CN105274226A - 基于AgNCs/HpDNA探针的microRNA SDA检测法 - Google Patents

基于AgNCs/HpDNA探针的microRNA SDA检测法 Download PDF

Info

Publication number
CN105274226A
CN105274226A CN201510703882.2A CN201510703882A CN105274226A CN 105274226 A CN105274226 A CN 105274226A CN 201510703882 A CN201510703882 A CN 201510703882A CN 105274226 A CN105274226 A CN 105274226A
Authority
CN
China
Prior art keywords
mir
sda
detection method
sequence
agncs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510703882.2A
Other languages
English (en)
Other versions
CN105274226B (zh
Inventor
崔大祥
张晶璞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201510703882.2A priority Critical patent/CN105274226B/zh
Publication of CN105274226A publication Critical patent/CN105274226A/zh
Application granted granted Critical
Publication of CN105274226B publication Critical patent/CN105274226B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于AgNCs/HpDNA探针的microRNA?SDA检测法,特别是一种胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,更具体为一种基于发夹型DNA模板合成银纳米团簇探针结合等温扩增进行microRNA检测的方法,所述方法利用发夹型DNA模板合成银纳米团簇,并将其作为新型分子信标,在引物垂悬端富G序列介导的链取代等温扩增反应中,借助杂交产生的富G荧光增强效应,实现对两种胃癌血浆miRNA标志物的双重检测。该法特异性高、反应时间短、用料少、操作步骤简便,为建立快速简便的新型miRNA检测方法开辟了新方向。

Description

基于AgNCs/HpDNA探针的microRNA SDA检测法
技术领域
本发明涉及医学和分子诊断领域,是一种基于AgNCs/HpDNA探针的microRNASDA检测法,特别是涉及一种基于发夹型DNA模板合成银纳米团簇探针结合链取代等温扩增的双重microRNA检测方法。
背景技术
MicroRNA(miRNA)是一类长度约为21nt的内源非编码小RNA分子,其可通过与mRNA之间精确或非精确互补配对,参与调控mRNA的表达水平。多个miRNA可协同调控一个mRNA,或一个miRNA也可同时影响多个靶基因,从而形成一个高度复杂的调控网络,影响着从分子到细胞再到组织水平的一系列生物功能。miRNA表达异常与疾病及癌症发生密切相关。尤为重要的是,已发现多种miRNA标志物可用于癌症早期诊断、预后及进程监控。其中,上海交通大学崔大祥课题组用微阵列芯片miRNA全基因组扫描结合qRT-PCR技术筛选得到miR-16-5p和miR-19b-3p两种血浆miRNA标志物,并指出二者可用于指示胃癌发生发展进程(Zhang,J.,Song,Y.,Zhang,C.,etal.(2015)CirculatingmiR-16-5pandmiR-19b-3pastwonovelpotentialbiomarkerstoindicateprogressionofgastriccancer.Theranostics,5,733-745.)。其中,qRT-PCR是进行miRNA定量检测的金标准,但由于其需分步进行逆转录和热循环扩增及检测,导致该法耗时且费力。所以仍有必要进一步发展便捷快速的miRNA检测新方法。
等温扩增技术的出现使核酸扩增技术因摆脱了热循环变性步骤和仪器的束缚,而受到了众多研究者的关注。作为第一代等温扩增技术,链取代扩增Strand-displacementamplification(SDA)受DNA修复中碱基切除修复机制的启发迅速发展起来,至今,已发展出包括多引物SDA(multiplyprimedSDA),剪切诱导SDA(nicking-initiatedSDA),环介导等温扩增(loop-mediatedisothermalamplification(LAMP))和结构转换诱发SDA(structure-switching-triggeredSDA)等多种亚型。其中,由于结构转换诱发SDA不需要特殊设计剪切位点和额外使用剪切酶,而仅通过待测靶核酸与发夹结构探针的结合并导致后者打开而诱导SDA反应,特别适合对短链核酸分子及miRNA进行检测。目前,常用于结构转换诱发SDA的检测探针是一端连接有荧光染料及另一端连接荧光淬灭子的发夹型DNA分子信标(molecularbeacon(MB)),但由于其需要对DNA进行偶联修饰,使检测成本增高,检测应用受限。
随着以DNA模板合成银纳米团簇(DNA-templatedsilvernanoclusters(AgNCs/DNA))的兴起,使得可能发展出除荧光染料或量子点修饰以外的新型核酸荧光探针。银纳米团簇是仅由几个或几十个银原子组成的直径小于1nm的集合体,其易于合成,且荧光可调控。更重要的是,AgNCs/DNA中由于DNA模板的引入,可仅通过改变DNA序列、长度和构象来获得特定的光物理学特性。近来,已有多种DNA序列合成AgNCs用于核酸或miRNA检测。Yang和Shah以5’-CCTCCTTCCTCC-3’为AgNCs成核区序列,并连接以miRNA杂交序列,借助该探针的荧光淬灭效应,对miR-160和miR-172进行了检测(Yang,S.W.andVosch,T.(2011)RapiddetectionofmicroRNAbyasilvernanoclusterDNAprobe.Anal.Chem.,83,6935-6939.)。Liu利用指数等温扩增反应生成用于红色荧光AgNCs合成的DNA模板,并借助荧光强度与DNA模板浓度间关系,对miR-141进行了测定。这些检测或借助荧光淬灭效应,或分别进行信号扩增和信号检测,导致特异性不好,或操作繁琐(Liu,Y.-Q.,Zhang,M.,Yin,B.-C.andYe,B.-C.(2012)AttomolarultrasensitivemicroRNAdetectionbyDNA-scaffoldedsilver-nanoclusterprobebasedonisothermalamplification.Anal.Chem.,84,5165-5169.)。而随着Yeh报道了杂交介导的富G序列对AgNCs/DNA的荧光增强效应,使建立基于light-up信号的核酸检测平台成为可能(Yeh,H.C.,Sharma,J.,Han,J.J.,Martinez,J.S.andWerner,J.H.(2010)ADNA-silvernanoclusterprobethatfluorescesuponhybridization.NanoLett.,10,3106-3110.)。但是,单纯的杂交检测虽然简便,却也很难确保较好的特异性。因而,为进一步提高检测特异性,简化操作步骤,我们首次将基于AgNCs/DNA的富G序列荧光增强效应与结构转换诱发SDA扩增技术结合,并研究二者的相互作用,以期实现可调控、简便及高特异检测。
发明内容
本申请针对前期筛选得到的两种miRNA标志物miR-16-5p和miR-19b-3p,设计并构建两种AgNCs/HpDNA探针,验证该探针的富G序列荧光增强性能,在此基础上,对两种miRNA进行双重检测。本发明的目的是提供一种基于AgNCs/HpDNA探针的microRNASDA检测法,特别是一种胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,具体是一种基于发夹型DNA模板合成银纳米团簇(AgNCs/HpDNA)探针结合SDA反应对miRNA进行检测的方法。
本发明的目的是通过以下技术方案实现的:
第一方面,本发明提供一种胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,所述检测方法包括:以AgNCs/HpDNAs为分子探针,在含富G序列垂悬端的引物作用下进行SDA反应,借助富G序列杂交荧光增强效应,实现miR-16-5p、miR-19b-3p同时检测;
其中,所述miR-16-5p的序列如SEQIDNO:2所示;所述miR-19b-3p的序列如SEQIDNO:6所示。
优选地,所述AgNCs/HpDNAs中,用于检测miR-16-5p的HpDNA的序列如SEQIDNO:1所示,用于检测miR-19b-3p的HpDNA序列如SEQIDNO:5所示。
优选地,所述SDA反应中,用于检测miR-16-5p的引物序列如SEQIDNO:3,用于检测miR-19b-3p的引物序列如SEQIDNO:7所示。
优选地,所述检测方法中SDA反应的总体积为50μL,其中,
优选地,所述缓冲液1×Nb2.1包括50mMNaAc、10mMTris-HAc、10mMMg(Ac)2和100μg/mLBSA,缓冲液pH7.9(25℃)。
优选地,所述SDA反应的反应条件为:在55℃环境中孵育55min。
本发明所采用的技术方案是:
如图1所示,用于合成AgNCs的发夹型探针(HpDNA)含三个区,分别为颈区HpS、环区HpL和3’垂悬区HpO。其中,特别设计的垂悬区富含C序列用于合成AgNCs,且HpRO(5’-CCCTTAATCCCC-3’)和HpGO(5’-CCCCCCCCCCCCCCCGCCCGCC-3’)在杂交作用下与互补链中的富G垂悬序列靠近而分别得到红色或绿色荧光增强信号。用于miR-16-5p和miR-19b-3p的检测探针分别为RED16(7s)C和GRE19b(5s)C,其序列如SEQIDNO:1和SEQIDNO:5所示。
而待测miRNA序列分别与5’端颈部HpS部分序列及环区HpL互补,对应序列区域分别为MSc和MLc,该设计有利于更好地打开发夹结构,相应的靶miRNA为miR-16-5p和miR-19b-3p,其序列如SEQIDNO:2和SEQIDNO:6所示。
引物序列也由两个区域组成,分别为颈区互补区(PSc:PRSc,5’-TA-3’;PGSc,5’-TATACG-3’)和富G序列垂悬区(PO:5’-GGGTGGGGTGGGGTGGGG-3’),相应HpDNA的引物分别为Pri2和Pri6(7s),其序列如SEQIDNO:3和SEQIDNO:7所示。
miRNA的双重检测机制如下。首先,在发夹型探针上生成AgNCs,两种探针在特定波长处无荧光发射或较弱。在有靶miRNA时,其通过与AgNCs/HpDNA杂交,而打开发夹结构。随后,引物杂交至发夹探针颈部3’端,在聚合酶和dNTP的共同作用下,引导聚合酶链反应,延伸得到HpDNA的互补链HpDNAc(RED16(7s)G与RED16(7s)C互补,GRE19b(5s)G与GRE19b(5s)C互补,其序列分别如SEQIDNO:4和SEQIDNO:8所示),从而使杂交双链AgNCs/HpDNA-HpDNAc中富G垂悬互补序列与AgNCs靠近,并得到位于某特定波长处的两种探针各自的荧光增强信号。同时,先前与HpDNA结合的靶miRNA序列被取代并释放,进入下一个循环反应。相反,在没有靶miRNA时,HpDNA保持闭合状态,引物无法结合,进而也无法扩增生成HpDNAc,最终,无法获得该波长处的荧光增强信号。
与现有技术相比,本发明的有益效果是:
第一,基于AgNCs/HpDNA探针及其富G序列荧光增强效应,可实现miRNA的高特异性检测。相比SYBRGreen随意插入双链核酸,及MB只要发夹探针打开即可产生荧光信号响应的机制,本发明所用探针仅在形成带富G垂悬序列的互补序列并与之杂交后,才会生成荧光增强信号,发夹探针打开及任何中间体杂交双链均不会产生该信号,因而具有高特异性。
第二,杂交介导的富G序列增强效应对一个反应能产生双重检测信号,即荧光增强程度和荧光淬灭程度,为检测产物判断提供更丰富的信息。
第三,发夹型DNA既作为SDA反应的模板,又作为AgNCs的生成模板,缩短了反应时间并节省了反应材料。通过将AgNO3与NaBH4按照一定比例与发夹型DNA混合,即可制备得到AgNCs/HpDNA探针。尽管该探针需要静置18h以使AgNCs充分老化,但其可以一次性大量制备并长期储存,且静置时间也可缩短至4h。在此基础上,SDA反应时间仅一步完成,时长55min,也可进一步缩短至30min。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为检测原理示意图;
其中,①HpDNA模板上生成AgNCs;②靶miRNA杂交互补于HpDNA的5’颈区和环区;③HpDNA打开;④富G垂悬引物结合于HpDNA3’颈区;⑤在聚合酶作用下延伸形成富G垂悬互补链HpDNAc;⑥靶miRNA释放,进入下一循环SDA反应;
图2为双重miRNA检测:基于RED16(7s)C及GRE19b(5s)C探针的双重miRNA检测荧光发射光谱,激发波长分别为580nm(A),490nm(C),430nm(E);基于RED16(7s)C及GRE19b(5s)C检测探针的待测核酸荧光发射峰变化值,分别为580nm波长激发下增强值(B),490nm波长激发下增强值(D),430nm波长激发下减弱值(F)。h161h19b0指仅1μMmiR-16-5p,h160h19b1指仅1μMmiR-19b-3p,h161h19b1指1μMmiR-16-5p和1μMmiR-19b-3p;
图3为基于RED16(7s)C及GRE19b(5s)C探针的双重miRNA检测的凝胶电泳图;其中,泳道1-6依次为不含AgNCs的核酸标志物RED16(7s)C、RED16(7s)G、RED16(7s)C-G、GRE19b(5s)C、GRE19b(5s)G及GRE19b(5s)C-G,泳道7-10依次为h160h19b0、h161h19b0、h160h19b1和h161h19b1,h161h19b0指仅1μMmiR-16-5p,h160h19b1指仅1μMmiR-19b-3p,h161h19b1指1μMmiR-16-5p和1μMmiR-19b-3p。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本申请所涉序列如下:
RED16(7s)C(SEQIDNo.1):tatacgccaatatttacgtgctgctaattggcgtatacccttaatcccc
hsa-miR-16-5p(SEQIDNo.2):uagcagcacguaaauauuggcg
Pri2(SEQIDNo.3):gggtggggtggggtggggta
RED16(7s)G(SEQIDNo.4):gggtggggtggggtggggtatacgccaattagcagcacgtaaatattggcgtata
GRE19b(5s)C(SEQIDNo.5):tatacgtcagttttgcatggatttgcacaactgacgtatacccccccccccccccgcccgcc
hsa-miR-19b-3p(SEQIDNo.6):ugugcaaauccaugcaaaacuga
Pri6(7s)(SEQIDNo.7):gggtggggtggggtggggtatacg
GRE19b(5s)G(SEQIDNo.8):gggtggggtggggtggggtatacgtcagttgtgcaaatccatgcaaaactgacgtata
(1)AgNCs/HpDNAs探针合成
按照Yeh文中方法进行合成。HpDNAs(包括RED16(7s)C和GRE19b(5s)C),AgNO3,NaBH4起始浓度分别为100μM,1mM和1mM。磷酸盐缓冲液储备浓度为200mM(Pi,pH8.0)。等摩尔的AgNO3和NaBH4分别按照1RED16(7s)C:25AgNO3:25NaBH4和1GRE19b(5s)C:17AgNO3:17NaBH4的比例加入到HpDNA中,使HpDNA终浓度为10μM(Pi,20mM,pH8.0)。其中,NaBH4需要新鲜配置,并最后在30s内快速加入到Ag+/HpDNA的混合液中,之后,剧烈震荡45s~1min。所得溶液于暗环境中室温下放置18h,以得到稳定的AgNCs/HpDNAs探针。
(2)双重miRNA检测
每个反应管中为50μLSDA反应液,包含以下成分:1×Nb2.1自制缓冲液(缓冲液pH7.925℃)(50mMNaAc、10mMTris-HAc、10mMMg(Ac)2和100μg/mLBSA)200μMdNTPs、10UBsu聚合酶(无DTT)、AgNCs/RED16(7s)C和AgNCs/GRE19b(5s)C(2.5μMHpDNA)、0μM和1μM进行不同组合的miR-16-3p和miR-19b-3p,以及2.5μM引物Pri2和2.5μMPri6(7s)。所得反应液置于55℃条件下孵育55min,随后于4℃暗环境中保存,即可在荧光分光光度计上进行荧光检测,实验重复3次。
(3)结果
双重核酸检测结果如图2所示。由图可见,在两种探针都存在的双重检测体系中,当仅加入miR-16-5p或miR-19b-3p时,在特定波长下二者产生了各自的特异性荧光增强信号(h161h19b0,λex=580nm;h160h19b1,λex=490nm),此外,430nm波长激发下miR-19b-3p表现了荧光淬灭现象。而两种miRNA在对方激发波长处荧光变化微弱,甚至出现与特异性响应信号相反的变化。在加入两种miRNA的混合物后(h161h19b1),三种激发波长下均产生正响应信号。以上结果表明该方法可以进行双重检测。
凝胶电泳结果显示双重检测体系中,相比无待测靶miRNA的空白对照,h161h19b0和h161h19b1均在上层条带的下方有一弱条带,与RED16(7s)C-G处于同一水平,而h160h19b1和h161h19b1均在上层条带的上方有一弱条带,与GRE19b(5s)C-G处于同一水平(图3),表明基于两探针的双重检测SDA反应顺利进行。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (6)

1.一种胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,其特征在于,所述检测方法包括:以AgNCs/HpDNAs为分子探针,在含富G序列垂悬端的引物作用下进行SDA反应,借助富G序列杂交荧光增强效应,在580nm,490nm和430nm波长激发下,实现miR-16-5p、miR-19b-3p同时检测;其中,所述miR-16-5p的序列如SEQIDNO:2所示;所述miR-19b-3p的序列如SEQIDNO:6所示。
2.根据权利要求1所述的胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,其特征在于,所述AgNCs/HpDNAs中,用于检测miR-16-5p的HpDNA的序列如SEQIDNO:1所示,用于检测miR-19b-3p的HpDNA序列如SEQIDNO:5所示。
3.根据权利要求1所述的胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,其特征在于,所述SDA反应中,用于检测miR-16-5p的引物序列如SEQIDNO:3,用于检测miR-19b-3p的引物序列如SEQIDNO:7所示。
4.根据权利要求1至3任一项所述的胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,其特征在于,所述检测方法中SDA反应的总体积为50μL,其中,
5.根据权利要求4所述的胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,其特征在于,所述缓冲液1×Nb2.1包括50mMNaAc、10mMTris-HAc、10mMMg(Ac)2和100μg/mLBSA,缓冲液pH7.9。
6.根据权利要求4所述的胃癌血浆miRNA标志物miR-16-5p、miR-19b-3p双重SDA检测方法,其特征在于,所述SDA反应的反应条件为:在55℃环境中孵育55min。
CN201510703882.2A 2015-10-26 2015-10-26 基于AgNCs/HpDNA探针的microRNA SDA检测用SDA反应液 Expired - Fee Related CN105274226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510703882.2A CN105274226B (zh) 2015-10-26 2015-10-26 基于AgNCs/HpDNA探针的microRNA SDA检测用SDA反应液

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510703882.2A CN105274226B (zh) 2015-10-26 2015-10-26 基于AgNCs/HpDNA探针的microRNA SDA检测用SDA反应液

Publications (2)

Publication Number Publication Date
CN105274226A true CN105274226A (zh) 2016-01-27
CN105274226B CN105274226B (zh) 2019-01-11

Family

ID=55144053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510703882.2A Expired - Fee Related CN105274226B (zh) 2015-10-26 2015-10-26 基于AgNCs/HpDNA探针的microRNA SDA检测用SDA反应液

Country Status (1)

Country Link
CN (1) CN105274226B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018366A (zh) * 2016-05-09 2016-10-12 福建中医药大学 一种荧光dna-银纳米簇及其制备方法以及应用
CN106834514A (zh) * 2017-03-22 2017-06-13 魏敏杰 一种可直接对微小核糖核酸(microRNA)进行半定量的探针
CN107436298A (zh) * 2017-07-24 2017-12-05 中南大学 基于含重复agggtt序列的银纳米簇探针对阿尔兹海默症标志物荧光检测的方法
CN110129417A (zh) * 2019-05-23 2019-08-16 济南国科医工科技发展有限公司 基于变色银纳米簇和杂交链式反应的miRNA检测方法
CN113433100A (zh) * 2021-05-25 2021-09-24 上海市公共卫生临床中心 基于dna合成银纳米团簇与色氨酸光化学反应的血浆色氨酸和白蛋白联合检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073569A (zh) * 2014-07-21 2014-10-01 广州市妇女儿童医疗中心 用于诊断手足口病极重症的分子标记物及其检测方法与试剂盒
CN104357566A (zh) * 2014-11-04 2015-02-18 中国科学院北京基因组研究所 肝癌检测试剂盒

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073569A (zh) * 2014-07-21 2014-10-01 广州市妇女儿童医疗中心 用于诊断手足口病极重症的分子标记物及其检测方法与试剂盒
CN104357566A (zh) * 2014-11-04 2015-02-18 中国科学院北京基因组研究所 肝癌检测试剂盒

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHRIS I. RICHARDS等: "Oligonucleotide-Stabilized Ag Nanocluster Fluorophores", 《J. AM. CHEM. SOC.》 *
HSIN-CHIH YEH等: "A DNA -Silver Nanocluster Probe That Fluoresces upon Hybridization", 《 NANO LETT. 》 *
HSIN-CHIH YEH等: "A Fluorescence Light-Up Ag Nanocluster Probe That Discriminates Single-Nucleotide Variants by Emission Color", 《J. AM. CHEM. SOC.》 *
JINGPU ZHANG等: "Circulating MiR-16-5p and MiR-19b-3p as two novel potential biomarkers to indicate progression of gastric cancer", 《THERANOSTICS 》 *
SEONG WOOK YANG等: "Rapid Detection of MicroRNA by a Silver Nanocluster DNA Probe - Analytical Chemistry", 《ANAL. CHEM.》 *
YU-QIANG LIU等: "Attomolar Ultrasensitive MicroRNA Detection by DNA-Scaffolded Silver-Nanocluster Probe Based on Isothermal Amplifi cation", 《 ANAL. CHEM.》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018366A (zh) * 2016-05-09 2016-10-12 福建中医药大学 一种荧光dna-银纳米簇及其制备方法以及应用
CN106018366B (zh) * 2016-05-09 2019-05-28 福建中医药大学 一种荧光dna-银纳米簇及其制备方法以及应用
CN106834514A (zh) * 2017-03-22 2017-06-13 魏敏杰 一种可直接对微小核糖核酸(microRNA)进行半定量的探针
CN107436298A (zh) * 2017-07-24 2017-12-05 中南大学 基于含重复agggtt序列的银纳米簇探针对阿尔兹海默症标志物荧光检测的方法
CN107436298B (zh) * 2017-07-24 2019-08-23 中南大学 基于含重复agggtt序列的银纳米簇探针对阿尔兹海默症标志物荧光检测的方法
CN110129417A (zh) * 2019-05-23 2019-08-16 济南国科医工科技发展有限公司 基于变色银纳米簇和杂交链式反应的miRNA检测方法
CN110129417B (zh) * 2019-05-23 2023-04-25 济南国科医工科技发展有限公司 基于变色银纳米簇和杂交链式反应的miRNA检测方法
CN113433100A (zh) * 2021-05-25 2021-09-24 上海市公共卫生临床中心 基于dna合成银纳米团簇与色氨酸光化学反应的血浆色氨酸和白蛋白联合检测方法

Also Published As

Publication number Publication date
CN105274226B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
Ye et al. Research advances in the detection of miRNA
Deng et al. Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy
CN103789435B (zh) 一种基于级联恒温扩增的miRNA荧光检测试剂盒及方法
US20220010358A1 (en) Method for detection of rna
CN105274226A (zh) 基于AgNCs/HpDNA探针的microRNA SDA检测法
Zhang et al. Multiplexed detection of microRNAs by tuning DNA-scaffolded silver nanoclusters
CN102719526B (zh) 一种利用恒温扩增反应合成荧光纳米银簇探针定量检测microRNA的分析方法
Chi et al. Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye
EP4372102A2 (en) Target reporter constructs and uses thereof
Dai et al. Catalytic hairpin assembly gel assay for multiple and sensitive microRNA detection
Qing et al. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair
CN110734967B (zh) 一种接头组合物及其应用
US20120283106A1 (en) Methods to detect and quantify rna
Li et al. Efficient dual-amplification system for G-quadruplex-based non-enzymatic fluorescence detection of microRNA
Chen et al. Imaging of intracellular-specific microRNA in tumor cells by symmetric exponential amplification-assisted fluorescence in situ hybridization
Zhou et al. Ψ-type hybridization and CRISPR/Cas12a-based two-stage signal amplification for microRNA detection
Li et al. DNA polymerase/NEase-assisted signal amplification coupled with silver nanoclusters for simultaneous detection of multiple microRNAs and molecular logic operations
CN110628888A (zh) 一组miRNA-21触发组装的核酸探针及细胞荧光成像
CN109913534A (zh) 一种基于级联DNA链循环反应和荧光共振能量转移效应的两种miRNA同时检测的方法
CN111549104B (zh) 一种非诊断目的的基于长链DNA支架的DNA纳米带的circRNA的检测方法
Shang et al. AND-gated ratiometric fluorescence biosensing of dual-emissive Ag nanoclusters based on transient recycling amplification of bivariate targeting DNA
CN116515959A (zh) 一种基于脱氧核酶增强的非线性杂交链式反应的核酸检测方法
CN103789447B (zh) 一种5′端tRNA半分子检测方法
CN105483212A (zh) 基于AgNCs/HpDNA探针的microRNA SDA检测法
CN105274227B (zh) 基于AgNCs/HpDNA探针的microRNA SDA检测用SDA反应液

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190111