm*51.5mm*4.0mm的软包电池。
电化学性能测试
将实施例1与比较例1的电池在2.8V~4.3V电压范围之间以0.2C电流恒流充电,0.2C电流恒流放电,循环50次。
请参阅图1,实施例1的电池首次放电效率略低,且比容量与比较例1相比,前几次放电容量偏低,而循环若干次之后(约25次)与比较例1保持一致。总体而言,产物1的加入对电池电化学性能影响并不显著,不会对锂离子电池的充放电循环性能产生不利影响。
电池过充测试。
请参阅图2及图3,将实施例2和比较例2中的电池进行过充测试,充电速率为1C,截止电压为10V,图2及图3中的内插图为各自对应的电池过充后的照片。从图2明显可以看出,含有产物1的电池最高温度仅85℃左右,过充过程中电池未出现明显形变;而不含产物1的电池过充至8V时已经起火燃烧,温度高达500℃。因此,产物1的添加能够大大提高电池耐过充的性能。
实施例3
将3.2 g N-苯基马来酰亚胺及2.34 g二氨基二苯甲烷溶解在NMP中,去除溶液中的氧气,加热至125℃反应8小时,冷却后用乙醇沉淀,洗涤烘干,得到产物2。
按质量百分比,将75%的LiNi1/3Co1/3Mn1/3O2、5%的产物2、10%的PVDF和10%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6 溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试及过充性能测试,实验结果如表1所示。
实施例4
按质量百分比,将92%的LiNi1/3Co1/3Mn1/3O2、2%的产物2、3%的PVDF和3%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥,压缩并裁剪制成电池正极。
按质量百分比,将94%的石墨负极、3.5%的PVDF和2.5%的导电石墨混合,用NMP分散,将此浆料涂布于铜箔上,于100℃真空干燥,压缩并裁剪制成电池负极。将正负极匹配,采用卷绕工艺制成63.5mm*51.5mm*4.0mm的软包电池。
实施例5
4g N,N’-乙烯基双马来酰亚胺及2.75 g二氨基二苯甲烷溶解在NMP中,去除溶液中的氧气,加热至135℃反应7小时,冷却后用乙醇沉淀,洗涤烘干,得到产物3。
按质量百分比,将78%的LiNi1/3Co1/3Mn1/3O2、2%的产物2、10%的PVDF和10%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6 溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试及过充性能测试,实验结果如表1所示。
实施例6
按质量百分比,将92%的LiNi1/3Co1/3Mn1/3O2、2%的产物3、3%的PVDF和3%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥,压缩并裁剪制成电池正极。
按质量百分比,将94%的石墨负极、3.5%的PVDF和2.5%的导电石墨混合,用NMP分散,将此浆料涂布于铜箔上,于100℃真空干燥,压缩并裁剪制成电池负极。将正负极匹配,采用卷绕工艺制成63.5mm*51.5mm*4.0mm的软包电池。
表1
50次恒流充放电比容量 过充电至10V
实施例1 151mAh/g --
实施例2 -- 未出现明显形变
实施例3 150mAh/g --
实施例4 -- 未出现明显形变
实施例5 149mAh/g --
实施例6 -- 未出现明显形变
比较例1 153mAh/g --
比较例2 -- 燃烧
本发明实施例采用有机二胺类化合物与马来酰亚胺类单体通过聚合反应得到的聚合物,将该聚合物加入到正极材料中,在不影响锂离子电池充放电循环性能的前提下,能够提高锂离子电池的电极稳定性及热稳定性,起到过充保护的作用。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (14)

1.一种锂离子电池正极复合材料,包括正极活性物质及与该正极活性物质复合的聚合物,该聚合物包覆在所述正极活性物质的表面用于过充保护,该聚合物由有机二胺类化合物与马来酰亚胺类单体通过聚合反应得到,该聚合物为体型聚合物,该聚合物的分子量为1000~500000,该马来酰亚胺类单体包括马来酰亚胺单体、双马来酰亚胺单体、多马来酰亚胺单体及马来酰亚胺类衍生物单体中的至少一种,该有机二胺类化合物的分子通式由式(3)或式(4)表示,其中R3与R4为二价有机取代基,
H2N-R3-NH2 (3);
2.如权利要求1所述的锂离子电池正极复合材料,其特征在于,R3为-(CH2)n-,-CH2-O-CH2-,-CH(NH)-(CH2)n-,伸苯基,伸联苯基,取代的伸苯基,取代的伸联苯基,二价形式的环脂族基团,R4为-(CH2)n-,-O-,-S-,-S-S-,-CH2-O-CH2-,-CH(NH)-(CH2)n-或-CH(CN)(CH2)n-,n=1~12。
3.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该有机二胺类化合物包括乙二胺、苯二胺、二氨基二苯甲烷及二氨基二苯醚中的至少一种。
4.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该马来酰亚胺单体的分子通式由式(1)表示,其中R1为单价有机取代基:
5.如权利要求4所述的锂离子电池正极复合材料,其特征在于,R1为-R,-RNH2R,-C(O)CH3,-CH2OCH3,-CH2S(O)CH3,-C6H5,-C6H4C6H5,-CH2(C6H4)CH3,或单价形式的环脂族基团;R为1-6个碳的烃基。
6.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该马来酰亚胺单体选自N-苯基马来酰亚胺、N-(邻甲基苯基)-马来酰亚胺、N-(间甲基苯基)-马来酰亚胺、N-(对甲基苯基)-马来酰亚胺、N-环己烷基马来酰亚胺、马来酰亚胺、马来酰亚胺基酚、马来酰亚胺基苯并环丁烯、二甲苯基马来酰亚胺、N-甲基马来酰亚胺、乙烯基马来酰亚胺、硫代马来酰亚胺、马来酰亚胺酮、亚甲基马来酰亚胺、马来酰亚胺甲醚、马来酰亚胺基乙二醇及4-马来酰亚胺苯砜中的一种或多种。
7.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该双马来酰亚胺单体的分子通式由式(2)表示,其中R2为二价有机取代基:
8.如权利要求7所述的锂离子电池正极复合材料,其特征在于,R2为-R-,-RNH2R-,-C(O)CH2-,-CH2OCH2-,-C(O)-,-O-,-O-O-,-S-,-S-S-,-S(O)-,-CH2S(O)CH2-,-(O)S(O)-,-CH2(C6H4)CH2-,-CH2(C6H4)(O)-,-R-Si(CH3)2-O-Si(CH3)2-R-,-C6H4-,-C6H4C6H4-,二价形式的环脂族基团,或-(C6H4)-R5-(C6H4)-,R5为-CH2-,-C(O)-,-C(CH3)2-,-O-,-O-O-,-S-,-S-S-,-S(O)-,或-(O)S(O)-,R为1~6个碳的烃基。
9.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该双马来酰亚胺单体选自N,N’-双马来酰亚胺-4,4’-二苯基代甲烷、1,1’-(亚甲基双-4,1-亚苯基)双马来酰亚胺、N,N’-(1,1’-二苯基-4,4’-二亚甲基)双马来酰亚胺、N,N’-(4-甲基-1,3-亚苯基)双马来酰亚胺、1,1’-(3,3’-二甲基-1,1’-二苯基-4,4’-二亚甲基)双马来酰亚胺、N,N’-乙烯基双马来酰亚胺、N,N’-丁烯基双马来酰亚胺、N,N’-(1,2-亚苯基)双马来酰亚胺、N,N’-(1,3-亚苯基)双马来酰亚胺、N,N’-双马来酰亚胺硫、N,N’-双马来酰亚胺二硫、N,N’-双马来酰亚胺亚胺酮、N,N’-亚甲基双马来酰亚胺、双马来酰亚胺甲醚、1,2-双马来酰亚胺基-1,2-乙二醇、N,N’-4,4’-二苯醚-双马来酰亚胺及4,4’-双马来酰亚胺-二苯砜中的一种或多种。
10.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该聚合物在该正极复合材料中的质量百分含量为0.1%~5%。
11.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该正极活性物质包括层状结构的锂-过渡金属氧化物,尖晶石型结构的锂-过渡金属氧化物以及橄榄石型结构的锂-过渡金属氧化物中的至少一种。
12.一种锂离子电池,包括正极、负极、隔膜及电解质溶液,该正极包括如权利要求1-11中任意一项所述的锂离子电池正极复合材料。
13.一种如权利要求1-11中任意一项所述的锂离子电池正极复合材料的制备方法,包括:
将有机二胺类化合物在有机溶剂中溶解形成二胺溶液;
将马来酰亚胺类单体与有机溶剂混合并预加热,形成马来酰亚胺类单体的溶液;
将该马来酰亚胺类单体的溶液与正极活性物质先进行混合并预加热;以及
将二胺溶液加入含有正极活性物质的马来酰亚胺类单体的溶液中,混合搅拌使反应充分进行,直接在该正极活性物质的表面形成聚合物,该聚合物包覆在所述正极活性物质的表面用于过充保护。
14.如权利要求13所述的锂离子电池正极复合材料的制备方法,其特征在于,该马来酰亚胺类单体与该有机二胺类化合物的摩尔比为1:2~4:1。
CN201410323788.XA 2014-07-09 2014-07-09 正极复合材料及其制备方法以及锂离子电池 Active CN105336954B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410323788.XA CN105336954B (zh) 2014-07-09 2014-07-09 正极复合材料及其制备方法以及锂离子电池
PCT/CN2015/081511 WO2016004811A1 (zh) 2014-07-09 2015-06-16 正极复合材料及其制备方法以及锂离子电池
US15/401,480 US20170117590A1 (en) 2014-07-09 2017-01-09 Cathode composite material, lithium ion battery using the same and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410323788.XA CN105336954B (zh) 2014-07-09 2014-07-09 正极复合材料及其制备方法以及锂离子电池

Publications (2)

Publication Number Publication Date
CN105336954A CN105336954A (zh) 2016-02-17
CN105336954B true CN105336954B (zh) 2018-10-26

Family

ID=55063564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410323788.XA Active CN105336954B (zh) 2014-07-09 2014-07-09 正极复合材料及其制备方法以及锂离子电池

Country Status (3)

Country Link
US (1) US20170117590A1 (zh)
CN (1) CN105336954B (zh)
WO (1) WO2016004811A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD280853A1 (de) * 1989-03-21 1990-07-18 Akad Nauk Sssr Bindemittel fuer elektroden, vorzugsweise fuer polymerelektroden
JP3311402B2 (ja) * 1992-11-19 2002-08-05 三洋電機株式会社 二次電池
JP5593664B2 (ja) * 2009-09-29 2014-09-24 住友ベークライト株式会社 リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
TWI473321B (zh) * 2012-12-12 2015-02-11 Ind Tech Res Inst 鋰電池與其形成方法
CN103050706B (zh) * 2013-01-09 2015-06-17 能动新材料南通有限公司 一种锂电池用马来酰亚胺添加剂及相应锂电池正极配方

Also Published As

Publication number Publication date
CN105336954A (zh) 2016-02-17
US20170117590A1 (en) 2017-04-27
WO2016004811A1 (zh) 2016-01-14

Similar Documents

Publication Publication Date Title
CN105576245B (zh) 锂离子电池
CN105244539B (zh) 添加剂、电解质溶液及锂离子电池
CN104269513B (zh) 正极复合材料及锂离子电池以及其制备方法
CN105762336B (zh) 负极复合材料及其制备方法以及锂离子电池
US10270103B2 (en) Cathode electrode material and lithium sulfur battery using the same
CN105720244B (zh) 正极复合材料及锂离子电池以及其制备方法
US10333147B2 (en) Cathode electrode material and lithium sulfur battery using the same
US20180053938A1 (en) Electrode binder, cathode electrode material, and lithium ion battery
CN105449217B (zh) 正极复合材料及锂离子电池
US20170226291A1 (en) Electrode binder, cathode electrode material and lithium ion battery
CN105336982B (zh) 锂离子电池安全添加剂、电解液及锂离子电池
CN106159274B (zh) 负极材料以及应用该负极材料的锂离子电池
CN105336954B (zh) 正极复合材料及其制备方法以及锂离子电池
CN105633410B (zh) 负极材料以及应用该负极材料的锂离子电池
CN105514440B (zh) 负极材料及应用该负极材料的锂离子电池
CN115528244A (zh) 导电粘结剂及其制备方法、硅负极、锂电池及车辆

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant