CN105264801B - 译码的方法和设备 - Google Patents

译码的方法和设备 Download PDF

Info

Publication number
CN105264801B
CN105264801B CN201380002793.4A CN201380002793A CN105264801B CN 105264801 B CN105264801 B CN 105264801B CN 201380002793 A CN201380002793 A CN 201380002793A CN 105264801 B CN105264801 B CN 105264801B
Authority
CN
China
Prior art keywords
decoding
matrix
row
submatrix
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380002793.4A
Other languages
English (en)
Other versions
CN105264801A (zh
Inventor
喻凡
常德远
肖治宇
金丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN105264801A publication Critical patent/CN105264801A/zh
Application granted granted Critical
Publication of CN105264801B publication Critical patent/CN105264801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供译码的方法和设备,包括:确定对应于信号质量的译码参数信息,该译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数;根据该译码矩阵选择规则、译码矩阵列数P和译码母矩阵,确定译码矩阵;根据调制阶数,对接收到的第二设备发送的数据进行解调;根据该以译码迭代次数和该译码延迟时间,使用该译码矩阵对解调的数据进行译码。本发明实施例所提供的方法和设备可以在不损失性能的情况下实现使用同一套设备对不同码率的数据进行译码,并且能够降低实现的复杂度。

Description

译码的方法和设备
技术领域
本发明实施例涉及通信技术领域,并且更具体地,涉及译码的方法和设备。
背景技术
光通信系统所采用的前向纠错(Forward Error Correction,FEC)技术,可以提高信号质量,使系统获得更大的系统富裕度。传统的光通信系统采用固定配置方式(例如固定FEC码率、固定调制格式、固定输出比特率等)进行设计。这种固定配置的系统效率往往很低,并且浪费了大量的资源在冗余的系统富裕度上。速率自适应系统能够在信号质量的情况下,根据链路状态动态条件FEC开销和调制格式,最大化系统传输速率和系统资源。这就解决了传统固定配置的系统带来的问题。
速率自适应系统中,第一设备所接收到的数据可能来自不同的第二设备,这些第二设备可以采用不同的FEC的码率对数据进行编码。或者第一设备所接收到的数据可能来自可以采用不同的FEC码率对数据进行编码的第二设备。因此,第一设备希望采用同一套硬件资源实现对不同码率的FEC进行译码。
在FEC采用低密度奇偶校验(Low-Density Parity-Check,LDPC)码的情况下,现有技术中的调节FEC码率的方法都是以损失性能为代价的。例如,在采用打孔的方式调节FEC码率时,缩短的高码率LDPC码的性能要比未作缩短的低码率LDPC码的性能更差。采用矩阵分裂方式调节FEC码率会使LDPC的矩阵列重变小,影响码字的误码平层和增益性能。采用矩阵行相加的方式调整FEC码率会使得LDPC的矩阵列重变大,同样会影响码字的误码平层和增益性能。
发明内容
本发明实施例提供译码的方法和设备,能够在不损失性能的情况下实现使用同一套设备对不同码率的数据进行译码。
第一方面,本发明实施例提供一种译码方法,该方法由第一设备执行,该方法包括:确定对应于信号质量的译码参数信息,该译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数;根据该译码矩阵选择规则、该译码矩阵列数P和译码母矩阵,确定译码矩阵,其中该译码母矩阵由M*N个子矩阵组成,该译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于N;根据该调制阶数,确定调制模式;根据该调制模式,对接收到的第二设备发送的数据进行解调,其中该数据是该第二设备根据编码矩阵编码的,该编码矩阵对应于该译码矩阵;根据该以译码迭代次数和该译码延迟时间,使用该译码矩阵对解调的数据进行译码。
结合第一方面,在第一种可能的实现方式中,该译码矩阵选择规则为从该译码母矩阵中选择特定的P列子矩阵作为组成该译码矩阵的P列子矩阵,并且该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。
结合第一方面,在第二种可能的实现方式中,该译码矩阵选择规则为从该译码母矩阵中选择出特定的P列子矩阵,根据该特定的P列子矩阵的特征,生成P列子矩阵作为组成该译码矩阵的P列子矩阵,并且该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。
结合第二种可能的实现方式,在第三种可能的实现方式中,该特定的P列子矩阵的特征为移位值,该根据该特定的P列子矩阵的特征,生成P列子矩阵作为组成该译码矩阵的P列子矩阵,包括:生成与该P列子矩阵的移位值相同的P列子矩阵作为该译码矩阵中的P列子矩阵。
结合第二种可能的实现方式,在第四种可能的实现方式中,该特定的P列子矩阵的特征为移位值,该根据该特定的P列子矩阵的特征,生成P列子矩阵作为组成该译码矩阵的P列子矩阵,包括:对该特定的P列子矩阵中的每一个子矩阵的移位值进行除以预设值的取余操作,得到的余数作为该译码矩阵的P列子矩阵的移位值。
结合第一方面或上述任一种可能的实现方式,在第五种可能的实现方式中,该确定对应于信号质量的译码参数信息,包括:从译码参数表中查询对应于该信号质量的译码参数信息。
第二方面,本发明实施例提供一种设备,该设备包括判断单元、控制单元、接收单元、解调单元和译码单元,该判断单元,用于确定对应于信号质量的译码参数信息,其中该译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数;该控制单元,用于根据该译码矩阵选择规则、该译码矩阵列数P和译码母矩阵,确定译码矩阵,其中,该译码母矩阵由M*N个子矩阵组成,该译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于等于N;该控制单元,还用于根据该译码迭代次数和该译码延迟时间,控制译码过程中的译码迭代次数和延迟时间;该控制单元,还用于根据该调制阶数,确定调制模式;该接收单元,用于接收第二设备发送的数据;该解调单元,根据该调制模式,对接收到第二设备发送的数据进行解调,其中该数据是第二设备根据编码矩阵进行编码的,该编码矩阵对应于该译码矩阵;该译码单元,用于使用该译码矩阵并根据该控制单元所控制的迭代次数和延迟时间,对该解调单元解调的数据进行译码。
结合第二方面,在第一种可能的实现方式中,该控制单元,具体用于从该译码母矩阵中选择特定的P列子矩阵作为组成该译码矩阵的P列子矩阵,其中该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。
结合第二方面,在第二种可能的实现方式中,该控制单元,具体用于从该译码母矩阵中选择出特定的P列子矩阵,根据该特定的P列子矩阵的特征,生成P列子矩阵,使用该P列子矩阵组成译码矩阵,其中该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。
结合第二种可能的实现方式,在第三种可能的实现方式中,该特定的P列子矩阵的特征为移位值,该控制单元,具体用于生成与该P列子矩阵的移位值相同的P列子矩阵作为该译码矩阵中的P列子矩阵。
结合第二种可能的实现方式,在第四种可能的实现方式中,该特定的P列子矩阵的特征为移位值,该控制单元,具体用于对该特定的P列子矩阵中的每一个子矩阵的移位值进行除以预设值的取余操作,得到的余数作为该译码矩阵的P列子矩阵的移位值。
结合第二方面或上述任一种可能的实现方式,在第五种可能的实现方式中,该判断单元,具体用于从译码参数表中查询对应于该信号质量的译码参数信息。
结合第二方面或上述任一种可能的实现方式,在第六种可能的实现方式中,该译码单元,包括:延迟子单元,用于根据该控制单元所控制的延迟时间,调整译码的延迟时间。
第三方面,本发明实施例提供一种设备,该设备包括存储器、处理器、接收器、解调器和译码器,该存储器,用于存储译程序;该处理器,用于执行该存储器存储的该程序,该程序被该处理器执行时,用于确定对应于信号质量的译码参数信息,其中该译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数,根据该译码矩阵选择规则、该译码矩阵列数P和该译码母矩阵,确定译码矩阵,其中,该译码母矩阵由M*N个子矩阵组成,该译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于等于N,根据该译码迭代次数和该译码延迟时间,控制译码过程中的译码迭代次数和延迟时间,根据该调制阶数,确定调制模式;该接收器,用于接收第二设备发送的数据;该解调器,根据该调制模式,对接收到第二设备发送的数据进行解调,其中该数据是第二设备根据编码矩阵进行编码的,该编码矩阵对应于该译码矩阵;该译码器,用于使用该译码矩阵并根据该处理器所控制的迭代次数和延迟时间,对该译码器解调的数据进行译码。
结合第三方面,在第一种可能的实现方式中,该处理器根据该译码矩阵选择规则、该译码矩阵列数P和译码母矩阵,确定译码矩阵具体为,该处理器从该译码母矩阵中选择特定的P列子矩阵作为组成该译码矩阵的P列子矩阵,其中该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。
结合第三方面,在第二种可能的实现方式中,该处理器根据该译码矩阵选择规则、该译码矩阵列数P和译码母矩阵,确定译码矩阵具体为,该处理器从该译码母矩阵中选择出特定的P列子矩阵,根据该特定的P列子矩阵的特征,生成P列子矩阵,使用该P列子矩阵组成译码矩阵,其中该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。
结合第二种可能的实现方式,在第三种可能的实现方式中,该特定的P列子矩阵的特征为移位值,该处理器根据该特定的P列子矩阵的特征,生成P列子矩阵,使用该P列子矩阵组成译码矩阵具体为,该处理器生成与该P列子矩阵的移位值相同的P列子矩阵作为该译码矩阵中的P列子矩阵。
结合第二种可能的实现方式,在第四种可能的实现方式中,该特定的P列子矩阵的特征为移位值,该处理器根据该特定的P列子矩阵的特征,生成P列子矩阵,使用该P列子矩阵组成译码矩阵具体为,该处理器对该特定的P列子矩阵中的每一个子矩阵的移位值进行除以预设值的取余操作,得到的余数作为该译码矩阵的P列子矩阵的移位值。
结合第三方面或上述任一种可能的实现方式,在第五种可能的实现方式中,该处理器确定对应于信号质量的译码参数信息具体为,该处理器从译码参数表中查询对应于该信号质量的译码参数信息。
结合第三方面或上述任一种可能的实现方式,在第六种可能的实现方式中,该译码器,包括:延迟电路,用于根据该处理器所控制的延迟时间,调整译码的延迟时间。
根据本发明实施例所提供的方法和设备,可以实现对不同码率的数据进行译码。也就是说,实现了同一套设备对不同码率的数据进行译码。此外,由于译码所用的译码矩阵都是根据译码参数信息和同一套译码母矩阵中确定的。因此,不需要存储多个矩阵。这样,就能够降低实现的复杂度。并且,译码矩阵的矩阵列重不会发生改变,因此不会影响码字的误码平层和增益性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例提供的译码方法的示意性流程图。
图2是一个确定译码矩阵的示意图。
图3是另一个确定译码矩阵的示意图。
图4是另一个确定译码矩阵的示意图。
图5是根据本发明实施例提供的设备的结构框图。
图6是根据本发明实施例提供的设备的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于数字通信系统该和光通信系统。本发明所应用的系统采用FEC技术,并且具体地,采用LDPC码。
本发明实施例中所称的第一设备和第二设备,可以是通过光通信系统中的设备,也可以是数字通信系统中的设备。
图1是根据本发明实施例提供的译码方法的示意性流程图。图1所示的方法是由第一设备执行的。
101,确定对应于信号质量的译码参数信息,其中该译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数。
其中,该信号质量可以是第一设备接收到的数据的信噪比(Signal-to-NoiseRatio,SNR)信号质量。该信号质量还可以是Q因子或者第一设备与第二设备传输距离等。
102,根据译码矩阵选择规则、译码矩阵列数P和译码母矩阵,确定译码矩阵,其中,该译码母矩阵由M*N个子矩阵组成,该译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于等于N。
具体地,该译码母矩阵为准循环低密度奇偶校验(Quasi-Cyclic LDPC,QC-LDPC)QC-LDPC码校验矩阵,该译码母矩阵中的子矩阵和该译码矩阵中的子矩阵为循环矩阵。该译码矩阵选择规则是在设计阶段根据设计的需要确定的,一旦该译码矩阵选择规则确定之后,根据该译码矩阵选择规则、译码矩阵列数P和译码母矩阵确定出的译码矩阵是唯一的,并且该译码矩阵与接收到的数据在编码时所用的编码矩阵是对应的。
103,根据该调制阶数,确定调制模式。
104,根据该调制模式,对接收到第二设备发送的数据进行解调,其中该数据是第二设备根据编码矩阵进行编码和调制的,该编码矩阵对应于该译码矩阵。
105,根据该译码迭代次数和该译码延迟时间,使用该译码矩阵对解调的数据进行译码。
根据图1所示的方法,第一设备可以通过估计信号质量,确定对应于该信号质量的编码参数信息以及译码参数信息,并将该编码参数信息配置给第二设备,以便第二设备根据该编码参数信息对数据进行编码,而该编码参数信息是与该译码参数信息对应的。这样,第一设备就可以根据使用该译码参数信息确定的译码矩阵对接收到的第二设备发送的数据进行译码。第一设备可以根据不同的信号质量确定不同的译码矩阵,而不同的译码矩阵也对应着不同的码率。这样,第一设备可以实现对不同码率的数据进行译码。也就是说,实现了同一套设备对不同码率的数据进行译码。此外,第一设备译码所用的译码矩阵都是根据译码参数信息和同一套译码母矩阵中确定的。因此,第一设备不需要存储多个矩阵。这样,就能够降低实现的复杂度。并且,译码矩阵的矩阵列重不会发生改变,因此不会影响码字的误码平层和增益性能。
具体地,该确定对应于信号质量的译码参数信息,包括:从译码参数表中查询到该信号质量对应的译码参数信息。译码参数表是在设计阶段确定并存储在第一设备中的,其中该译码参数表包括有不同码率下的译码参数信息,该不同码率下的译码参数信息可以与信号质量相对应。这样,在确定了信号质量之后,就可以直接通过查表的方式确定出与该信号质量相对应的译码参数信息。该译码参数表中不同码率下的译码参数信息中的相关参数均满足以下公式:
其中,B表示系统波特率,v表示译码矩阵列数,c表示译码矩阵行数,Z表示译码矩阵的子矩阵大小,clc为译码器的时钟频率,Iter为译码迭代次数,Δ为译码延迟时间,T为调制阶数。
进一步,在设计阶段,可以使用公式1.1确定译码延迟时间。具体来说,在确定了第一设备、第二设备和译码母矩阵的情况下,系统波特率、译码器的时钟频率和调制阶数、对应于不同码率的译码矩阵的大小和译码矩阵的子矩阵的大小也就确定了。通过仿真可以确定性能好(例如增益性好)的译码迭代次数。此时,公式1.1中除译码延迟时间外的其他参数均是已知量。因此可以确定出译码延迟时间。
进一步,可以采用以下公式计算由M*N个子矩阵组成的译码母矩阵的码率:
其中,Bm表示该译码母矩阵的码率,M表示组成译码母矩阵的子矩阵的行数,N表示组成译码母矩阵的子矩阵的列数。
进一步,可以采用以下公式计算由M*P个子矩阵组成的译码矩阵的码率:
其中,Bd表示该译码矩阵的码率,M表示组成译码矩阵的子矩阵的行数,P表示组成译码矩阵的子矩阵的列数。
可选的,作为一个实施例,该译码矩阵选择规则可以是从该译码母矩阵中选择特定的P列子矩阵作为组成该译码矩阵的P列子矩阵,并且该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。特定的P列子矩阵的选择方式可以包括:可以从特定列(例如第一列)开始选择连续P列子矩阵作为该特定的P列子矩阵,也可以规定为预先设定好的该特定的P列子矩阵是该译码母矩阵中的哪几列子矩阵,还可以是从为特定列(例如第一列)开始选择符合预设条件的P列子矩阵。该预设条件可以是列向移位值小于预设值的列,移位值用于表示即子矩阵的第一行的第一个取值为1的元素所在的位置。也就是说,如果从一列子矩阵中的每一个子矩阵的移位值均小于该预设值,则该列子矩阵可以是属于该特定的P列子矩阵的一列子矩阵。需要注意的是,该特定的P列子矩阵的选择方式也是在设计阶段设计译码矩阵选择规则时规定好的。也就是说,一旦译码矩阵选择规则确定了,该特定的P列子矩阵的选择方式也就确定了。此外,上述几种特定的P列子矩阵的选择方式仅是为了说明可以怎样选择该特定的P列子矩阵。本领域技术人员还可以设计出其他的选择方式。
可选的,作为另一个实施例,该译码矩阵选择规则可以是从该译码母矩阵中选择出特定的P列子矩阵,根据该特定的P列子矩阵的特征,生成P列子矩阵作为组成译码矩阵的P列子矩阵,并且该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。特定的P列子矩阵的选择方式可以包括:可以从特定列(例如第一列)开始选择连续P列子矩阵作为该特定的P列子矩阵,也可以规定为预先设定好的该特定的P列子矩阵是该译码母矩阵中的哪几列子矩阵,还可以是从为特定列(例如第一列)开始选择符合预设条件的P列子矩阵。典型的子矩阵的特征是移位值,该预设条件可以是列向移位值小于预设值的列,也就是说,如果从一列子矩阵中的每一个子矩阵的移位值均小于该预设值,则该列子矩阵可以是属于该特定的P列子矩阵的一列子矩阵。需要注意的是,该特定的P列子矩阵的选择方式也是在设计阶段设计译码矩阵选择规则时规定好的。也就是说,一旦译码矩阵选择规则确定了,该特定的P列子矩阵的选择方式也就确定了。此外,上述几种特定的P列子矩阵的选择方式仅是为了说明可以怎样选择该特定的P列子矩阵。本领域技术人员还可以设计出其他的选择方式。
下面将结合图2至图4的具体实施例对本发明进行进一步描述,需要说明的是,图2至图4的实施例仅是为了帮助更好的理解本发明,而不是对本发明的限制。换句话说,图2至图4中的译码母矩阵的大小、译码母矩阵中的子矩阵的移位值等都可以根据需要进行设计,并不限于这三个图中所示的译码母矩阵以及译码矩阵。
图2是一个确定译码矩阵的示意图。
图2包括译码母矩阵和根据该译码母矩阵确定的译码矩阵。图2所示的译码母矩阵由4*16个子矩阵组成。图2中每一个标有数字的小方框代表一个750*750的子矩阵,子矩阵为单位右移位循环矩阵,小方框中的数字表示子矩阵中的第一行“1”的位置(即移位值)。根据公式1.2和公式1.3计算出图2所示的译码母矩阵的码率为0.75,译码矩阵的码率为0.42。
图2所示的实施例中,该译码矩阵选择规则为从该译码母矩阵中选择特定的P列子矩阵作为组成该译码矩阵的P列子矩阵,并且该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。此外,该译码矩阵选择规则中的特定的P列子矩阵的选择方式为从第一列开始选择连续的P列子矩阵。
这样,如果第一设备确定根据信号质量确定出的译码矩阵的列数P为7,那么第一设备就可以根据该译码矩阵选择规则从译码母矩阵的第一列开始连续选择7列子矩阵。可以看出,译码矩阵中子矩阵的排列顺序与特定的P列矩阵在译码母矩阵中的排列顺序相同。
图3是另一个确定译码矩阵的示意图。图3包括译码母矩阵和根据该译码母矩阵确定的译码矩阵。图3所示的译码母矩阵由4*16个子矩阵组成,译码母矩阵中的子矩阵大小为750*750。图3中每一个标有数字的小方框代表译码矩阵的子矩阵,子矩阵为单位右移位循环矩阵,小方框中的数字表示子矩阵中的第一行“1”的位置(即移位值)。根据公式1.2和公式1.3计算出图3所示的译码母矩阵的码率为0.75,译码矩阵的码率为0.42。
图3的实施例中,该译码矩阵选择规则为从该译码母矩阵中选择出特定的P列子矩阵,根据该特定的P列子矩阵的特征,生成P列子矩阵作为组成译码矩阵的P列子矩阵,并且该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。此外,该译码矩阵选择规则中的特定的P列子矩阵的选择方式为从第一列开始选择连续的P列子矩阵。并且,更为具体地,图3中的该根据特定的P列子矩阵的特征,生成P列子矩阵为:对该特定的P列子矩阵中的每一个子矩阵的移位值进行除以预设值的取余操作,得到的余数作为新的子矩阵的移位值,其中该预设值为500,该特征为移位值。可以理解的是,除了对子矩阵的移位值进行除以预设值的取余操作外,本领域技术人员还可以设计出其他的对移位值的操作(例如进行减法操作、加法操作等)得到新生成的P列子矩阵的移位值。
这样,如果第一设备确定根据信号质量确定出的译码矩阵的列数P为7,那么第一设备就可以根据该译码矩阵选择规则从译码母矩阵的第一列开始连续选择7列子矩阵,然后对这7列子矩阵中每一个子矩阵的移位值进行除以500的取余操作,得到的余数作为新生成的子矩阵的移位值。并且,进一步,该新生成的子矩阵的大小可以是500*500的矩阵。这样,就可以得到图3所示的译码矩阵。可以看出,译码矩阵中子矩阵的排列顺序与特定的P列矩阵在译码母矩阵中的排列顺序相同。
图4是另一个确定译码矩阵的示意图。图4包括译码母矩阵和根据该译码母矩阵确定的译码矩阵。图4所示的译码母矩阵由4*16个子矩阵组成,译码母矩阵中的子矩阵大小为750*750。图4中每一个标有数字的小方框代表译码矩阵的子矩阵,子矩阵为单位右移位循环矩阵,小方框中的数字表示子矩阵中的第一行“1”的位置(即移位值)。根据公式1.2和公式1.3计算出图4所示的译码母矩阵的码率为0.75,译码矩阵的码率为0.42。
可选的,作为一个实施例,在图4所示的实施例中,该译码矩阵选择规则可以是从该译码母矩阵中选择特定的P列子矩阵作为组成该译码矩阵的P列子矩阵,并且该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。此外,该译码矩阵选择规则中的特定的P列子矩阵的选择方式为从第一列开始选择列向移位值小于预设值的列,并且具体地该预设值为500。这样,如果第一设备确定根据信号质量确定出的译码矩阵的列数P为7,那么第一设备就可以根据该译码矩阵选择规则从译码母矩阵的第一列子矩阵开始选择列向移位值小于500的子矩阵列。可以看出,译码矩阵中子矩阵的排列顺序与特定的P列矩阵在译码母矩阵中的排列顺序相同。此外,在该实施例中,该译码矩阵中的子矩阵的大小为750*750。
可选的,作为另一个实施例,在图4所示的实施例中,该译码矩阵选择规则为从该译码母矩阵中选择出特定的P列子矩阵,根据该特定的P列子矩阵的特征,生成P列子矩阵作为组成译码矩阵的P列子矩阵,并且该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。此外,该译码矩阵选择规则中的特定的P列子矩阵的选择方式为从第一列开始选择列向移位值小于预设值的列,并且具体地该预设值为500。并且,更为具体地,图4中的该根据特定的P列子矩阵的特征,生成P列子矩阵为:生成与该特定的P列子矩阵的特征相同的P列子矩阵作为该译码矩阵中的P列子矩阵,其中该特征为移位值。这样,如果第一设备确定根据信号质量确定出的译码矩阵的列数P为7,那么第一设备就可以根据该译码矩阵选择规则从译码母矩阵的第一列子矩阵开始选择列向移位值小于500的子矩阵列。并且使用这些子矩阵的移位值生成新的P列子矩阵,使用新生成的P列子矩阵作为该译码矩阵中的P列子矩阵。并且,进一步,该新生成的子矩阵的大小可以是500*500的矩阵。可以看出,译码矩阵中子矩阵的排列顺序与特定的P列矩阵在译码母矩阵中的排列顺序相同。此外,在该实施例中,该译码矩阵中的子矩阵的大小为500*500。
图5是根据本发明实施例提供的设备的结构框图。图5所示的设备可以执行图1中第一设备执行的各个步骤。图2至图4所示的具体实施例可以由图5所示的设备执行。如图5所示,设备500包括:判断单元501、控制单元502、接收单元503、解调单元504和译码单元505。
判断单元501,用于确定对应于信号质量的译码参数信息,其中该译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数。
控制单元502,根据译码矩阵选择规则、译码矩阵列数P和译码母矩阵,确定译码矩阵,其中,该译码母矩阵由M*N个子矩阵组成,该译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于等于N。
具体地,该译码母矩阵为准循环低密度奇偶校验(Quasi-Cyclic LDPC,QC-LDPC)QC-LDPC码校验矩阵,该译码母矩阵中的子矩阵和该译码矩阵中的子矩阵为循环矩阵。该译码矩阵选择规则是在设计阶段根据设计的需要确定的,一旦该译码矩阵选择规则确定之后,根据该译码矩阵选择规则、译码矩阵列数P和译码母矩阵确定出的译码矩阵是唯一的,并且该译码矩阵与接收到的数据在编码时所用的编码矩阵是对应的。
控制单元502,还用于根据该译码迭代次数和该译码延迟时间,控制译码单元503在译码过程中的译码迭代次数和延迟时间。
控制单元502,还用于根据该调制阶数,确定调制模式。
具体地,该调制模式可以是正交相移键控(Quadrature Phase Shift Keying,QPSK)、18-QAM(Quadrature Amplitude Modulation,正交幅度调制)、32-QAM等。
接收单元503,用于接收第二设备发送的数据。
解调单元504,根据该调制模式,对接收到第二设备发送的数据进行解调,其中该数据是第二设备根据编码矩阵进行编码的,该编码矩阵对应于该译码矩阵。
译码单元505,用于使用该译码矩阵并根据控制单元502所控制的迭代次数和延迟时间,对解调单元504解调的数据进行译码。
图5所示的设备500可以通过估计信号质量,确定对应于该信号质量的编码参数信息以及译码参数信息,并将该编码参数信息配置给第二设备,以便第二设备根据该编码参数信息对数据进行编码,而该编码参数信息是与该译码参数信息对应的。这样,设备500就可以根据使用该译码参数信息确定的译码矩阵对接收到的第二设备发送的数据进行译码。设备500可以根据不同的信号质量确定不同的译码矩阵,而不同的译码矩阵也对应着不同的码率。这样,设备500可以实现对不同码率的数据进行译码。也就是说,实现了同一套设备对不同码率的数据进行译码。此外,设备500译码所用的译码矩阵都是根据译码参数信息和同一套译码母矩阵中确定的。因此。设备500不需要存储多个矩阵。并且,译码矩阵的矩阵列重不会发生改变,因此不会影响码字的误码平层和增益性能。
可选的作为一个实施例,控制单元502,具体用于从该译码母矩阵中选择特定的P列子矩阵作为组成该译码矩阵的P列子矩阵,其中该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。具体地,控制单元502,可以从特定列(例如第一列)开始选择连续P列子矩阵作为该特定的P列子矩阵。也可以规定为预先设定好的该特定的P列子矩阵是该译码母矩阵中的哪几列子矩阵,控制单元502可以直接从译码母矩阵中确定出该特定的P列子矩阵。控制单元502还可以从为特定列(例如第一列)开始选择符合预设条件的P列子矩阵。该预设条件可以是列向移位值小于预设值的列,也就是说,如果从一列子矩阵中的每一个子矩阵的移位值均小于该预设值,则该列子矩阵可以是属于该特定的P列子矩阵的一列子矩阵。需要注意的是,该特定的P列子矩阵的选择方式也是在设计阶段设计译码矩阵选择规则时规定好的。也就是说,一旦译码矩阵选择规则确定了,该特定的P列子矩阵的选择方式也就确定了。此外,上述几种特定的P列子矩阵的选择方式仅是为了说明可以怎样选择该特定的P列子矩阵。本领域技术人员还可以设计出其他的选择方式。
可选的,作为另一个实施例,控制单元502,具体用于从该译码母矩阵中选择出特定的P列子矩阵,根据该特定的P列子矩阵的特征,生成P列子矩阵,使用该P列子矩阵组成译码矩阵,其中该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。具体地,控制单元502,可以从特定列(例如第一列)开始选择连续P列子矩阵作为该特定的P列子矩阵。也可以规定为预先设定好的该特定的P列子矩阵是该译码母矩阵中的哪几列子矩阵,控制单元502可以直接从译码母矩阵中确定出该特定的P列子矩阵。控制单元502还可以从为特定列(例如第一列)开始选择符合预设条件的P列子矩阵。该预设条件可以是列向移位值小于预设值的列,也就是说,如果从一列子矩阵中的每一个子矩阵的移位值均小于该预设值,则该列子矩阵可以是属于该特定的P列子矩阵的一列子矩阵。需要注意的是,该特定的P列子矩阵的选择方式也是在设计阶段设计译码矩阵选择规则时规定好的。也就是说,一旦译码矩阵选择规则确定了,该特定的P列子矩阵的选择方式也就确定了。此外,上述几种特定的P列子矩阵的选择方式仅是为了说明可以怎样选择该特定的P列子矩阵。本领域技术人员还可以设计出其他的选择方式。
进一步,译码单元505包括延迟子单元515,用于在译码过程中根据控制单元502所控制的延迟时间,调整译码的延迟时间。进一步,该延迟子单元515位于应用更新处理子单元525和逆交换网络子单元535之间。
图6是根据本发明实施例提供的设备的结构框图。图6所示的设备可以执行图1中第一设备执行的各个步骤。。图2至图4所示的具体实施例可以由图6所示的设备执行。如图6所示,设备600包括:存储器601、处理器602、接收器603、解调器604和译码器605。
存储器601,用于存储程序。
处理器602,用于执行存储器601存储的所述程序,该程序被处理器602执行时,用于确定对应于信号质量的译码参数信息,该译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数,根据译码矩阵选择规则、译码矩阵列数P和译码母矩阵,确定译码矩阵,其中,该译码母矩阵由M*N个子矩阵组成,该译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于等于N,根据该译码迭代次数和该译码延迟时间,控制译码器605在译码过程中的译码迭代次数和延迟时间,根据该调制阶数,确定调制模式。
具体地,该译码母矩阵为准循环低密度奇偶校验(Quasi-Cyclic LDPC,QC-LDPC)QC-LDPC码校验矩阵,该译码母矩阵中的子矩阵和该译码矩阵中的子矩阵为循环矩阵。该译码矩阵选择规则是在设计阶段根据设计的需要确定的,一旦该译码矩阵选择规则确定之后,根据该译码矩阵选择规则、译码矩阵列数P和译码母矩阵确定出的译码矩阵是唯一的,并且该译码矩阵与接收到的数据在编码时所用的编码矩阵是对应的。
具体地,该调制模式可以是正交相移键控(Quadrature Phase Shift Keying,QPSK)、18-QAM(Quadrature Amplitude Modulation,正交幅度调制)、32-QAM等。
接收器603,用于接收第二设备发送的数据。
解调器604,用于根据处理器602确定的调制模式,对接收器603接收到第二设备发送的数据进行解调,其中该数据是第二设备根据编码矩阵进行编码的,该编码矩阵对应于该译码矩阵。
译码器605,还用于使用该译码矩阵并根据处理器602所控制的迭代次数和延迟时间,对解调器604解调的数据进行译码。
图6所示的设备600可以通过估计信号质量,确定对应于该信号质量的编码参数信息以及译码参数信息,并将该编码参数信息配置给第二设备,以便第二设备根据该编码参数信息对数据进行编码,而该编码参数信息是与该译码参数信息对应的。这样,设备600就可以根据使用该译码参数信息确定的译码矩阵对接收到的第二设备发送的数据进行译码。设备600可以根据不同的信号质量确定不同的译码矩阵,而不同的译码矩阵也对应着不同的码率。这样,设备600可以实现对不同码率的数据进行译码。也就是说,实现了同一套设备对不同码率的数据进行译码。此外,设备600译码所用的译码矩阵都是根据译码参数信息和同一套译码母矩阵中确定的。因此。设备600不需要存储多个矩阵。并且,译码矩阵的矩阵列重不会发生改变,因此不会影响码字的误码平层和增益性能。
进一步,处理器确定对应于信号质量的译码参数信息具体为,处理器602,具体用于从该译码参数表中查询与该信号质量对应的译码参数信息。
可选的作为一个实施例,处理器根据译码矩阵选择规则、译码矩阵列数P和译码母矩阵,确定译码矩阵具体为,处理器602,具体用于从该译码母矩阵中选择特定的P列子矩阵作为组成该译码矩阵的P列子矩阵,其中该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。具体地,处理器602,可以从特定列(例如第一列)开始选择连续P列子矩阵作为该特定的P列子矩阵。也可以规定为预先设定好的该特定的P列子矩阵是该译码母矩阵中的哪几列子矩阵,处理器602可以直接从译码母矩阵中确定出该特定的P列子矩阵。处理器602还可以从为特定列(例如第一列)开始选择符合预设条件的P列子矩阵。该预设条件可以是列向移位值小于预设值的列,也就是说,如果从一列子矩阵中的每一个子矩阵的移位值均小于该预设值,则该列子矩阵可以是属于该特定的P列子矩阵的一列子矩阵。需要注意的是,该特定的P列子矩阵的选择方式也是在设计阶段设计译码矩阵选择规则时规定好的。也就是说,一旦译码矩阵选择规则确定了,该特定的P列子矩阵的选择方式也就确定了。此外,上述几种特定的P列子矩阵的选择方式仅是为了说明可以怎样选择该特定的P列子矩阵。本领域技术人员还可以设计出其他的选择方式。
可选的,作为另一个实施例,处理器根据译码矩阵选择规则、译码矩阵列数P和译码母矩阵,确定译码矩阵具体为,处理器602,具体用于从该译码母矩阵中选择出特定的P列子矩阵,根据该特定的P列子矩阵的特征,生成P列子矩阵,使用该P列子矩阵组成译码矩阵,其中该译码矩阵的P列子矩阵的排列次序与该特定的P列子矩阵的排列次序相同。具体地,处理器602,可以从特定列(例如第一列)开始选择连续P列子矩阵作为该特定的P列子矩阵。也可以规定为预先设定好的该特定的P列子矩阵是该译码母矩阵中的哪几列子矩阵,处理器602可以直接从译码母矩阵中确定出该特定的P列子矩阵。处理器602还可以从为特定列(例如第一列)开始选择符合预设条件的P列子矩阵。该预设条件可以是列向移位值小于预设值的列,也就是说,如果从一列子矩阵中的每一个子矩阵的移位值均小于该预设值,则该列子矩阵可以是属于该特定的P列子矩阵的一列子矩阵。需要注意的是,该特定的P列子矩阵的选择方式也是在设计阶段设计译码矩阵选择规则时规定好的。也就是说,一旦译码矩阵选择规则确定了,该特定的P列子矩阵的选择方式也就确定了。此外,上述几种特定的P列子矩阵的选择方式仅是为了说明可以怎样选择该特定的P列子矩阵。本领域技术人员还可以设计出其他的选择方式。
进一步,译码器605包括延迟电路615,用于在译码过程中根据控制单元所控制的延迟时间,调整译码的延迟时间,其中该延迟电路615位于应用更新处理电路625和逆交换网络电路635之间。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内,因此本发明的保护范围应以权利要求的保护范围为准。

Claims (20)

1.一种译码方法,其特征在于,所述方法由第一设备执行,所述方法包括:
确定对应于信号质量的译码参数信息,所述译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数;
根据所述译码矩阵选择规则、所述译码矩阵列数P和译码母矩阵,确定译码矩阵,其中所述译码母矩阵由M*N个子矩阵组成,所述译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于N;
根据所述调制阶数,确定调制模式;
根据所述调制模式,对接收到的第二设备发送的数据进行解调,其中所述数据是所述第二设备根据编码矩阵编码的,所述编码矩阵对应于所述译码矩阵;
根据所述译码迭代次数和所述译码延迟时间,使用所述译码矩阵对解调的数据进行译码。
2.如权利要求1所述的方法,其特征在于,所述译码矩阵选择规则为从所述译码母矩阵中选择特定的P列子矩阵作为组成所述译码矩阵的P列子矩阵,并且所述译码矩阵的P列子矩阵的排列次序与所述特定的P列子矩阵的排列次序相同。
3.如权利要求1所述的方法,其特征在于,所述译码矩阵选择规则为从所述译码母矩阵中选择出特定的P列子矩阵,根据所述特定的P列子矩阵的特征,生成P列子矩阵作为组成所述译码矩阵的P列子矩阵,并且所述译码矩阵的P列子矩阵的排列次序与所述特定的P列子矩阵的排列次序相同。
4.如权利要求3所述的方法,其特征在于,所述特定的P列子矩阵的特征为移位值,
所述根据所述特定的P列子矩阵的特征,生成P列子矩阵作为组成所述译码矩阵的P列子矩阵,包括:
生成与所述P列子矩阵的移位值相同的P列子矩阵作为所述译码矩阵中的P列子矩阵。
5.如权利要求3所述的方法,其特征在于,所述特定的P列子矩阵的特征为移位值,
所述根据所述特定的P列子矩阵的特征,生成P列子矩阵作为组成所述译码矩阵的P列子矩阵,包括:
对所述特定的P列子矩阵中的每一个子矩阵的移位值进行除以预设值的取余操作,得到的余数作为所述译码矩阵的P列子矩阵的移位值。
6.如权利要求1-5中任一项所述的方法,其特征在于,所述确定对应于信号质量的译码参数信息,包括:
从译码参数表中查询对应于所述信号质量的译码参数信息。
7.一种设备,其特征在于,所述设备包括判断单元、控制单元、接收单元、解调单元和译码单元,
所述判断单元,用于确定对应于信号质量的译码参数信息,其中所述译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数;
所述控制单元,用于根据所述译码矩阵选择规则、所述译码矩阵列数P和译码母矩阵,确定译码矩阵,其中,所述译码母矩阵由M*N个子矩阵组成,所述译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于等于N;
所述控制单元,还用于根据所述译码迭代次数和所述译码延迟时间,控制译码过程中的译码迭代次数和延迟时间;
所述控制单元,还用于根据所述调制阶数,确定调制模式;
所述接收单元,用于接收第二设备发送的数据;
所述解调单元,根据所述调制模式,对接收到第二设备发送的数据进行解调,其中所述数据是第二设备根据编码矩阵进行编码的,所述编码矩阵对应于所述译码矩阵;
所述译码单元,用于使用所述译码矩阵并根据所述控制单元所控制的迭代次数和延迟时间,对所述解调单元解调的数据进行译码。
8.如权利要求7所述的设备,其特征在于,所述控制单元,具体用于从所述译码母矩阵中选择特定的P列子矩阵作为组成所述译码矩阵的P列子矩阵,其中所述译码矩阵的P列子矩阵的排列次序与所述特定的P列子矩阵的排列次序相同。
9.如权利要求7所述的设备,其特征在于,所述控制单元,具体用于从所述译码母矩阵中选择出特定的P列子矩阵,根据所述特定的P列子矩阵的特征,生成P列子矩阵,使用所述P列子矩阵组成译码矩阵,其中所述译码矩阵的P列子矩阵的排列次序与所述特定的P列子矩阵的排列次序相同。
10.如权利要求9所述的设备,其特征在于,所述特定的P列子矩阵的特征为移位值,
所述控制单元,具体用于生成与所述P列子矩阵的移位值相同的P列子矩阵作为所述译码矩阵中的P列子矩阵。
11.如权利要求9所述的设备,其特征在于,所述特定的P列子矩阵的特征为移位值,
所述控制单元,具体用于对所述特定的P列子矩阵中的每一个子矩阵的移位值进行除以预设值的取余操作,得到的余数作为所述译码矩阵的P列子矩阵的移位值。
12.如权利要求7-11中任一项所述的设备,其特征在于,所述判断单元,具体用于从译码参数表中查询对应于所述信号质量的译码参数信息。
13.如权利要求7-11中任一项所述的设备,其特征在于,所述译码单元,包括:延迟子单元,用于根据所述控制单元所控制的延迟时间,调整译码的延迟时间。
14.一种设备,其特征在于,所述设备包括存储器、处理器、接收器、解调器和译码器,
所述存储器,用于存储程序;
所述处理器,用于执行所述存储器存储的所述程序,所述程序被所述处理器执行时,用于确定对应于信号质量的译码参数信息,其中所述译码参数信息包括译码矩阵选择规则、译码矩阵列数P、译码迭代次数、译码延迟时间和调制阶数,根据所述译码矩阵选择规则、所述译码矩阵列数P和所述译码母矩阵,确定译码矩阵,其中,所述译码母矩阵由M*N个子矩阵组成,所述译码矩阵由M*P个子矩阵组成,M、N和P均为正整数且P小于等于N,根据所述译码迭代次数和所述译码延迟时间,控制译码过程中的译码迭代次数和延迟时间,根据所述调制阶数,确定调制模式;
所述接收器,用于接收第二设备发送的数据;
所述解调器,根据所述调制模式,对接收到第二设备发送的数据进行解调,其中所述数据是第二设备根据编码矩阵进行编码的,所述编码矩阵对应于所述译码矩阵;
所述译码器,用于使用所述译码矩阵并根据所述处理器所控制的迭代次数和延迟时间,对所述译码器解调的数据进行译码。
15.如权利要求14所述的设备,其特征在于,所述处理器根据所述译码矩阵选择规则、所述译码矩阵列数P和译码母矩阵,确定译码矩阵具体为,所述处理器从所述译码母矩阵中选择特定的P列子矩阵作为组成所述译码矩阵的P列子矩阵,其中所述译码矩阵的P列子矩阵的排列次序与所述特定的P列子矩阵的排列次序相同。
16.如权利要求14所述的设备,其特征在于,所述处理器根据所述译码矩阵选择规则、所述译码矩阵列数P和译码母矩阵,确定译码矩阵具体为,所述处理器从所述译码母矩阵中选择出特定的P列子矩阵,根据所述特定的P列子矩阵的特征,生成P列子矩阵,使用所述P列子矩阵组成译码矩阵,其中所述译码矩阵的P列子矩阵的排列次序与所述特定的P列子矩阵的排列次序相同。
17.如权利要求16所述的设备,其特征在于,所述特定的P列子矩阵的特征为移位值,
所述处理器根据所述特定的P列子矩阵的特征,生成P列子矩阵,使用所述P列子矩阵组成译码矩阵具体为,所述处理器生成与所述P列子矩阵的移位值相同的P列子矩阵作为所述译码矩阵中的P列子矩阵。
18.如权利要求16所述的设备,其特征在于,所述特定的P列子矩阵的特征为移位值,
所述处理器根据所述特定的P列子矩阵的特征,生成P列子矩阵,使用所述P列子矩阵组成译码矩阵具体为,所述处理器对所述特定的P列子矩阵中的每一个子矩阵的移位值进行除以预设值的取余操作,得到的余数作为所述译码矩阵的P列子矩阵的移位值。
19.如权利要求14-18中任一项所述的设备,其特征在于,所述处理器确定对应于信号质量的译码参数信息具体为,所述处理器从译码参数表中查询对应于所述信号质量的译码参数信息。
20.如权利要求14-18中任一项所述的设备,其特征在于,所述译码器,包括:延迟电路,用于根据所述处理器所控制的延迟时间,调整译码的延迟时间。
CN201380002793.4A 2013-11-14 2013-11-14 译码的方法和设备 Active CN105264801B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087126 WO2015070415A1 (zh) 2013-11-14 2013-11-14 译码的方法和设备

Publications (2)

Publication Number Publication Date
CN105264801A CN105264801A (zh) 2016-01-20
CN105264801B true CN105264801B (zh) 2018-10-12

Family

ID=53056636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380002793.4A Active CN105264801B (zh) 2013-11-14 2013-11-14 译码的方法和设备

Country Status (2)

Country Link
CN (1) CN105264801B (zh)
WO (1) WO2015070415A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242205A (zh) * 2007-02-09 2008-08-13 联想(北京)有限公司 一种每空间子信道的速率和功率控制方法及控制装置
CN101257365A (zh) * 2008-04-03 2008-09-03 浙江大学 一种基于欧氏几何的可分解的ldpc码编码方法
CN102271026A (zh) * 2011-07-27 2011-12-07 东南大学 用于高级长期演进系统上行链路的闭环自适应传输方法
CN102577387A (zh) * 2009-10-30 2012-07-11 松下电器产业株式会社 解码方法、解码装置、编码方法以及编码装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242205A (zh) * 2007-02-09 2008-08-13 联想(北京)有限公司 一种每空间子信道的速率和功率控制方法及控制装置
CN101257365A (zh) * 2008-04-03 2008-09-03 浙江大学 一种基于欧氏几何的可分解的ldpc码编码方法
CN102577387A (zh) * 2009-10-30 2012-07-11 松下电器产业株式会社 解码方法、解码装置、编码方法以及编码装置
CN102271026A (zh) * 2011-07-27 2011-12-07 东南大学 用于高级长期演进系统上行链路的闭环自适应传输方法

Also Published As

Publication number Publication date
WO2015070415A1 (zh) 2015-05-21
CN105264801A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5644011B2 (ja) 低密度パリティ検査符号を使用するシステムにおけるチャネル符号化の方法並びにその装置
JP5583833B2 (ja) 低密度パリティ検査符号を使用する通信システムにおけるチャネル復号化方法及びその装置
JP6297215B2 (ja) 適応変調符号化(amc)のための方法及びamcコントローラー
JP5506878B2 (ja) 低密度パリティ検査符号のパリティ検査行列生成方法
JP5440804B2 (ja) 低密度パリティ検査符号を使用するシステムにおけるチャネル符号化方法及びその装置
JP7464521B2 (ja) Ldpcコード化データを処理する方法および装置
JP7361017B2 (ja) データ符号化方法及び装置、記憶媒体、並びにプロセッサ
JP5436688B2 (ja) 線形ブロック符号を使用する通信システムにおけるパリティ検査行列を生成する方法及び装置とそれを用いる送受信装置及び方法
JP5461728B2 (ja) 低密度パリティ検査符号を使用するデジタルブロードキャスト通信システムにおけるチャネル復号化装置及びその方法
EP2050195A2 (en) Method of encoding/decoding using low density check code matrix
CN109120374B (zh) 准循环低密度奇偶校验编码设计方法及装置
JP2014523168A (ja) データを伝送する方法及びその装置
KR20150084308A (ko) 무선 통신 시스템에서 채널의 비-가우시안 특성에 따른 적응적 채널 부호 선택 장치 및 방법
CN102150370A (zh) 使用嵌入式编码提供不等差错保护的系统和方法
US20140173374A1 (en) Methods and apparatus for error coding
CN105264801B (zh) 译码的方法和设备
CN108270448B (zh) 准循环低密度奇偶校验编码方法及装置
JP4494276B2 (ja) 適応変調装置および適応変調方法
CN110663190B (zh) 在通信或广播系统中进行信道编码和解码的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant