CN105264672A - 用于移动装置的透明光探测器 - Google Patents

用于移动装置的透明光探测器 Download PDF

Info

Publication number
CN105264672A
CN105264672A CN201480031813.5A CN201480031813A CN105264672A CN 105264672 A CN105264672 A CN 105264672A CN 201480031813 A CN201480031813 A CN 201480031813A CN 105264672 A CN105264672 A CN 105264672A
Authority
CN
China
Prior art keywords
graphene film
quantum dot
wavelength
monolayer
contacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480031813.5A
Other languages
English (en)
Other versions
CN105264672B (zh
Inventor
A·科利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Nokia Technologies Oy
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Publication of CN105264672A publication Critical patent/CN105264672A/zh
Application granted granted Critical
Publication of CN105264672B publication Critical patent/CN105264672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1016Devices sensitive to infrared, visible or ultraviolet radiation comprising transparent or semitransparent devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种设备包括石墨烯膜(220);作为第一单分子层的被定位与石墨烯膜(220)接触的第一类型的量子点(230)的第一布置;作为第二单分子层的被定位与石墨烯膜(220)接触的第二类型的量子点(230)的第二布置;连接至石墨烯膜(220)的末端的输入电压源(Vdd)以及在量子点(230)的第一布置和量子点(230)的第二布置之间连接至石墨烯膜(220)的输出电压探头(260)。

Description

用于移动装置的透明光探测器
技术领域
本文描述的作为范例的非限制性实施例总体上涉及移动装置中的环境光传感器,更具体而言,涉及用于移动装置的窄带宽光探测器。
背景技术
大多数移动装置中都包含环境光传感器。这样的传感器根据背景光调节移动装置的显示器的亮度,以促进清晰度和功率管理。环境光传感器的核心元件是光探测器装置。当前,大多数环境光传感器采用硅光电二极管作为光探测器装置。由于硅是一种不良光吸收体,因而这样的传感器占据着相当大的面积,或者由于需要显著的厚度才能吸收足够的光,因而一般体积很大。
各种市面上的光探测器装置在被集成到移动装置外壳内时,其规格(specification)将提出很多要求。例如,移动装置的表面上的空间是很宝贵的。一方面,通常希望在移动装置的手机内嵌入几个特征。另一方面,还希望具有更薄、更轻的移动装置,其中,其平面表面要尽可能被最大化的屏幕所占据。一般将针对特征的数量和屏幕的尺寸做出权衡,因此为需要与环境相互作用的传感器留下的空间很小。
发明内容
下面的发明内容部分仅意在举例说明。发明内容部分并非意在限制权利要求的范围。
根据一个方面,一种设备包括:石墨烯膜;作为第一单分子层的被定位与所述石墨烯膜接触的第一类型的量子点的第一布置;作为第二单分子层的被定位与所述石墨烯膜接触的第二类型的量子点的第二布置;连接至所述石墨烯膜的末端的输入电压源;以及在所述量子点的第一布置和所述量子点的第二布置之间连接至所述石墨烯膜的输出电压探头。
根据另一方面,一种方法包括:在作为第一单分子层的被定位与第一石墨烯膜接触的第一类型的量子点的第一布置上以及作为第二单分子层的被定位与所述第一石墨烯膜接触的第二类型的量子点的第二布置上接收入射光;根据所述接收到的入射光的波长调制所述第一石墨烯膜的电导率;以及从所述量子点的第一布置和所述量子点的第二布置之间的点输出电压。
根据另一方面,一种非暂态计算机可读存储媒体,包括一个或多个指令的一个或多个序列,在由设备的一个或多个处理器执行时使得所述设备至少:基于所接收到的入射光的波长调制石墨烯膜的电导率;以及从所述石墨烯膜上的处于量子点的第一布置和量子点的第二布置之间的点输出电压。
附图说明
将在下文结合附图所做的描述中解释上述方面和其他特征,其中:
图1a是包括石墨烯膜和量子点(QD)的光电晶体管的透视图;
图1b是图1a的光电晶体管的QD中的电子的光生电荷和QD中的空穴(hole)的示意性表示;
图1c是随着时间的推移图1a的光电晶体管的石墨烯膜的电导率的图解表示;
图1d是正在向图1a的光电晶体管的石墨烯膜转移的电子的示意性表示;
图1e是随着电子向石墨烯膜转移时石墨烯膜的电导率的图解表示;
图2a是采用石墨烯膜和具有不同能带隙的两个域的QD的光探测器的示意性表示;
图2b是被模型化为两个光电晶体管的图2a的光探测器的示意性表示;
图3是光探测器的一个示范性实施例,其包括并联布置的带宽光电晶体管的阵列;
图4是光探测器的另一个示范性实施例,其包括串联布置的带宽光电晶体管;
图5是说明示出一种互连几何结构的全石墨烯光电晶体管的一个示范性实施例;以及
图6是一种采用色眼进行光谱鉴别的方法的一个示范性实施例的流程图。
具体实施方式
大部分环境光传感器简单地探测在整个可见光谱上接收到传感器内的入射光的量。如果最低程度的光谱鉴别是可能的,这样的传感器将在用户情境和环境智能领域使能更多的特征。换言之,结合了这样的传感器的装置的用户将能够通过分析不同时间和地点的光照模式提取有关装置及其周围环境的有用信息。这一点可以通过在传感器阵列上施加不同过滤器实现。但是,就装置表面面积的使用而言,过滤器的使用达不到理想的效率。此外,传感器不可以是透明的。
合乎需要的传感器是那些能够微型化的传感器,从而只占据移动装置(例如,电话手机、平板电脑、计算机、照相机等)的表面或屏幕上的很小的面积。这样的传感器还是透明的(或者至少基本上透明以避免被察觉到),从而允许将它们直接安装到屏幕的上面,而不占用任何额外的专用区域。本文采用的“透明”光探测器是适度灵敏的,从而在能够生成测量信号的同时仅吸收入射光的一小部分。
参考本文的附图,其示出了包括QD系统和石墨烯的光探测器的示范性实施例。这样的系统允许结合小型的、透明的、颜色敏感环境光探测器,以用作移动装置中的色眼。尽管将参考附图所示的示范性实施例描述这些光探测器的特征,但是应当理解在很多可替换形式的实施例中可以包含其他特征。此外,可以采用任何适当尺寸、形状或类型的元件或材料。
一种示范性类型的光探测器包括半导体量子点(QD)和石墨烯的组合。QD的材料包括III-V族化合物或II-VI族(例如硫族化物)化合物,所述化合物处于其基本形式或者化合成异质结构。QD的材料不受限制,可以采用其他半导体材料。例如,另一种示范性类型的光探测器包括纳米晶体和石墨烯的组合,其中,纳米晶体比量子点大。纳米晶体的可能形状包括但不限于球、杆、带、四脚锥体、环或者上述形状的组合等。尽管本文是依据QD对示范性实施例予以描述的,但是应当理解,所描述的示范性实施例可以采用纳米晶体。
在图1a、1b和1d中示出了这一示范性类型的光探测器的模型,并将其概括地标示为附图标记100,下文将其称为“光探测器100”。光探测器100包括一个或多个光电晶体管110,每一光电晶体管110是由至少部分地被具有带隙EG的半导体QD130覆盖的石墨烯膜120界定的,光电晶体管110连接至分别连接至偏压Vbias和地155的电极引线140。QD130吸收具有能量E的撞击光子,其中,E>EG,由此产生电子空穴对150,电子空穴对150包括在QD130中的光生电荷电子152和空穴154,如图1b所示。相对于QD130中的电子空穴对150而言,石墨烯膜120的电导率随着时间的推移是恒定的,如图1c所示。如图1d所示,在生成电子空穴对150的同时,电子152或者空穴154转移至石墨烯膜120(电子152和空穴154带相反极性电荷),而其他则被作为载流子(carrier)俘获在QD130内。在图示的示范性实施例中,电子152之一被转移至石墨烯膜120。所俘获的载流子生成光门控(photogating)效应,由此通过电容耦合改变石墨烯膜120的电导率。如图1(e)所示,石墨烯膜120的电导率随着时间的推移而发生改变。石墨烯膜120的电导率在受到照射时增大还是降低取决于石墨烯掺杂和QD130的电荷极性(charging)。更具体而言,对于正QD电荷和p石墨烯掺杂而言,电导率降低;对于正QD掺杂和n石墨烯掺杂而言,电导率增大;对于负QD电荷和p石墨烯掺杂而言,电导率增大;对于负QD电荷和n石墨烯掺杂而言,电导率降低。
哪种电荷最终被作为载流子俘获在QD130内取决于石墨烯膜120的石墨烯分子和QD130的材料之间的具体能带对准。也可以通过外部场对其加以控制。
光电晶体管110的一个特征是超高灵敏度,其在某些情况下有可能达到单光子级。光电晶体管110的其他特征涉及尺寸(例如,相对较小)和透明度。在光电晶体管110的灵敏度和透明度之间存在权衡。具体而言,QD130的厚层将提供大的入射光吸收,因而提供高灵敏度,但是光传输将相对较低。相反,QD130的单分子层将提供高透明度,但是灵敏度要低得多。就本文公开的示范性实施例而言,QD130的单分子层仍将具有在普通环境光条件下做出响应的适当灵敏度。简而言之,包括QD130和石墨烯膜120两者的光电晶体管110所具有的各种特征使其成为了实现用作色眼的改进的环境光探测器的颇具吸引力的部件。包括QD和石墨烯膜的光电晶体管的示范性设计和组件配置提供了本文公开的窄带宽光探测器的示范性实施例。
如图2a所示,光探测器的另一示范性实施例被概括地标示为附图标记200,下文将其称为“光探测器200”。应当指出,图1a中所示的光探测器100是有可能小型而透明的环境光探测器的一种示范性形式。但是,其光电晶体管100对高于EG的所有光子能量都作出响应,而不允许有效的光谱鉴别。光探测器200以及本文接下来描述的光电探测器的示范性实施例涉及采用光电晶体管210作为光谱敏感设备,同时还保留了小尺寸和透明的优点。
图2a的光探测器200是带宽光探测器。带宽光探测器通常是被起着作为带通滤波器的材料覆盖的全可视范围光探测器。在光探测器200中,使带宽变窄,以生成窄带宽光探测器。在本文公开的窄带宽光电探测器的示范性实施例中未采用带通滤波器,因为不具有与带通滤波器的材料相关的透明性。
在光探测器200中,仅采用一薄层的石墨烯或石墨烯膜220(例如,一个或几个原子厚)和在石墨烯膜220上被布置为单分子层的QD230,从而使带宽变窄,由此保持采用光探测器200的系统的透明性特征。在接下来描述的光电探测器的示范性实施例中,仅采用单分子层的QD230,尽管几个堆叠的QD230的层将更加灵敏,并且仍能适当地透明。而且就接下来要描述的示范性实施例而言,采取下述约定:λn+1(n)(n+1)n,其中,λ是光波长,n表示QD230的特定域。
在图2a中描述的光电探测器的示范性实施例中,将石墨烯膜220的形状设定为与两种不同类型的QD230(例如,不同材料)接触的带状(沟道),所述两种不同类型的QD230被准备为隔离域(isolateddomain),并且位于石墨烯膜220上面、内部或者以其他方式被设置为与石墨烯膜220接触。将沟道一侧(Vdd)连接至输入电压源(例如,DC源),另一侧接地155,从而使得电流流经石墨烯膜220。在两个QD域之间将电压探头260连接到沟道中间。如图2b所示,与QD230接触的沟道部分起着光电晶体管210的作用,其接收入射光并对波长短于与QD230的带隙相关联的光的波长的那些光(分别为λ1和λ2)做出响应。
参考图形2a和2b,光电晶体管210不对λ>λ1做出响应。但是,在一个示例性实施例中,如果两种类型的QD230的差别仅在于其带隙,而非密度和与石墨烯的能带对准,那么每一光电晶体管210将针对λ<λ2作出同样的反应,从而对石墨烯电导率做出相似数量的局部(locally)调制。结果是流经沟道的总电流发生变化,而中沟道输出电压则大致保持恒定。在另一个示范性实施例中,对于λ2<λ<λ1而言,沟道仅一侧受到调制(通过所述QD或者与吸收限(edge)λ1关的QD或纳米晶域1(在230处所示的)),而输出电压V(λ12)则相应地变化,从而反映沟道两侧的不对衬电势下降。因而,所述系统起着带宽光探测器的作用。由于带宽光探测器的输出仅对所定义的范围内的波长做出响应,并且可以通过选择具有期望的带隙的QD材料而使所述定义范围如不同QD230之间的带隙差一样窄,因而所述带宽光探测器是窄带宽光探测器。
现在参考图3,其示出了用作色眼的光探测器的一个示范性实施例,将其概括地标示为附图标记300。可以将色眼300连接至处理器。可以采用上文描述的两个或更多光电晶体管210接收入射光。在这样做时,通过不同的QD230对石墨烯膜进行调制,以提供任意波长范围内的光谱鉴别(例如,通过所述处理器)。在一种配置当中,按照并联配置组装覆盖了感兴趣的光谱范围内的各个连续带的光电晶体管210的阵列,每一石墨烯膜220的一侧连接至输入电压源(Vdd),每一石墨烯膜220的另一侧接地155,电压探头260在两个QD域之间连接到沟道中央。
所述并联阵列配置允许色眼执行确定性校准光谱分析(例如,通过处理器)。提高阵列当中的光电晶体管210的数量将提高光谱分析的分辨率,但是将涉及更加复杂的制作过程和电路布置(例如,由于每一光电晶体管输出一个电压)。
为了使色眼300进行适当操作,光电晶体管210在饱和电压以下工作,饱和电压是指光照源使光电晶体管产生最大输出电压的点。可能在高照射强度上发生饱和,尤其是在QD230中俘获的电荷的数量大到即使进一步提高光子通量也难以增加电荷的时候。例如,如果照射光具有非常强的蓝色分量,那么所有具有从红色到青色的带宽的光电晶体管210都将变得饱和,从而阻碍对任何亚于蓝色的组分(sub-bluecomponent)的适当探测。尽管在采用强激光光点进行激励时能够观察到饱和,但是在环境光当中光子密度饱和不太可能成为一个有意义的问题。
现在参考图4,其示出了用作色眼的光探测器的另一示范性实施例,并将概括地标示为附图标记400。将色眼400布置为具有串联配置为,其中,将具有三个或更多对不同带宽敏感的QD域的光电晶体管210结合到线性序列当中(即,单个石墨烯膜220(带)充当沟道,并且与所有的可变带隙QD域接触)。与前面的实施例一样,将石墨烯膜220的一侧连接至输入电压源(Vdd),将石墨烯膜220的另一侧连接至地155。输出探头260是置于连续的域对之间的输出端子。
串联布置几何结构的一个优点是,与并联配置相比,对于固定Vdd而言,流经沟道的电流要低得多,其将转化为色眼400的功耗的降低。所述串联配置还提供了比并联阵列更为紧凑的架构。此外,如果光谱数据的分析(例如,通过处理器)依赖于机器学习算法对不同的环境光模式分类以达到背景化目的,那么所述串联布置几何结构能够实现预期的性能。
尽管能够容易地使本文描述的光电晶体管210相当小而且透明,但是光电晶体管210包括三个连接至与所述透明区域相隔一定距离的处理电子装置(例如,Vdd,电压探头260和地155)的端子。如图5所示,通过诸如透明(或基本透明)的互连500的导电措施实现与处理电子装置的连接,所述互连与石墨烯膜220的部分是一体的或者与之耦合。互连500可以是石墨烯,由此界定了全石墨烯装置,从而使成本降至最低,并且提高了机械柔软性,以适应未来的可变形装置。可以将石墨烯布置为单分子层。互连500不限于石墨烯,而是可以采用其他诸如导电氧化物的材料(例如,铟锡氧化物等)。
为了使光电晶体管210提供最佳性能,沟道的受到调制的部分(即,那些与QD230接触的部分)构成了电路的大多数电阻部分。如果互连500表现出相当的电阻,那么将降低光作用下的总电流调制。如果将单分子层石墨烯用于互连500以促进光电晶体管210的透明性,那么所述电阻压缩(constriction)与QD域重叠。
相对于石墨烯膜220扩展互连500的宽度将影响总的装置尺寸。据估计,石墨烯膜220所界定的各沟道压缩部位可以具有大约10微米(μm)的宽度,同时可以使互连的宽度约为其十倍(例如,大约100μm)。这意味着整个透明色眼300、400,不管是处于并联配置还是串联配置当中,都仍然能够匹配到非常小的面积内(大约1平方毫米的面积),这与当前的环境光传感器相比是一种相当大的改进。
在一种制造色眼300、400的示范性方法中,通过化学气相淀积(CVD)淀积石墨烯膜220并将其转移到透明(或者基本上透明)的基板上,例如,所述基板是适于色眼应用的玻璃或塑料。可以采用光刻和蚀刻技术来实现沟道和互连的成形。
通过溶液法生成QD230,并将其组装到最终的基板上。在一种生成并组装QD230的示范性方法中,将QD域喷墨印刷到基板上。也可能采用其他方法,例如,通过适当的功能化实现选择性结合。
在一些示范性实施例中,希望获得跨越大的带隙范围但是具有相似化学特性的QD230。因而,与为不同的光谱区域选择不同的半导体材料不同,有可能改变QD230中的约束效应,以调谐它们的吸收起始(onset)。具体而言,可以选择具有相当小的带隙的适当材料,并可以通过使QD230的直径下降至大约4-20纳米(nm)的范围而使蓝色的吸收起始发生移转。(可以获得具有窄尺寸分布的这一尺寸的QD230)
在任何实施例中,可以将石墨烯膜220置于QD域的下面和上面,其结果相似,甚至等同。如果采用至少两层QD230,那么可以通过在石墨烯膜220的上面和下面设置等同数量的QD层而实现预期的灵敏度/透明度比。
现在参考图6,其示出了一种采用色眼进行光谱鉴别的示范性方法,将该方法概括地标示为600,下文将其称为“方法600”。在方法600的接收步骤610中,在与石墨烯膜220接触的第一和第二类型的QD230上接收入射光。将QD230设为石墨烯膜220上的单分子层。在调制步骤620中,基于接收到的入射光的波长的石墨烯膜220的电导率受到调制。执行分析步骤625,其中,通过具有存储器和处理器的控制器对波长数据进行光谱分析。在输出步骤630中,从石墨烯膜220的位于第一类型的QD230和第二类型的QD230之间的点输出电压(基于所述光谱分析的)。
在一个示范性实施例中,一种设备包括:石墨烯膜;作为第一单分子层的被定位与所述石墨烯膜接触的第一类型的量子点的第一布置;作为第二单分子层的被定位与所述石墨烯膜接触的第二类型的量子点的第二布置;连接至所述石墨烯膜的末端的输入电压源;以及在所述量子点的第一布置和所述量子点的第二布置之间连接至所述石墨烯膜的输出电压探头。
在另一个示范性实施例中,一种方法包括:在作为第一单分子层的被定位与第一石墨烯膜接触的第一类型的量子点的第一布置上以及作为第二单分子层的被定位与所述第一石墨烯膜接触的第二类型的量子点的第二布置上接收入射光;根据所述接收到的入射光的波长调制所述第一石墨烯膜的电导率;以及从所述量子点的第一布置和所述量子点的第二布置之间的点输出电压。
在另一个示范性实施例中,一种非暂态计算机可读存储介质包括一个或多个指令的一个或多个序列,在由设备的一个或多个处理器执行时使得所述设备至少:基于所接收到的入射光的波长调制石墨烯膜的电导率;以及从所述石墨烯膜上的处于量子点的第一布置和量子点的第二布置之间的点输出电压。
应当理解,上述描述只是说明性的。本领域技术人员能够构思出各种替代方案和修改。例如,可以使各从属权利要求中列举的特征按照任何适当的组合相互结合。此外,可以将来自上文所述的不同实施例的特征有选择地结合成新的实施例。相应地,所述描述的目的在于包含所有的这些替代、修改和变化,它们都落在所附权利要求的范围内。

Claims (16)

1.一种设备,包括:
石墨烯膜;
作为第一单分子层的被定位与所述石墨烯膜接触的第一类型的量子点的第一布置;
作为第二单分子层的被定位与所述石墨烯膜接触的第二类型的量子点的第二布置;
连接至所述石墨烯膜的末端的输入电压源;以及
在所述量子点的第一布置和所述量子点的第二布置之间连接至所述石墨烯膜的输出电压探头。
2.根据权利要求1所述的设备,其中,所述第一类型的量子点在带隙能量方面与所述第二类型的量子点不同。
3.根据权利要求2所述的设备,其中,对所述第一类型的量子点和所述第二类型的量子点加以选择,从而使其间的带隙差变窄。
4.根据权利要求1所述的设备,其中,按照并联配置布置多个石墨烯膜,所述量子点的第一布置和第二布置被定位与所述多个石墨烯膜接触,其中,将输入电压源连接至每一石墨烯膜的一端。
5.根据权利要求1所述的设备,还包括被做成与所述石墨烯膜一体或者与所述石墨烯膜耦合的互连,从而将所述石墨烯膜连接至处理电子装置。
6.根据权利要求5所述的设备,其中,所述互连包括导电装置。
7.根据权利要求5所述的设备,其中,所述互连的宽度是所述石墨烯膜的宽度的大约十倍。
8.根据权利要求5所述的设备,其中,所述互连包括石墨烯或铟锡氧化物。
9.根据权利要求1所述的设备,其中,将第二石墨烯膜置于所述第一类型的量子点上和所述第二类型的量子点上。
10.一种方法,包括:
在作为第一单分子层的被定位与第一石墨烯膜接触的的第一类型的量子点的第一布置上以及作为第二单分子层的被定位与所述第一石墨烯膜接触的第二类型的量子点的第二布置上接收入射光;
根据所述接收到的入射光的波长调制所述第一石墨烯膜的电导率;以及
从所述量子点的第一布置和所述量子点的第二布置之间的点输出电压。
11.根据权利要求10所述的方法,其中,通过所述量子点的第一布置和通过所述量子点的第二布置的光的波长低于所述接收到的入射光的波长,以致于通过第一石墨烯膜的电流发生变化,而输出电压基本恒定。
12.根据权利要求10所述的方法,其中,所述接收到的入射光的波长大于通过所述量子点的第一布置的光的波长,小于通过所述量子点的第二布置的光的波长,以致于输出电压发生变化。
13.根据权利要求10所述的方法,其中,基于光的波长调制所述第一石墨烯膜的电导率允许在一定波长范围内进行光谱鉴别。
14.根据权利要求13所述的方法,还包括采用处理器处理数据,以确定光谱鉴别。
15.根据权利要求10所述的方法,还包括在作为第三单分子层的被定位与第二石墨烯膜接触的第二类型的量子点的第三布置上以及在作为第四单分子层的被定位与所述第二石墨烯膜接触的第三类型的量子点的第四布置上接收入射光,其中,第一石墨烯膜和第二石墨烯膜并联布置。
16.一种非暂态计算机可读存储媒体,包括一个或多个指令的一个或多个序列,在由设备的一个或多个处理器执行时使得所述设备至少:
基于所接收到的入射光的波长调制石墨烯膜的电导率;以及
从所述石墨烯膜上的处于量子点的第一布置和量子点的第二布置之间的点输出电压。
CN201480031813.5A 2013-04-05 2014-03-28 用于移动装置的透明光探测器 Active CN105264672B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/857,484 US9130085B2 (en) 2013-04-05 2013-04-05 Transparent photodetector for mobile devices
US13/857,484 2013-04-05
PCT/FI2014/050228 WO2014162055A1 (en) 2013-04-05 2014-03-28 Transparent photodetector for mobile devices

Publications (2)

Publication Number Publication Date
CN105264672A true CN105264672A (zh) 2016-01-20
CN105264672B CN105264672B (zh) 2017-05-31

Family

ID=51653800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480031813.5A Active CN105264672B (zh) 2013-04-05 2014-03-28 用于移动装置的透明光探测器

Country Status (5)

Country Link
US (1) US9130085B2 (zh)
EP (1) EP2981988B1 (zh)
JP (1) JP6121615B2 (zh)
CN (1) CN105264672B (zh)
WO (1) WO2014162055A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106384756A (zh) * 2016-10-19 2017-02-08 中国人民解放军国防科学技术大学 基于石墨烯量子点的THz单光子探测器及其制备方法
JP2021044367A (ja) * 2019-09-11 2021-03-18 一般財団法人電力中央研究所 フォトトランジスタおよび電子機器

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963265B1 (en) * 2012-09-14 2015-02-24 The United States Of America As Represented By The Secretary Of The Navy Graphene based quantum detector device
WO2014149004A1 (en) * 2013-03-22 2014-09-25 Nanyang Technological University Method of manufacturing a monolayer graphene photodetector and monolayer graphene photodetector
KR102214833B1 (ko) * 2014-06-17 2021-02-10 삼성전자주식회사 그래핀과 양자점을 포함하는 전자 소자
ES2749694T3 (es) * 2014-07-15 2020-03-23 Fundacio Inst De Ciencies Fotòniques Aparato optoelectrónico y método de fabricación del mismo
KR101558801B1 (ko) * 2014-08-21 2015-10-12 경희대학교 산학협력단 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
CN105633193A (zh) * 2014-10-31 2016-06-01 中国科学院物理研究所 一种响应波长可调的紫外探测器
EP3070741B1 (en) * 2015-03-18 2020-07-29 Emberion Oy An apparatus comprising a sensor arrangemenet and associated fabrication method
US10437329B2 (en) 2015-08-03 2019-10-08 Fundació Institut De Ciències Fotòniques Gaze tracking apparatus
EP3128742B1 (en) 2015-08-03 2018-05-16 Fundació Institut de Ciències Fotòniques Image sensor with non-local readout circuit and optoelectronic device comprising said image sensor
EP3136445B1 (en) 2015-08-25 2021-03-17 Emberion Oy A method for forming apparatus comprising two dimensional material
EP3136443A1 (en) * 2015-08-28 2017-03-01 Nokia Technologies Oy A method for forming apparatus comprising two dimensional material
EP3163325B1 (en) * 2015-10-28 2020-02-12 Nokia Technologies Oy An apparatus and associated methods for computed tomography
JP6641904B2 (ja) * 2015-11-09 2020-02-05 株式会社豊田中央研究所 光センサ
ES2739176T3 (es) * 2015-11-30 2020-01-29 Emberion Oy Aparato fotodetector de puntos cuánticos y procedimientos asociados
EP3190632B1 (en) * 2016-01-11 2021-05-05 Nokia Technologies Oy A composite nanoparticle and photodetector comprising the nanoparticle
EP3214656B1 (en) * 2016-03-04 2019-01-09 Nokia Technologies Oy A quantum dot photodetector apparatus and associated methods
EP3231768A1 (en) 2016-04-13 2017-10-18 Nokia Technologies Oy An apparatus and method comprising a two dimensional channel material and an electrode comprising a conductive material with a coating of a two-dimensional material
EP3242333B1 (en) * 2016-05-03 2020-09-09 Nokia Technologies Oy An apparatus and method of forming an apparatus comprising a graphene field effect transistor
EP3252831B1 (en) * 2016-06-02 2021-01-13 Emberion Oy A quantum dot photodetector apparatus and associated methods
EP3340492B1 (en) * 2016-12-23 2019-10-30 Vestel Elektronik Sanayi ve Ticaret A.S. Visible light communication using colour shift keying
KR102356684B1 (ko) * 2017-01-10 2022-01-28 삼성전자주식회사 그래핀 양자점을 포함하는 광센서 및 이미지 센서
GB2568110B (en) * 2017-11-07 2019-12-04 Emberion Oy Photosensitive field-effect transistor
US20190310732A1 (en) * 2018-05-14 2019-10-10 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Touch substrates and touch display panels
US11056602B2 (en) 2019-06-20 2021-07-06 United States Of America As Represented By The Secretary Of The Navy Device, system, and method for selectively tuning nanoparticles with graphene
GB201916745D0 (en) 2019-11-18 2020-01-01 Cambridge Entpr Ltd Device fabrication techniques
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法
JP7173074B2 (ja) * 2020-03-17 2022-11-16 株式会社豊田中央研究所 光検出器
CN112086529A (zh) * 2020-08-24 2020-12-15 中国科学院长春光学精密机械与物理研究所 一种多色柔性光电探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278541A1 (en) * 2010-05-17 2011-11-17 University Of Washington Through Its Center For Commercialization Color-selective quantum dot photodetectors
US20130032782A1 (en) * 2011-08-02 2013-02-07 Konstantatos Gerasimos Optoelectronic platform with carbon based conductor and quantum dots and transistor comprising such a platform
US20130049738A1 (en) * 2011-08-28 2013-02-28 Edward Hartley Sargent Quantum dot photo-field-effect transistor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168353A (ja) * 1999-09-28 2001-06-22 Toshiba Corp 光素子
JP4473241B2 (ja) * 2006-07-18 2010-06-02 独立行政法人科学技術振興機構 量子ドットによる近接場光集光器
US7687816B2 (en) * 2007-03-20 2010-03-30 International Business Machines Corporation Light emitting diode
GB2451884A (en) * 2007-08-16 2009-02-18 Sharp Kk A Semiconductor Device and a Method of Manufacture Thereof
JP4842291B2 (ja) * 2008-03-19 2011-12-21 富士通株式会社 光半導体装置及び赤外線検出装置
US8698226B2 (en) * 2008-07-31 2014-04-15 University Of Connecticut Semiconductor devices, methods of manufacture thereof and articles comprising the same
JP2011135058A (ja) * 2009-11-30 2011-07-07 Honda Motor Co Ltd 太陽電池素子、カラーセンサ、ならびに発光素子及び受光素子の製造方法
JP5655532B2 (ja) * 2010-12-06 2015-01-21 富士通株式会社 光センサ及びその製造方法
CN102306707A (zh) * 2011-08-18 2012-01-04 北京理工大学 一种基于胶体量子点及石墨烯为光电极的光电探测器及其制备方法
US8927964B2 (en) * 2012-11-20 2015-01-06 Nokia Corporation Photodetection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278541A1 (en) * 2010-05-17 2011-11-17 University Of Washington Through Its Center For Commercialization Color-selective quantum dot photodetectors
US20130032782A1 (en) * 2011-08-02 2013-02-07 Konstantatos Gerasimos Optoelectronic platform with carbon based conductor and quantum dots and transistor comprising such a platform
US20130049738A1 (en) * 2011-08-28 2013-02-28 Edward Hartley Sargent Quantum dot photo-field-effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106384756A (zh) * 2016-10-19 2017-02-08 中国人民解放军国防科学技术大学 基于石墨烯量子点的THz单光子探测器及其制备方法
CN106384756B (zh) * 2016-10-19 2017-10-13 中国人民解放军国防科学技术大学 基于石墨烯量子点的THz单光子探测器及其制备方法
JP2021044367A (ja) * 2019-09-11 2021-03-18 一般財団法人電力中央研究所 フォトトランジスタおよび電子機器
JP7527768B2 (ja) 2019-09-11 2024-08-05 一般財団法人電力中央研究所 フォトトランジスタおよび電子機器

Also Published As

Publication number Publication date
CN105264672B (zh) 2017-05-31
EP2981988B1 (en) 2022-02-16
US9130085B2 (en) 2015-09-08
EP2981988A4 (en) 2017-01-18
EP2981988A1 (en) 2016-02-10
JP6121615B2 (ja) 2017-04-26
JP2016520438A (ja) 2016-07-14
US20140299741A1 (en) 2014-10-09
WO2014162055A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
CN105264672A (zh) 用于移动装置的透明光探测器
Kim et al. A skin-like two-dimensionally pixelized full-color quantum dot photodetector
US10483423B2 (en) Quantum dot photodetector apparatus and associated methods
JP6469617B2 (ja) 非局所的読出し回路を有する画像センサおよびこの画像センサを備える光電子デバイス
US9632344B2 (en) Use of LED or OLED array to implement integrated combinations of touch screen tactile, touch gesture sensor, color image display, hand-image gesture sensor, document scanner, secure optical data exchange, and fingerprint processing capabilities
US8440997B2 (en) Nanowire photodetector and image sensor with internal gain
CN109155322A (zh) 具有电子快门的图像传感器
KR101991237B1 (ko) 공간 및 시간 내의 이벤트들의 포착
CN102473715A (zh) 采用共享浮置扩散区的图像传感器像素结构
EP3174108B1 (en) A quantum dot photodetector apparatus and associated methods
CN110164847A (zh) 阵列基板、光检测方法及组件、显示装置
CN105810704B (zh) 一种广谱成像探测芯片
Kamijo et al. A touchless user interface based on a near-infrared-sensitive transparent optical imager
US20180175217A1 (en) Device for Sensing Radiation
US8253896B2 (en) Photonic sensor, method of manufacturing same, color filter substrate having same, and display device having the color filter substrate
Dorn et al. Using nanowires to extract excitons from a nanocrystal solid
Zhang et al. High performance silicon carbide avalanche‐p‐i‐n ultraviolet photodiode with dual operation models
Kamijo et al. A touchless user interface based on a near-infrared sensitive transparent optical imager using printed Cu grid electrodes.
CN105765732A (zh) 用于检测光子的装置和方法
Dong et al. Resonant tunnelling diode photodetector operating at near‐infrared wavelengths with high responsivity
CN105244391A (zh) 一种宽响应谱的太赫兹量子阱光电探测器及其制备方法
Bhattacharya et al. Enhanced terahertz emission bandwidth from photo-conductive antenna with embedded plasmonic nano-pillar array
de Pina Engineering Semiconductor Nanostructures for Short-Wave Infrared Detection
Bhattacharya Nanophotonic Devices Based on Indium Phosphide Nanopillars Grown Directly on Silicon
Zhang Short‐wave infrared photodetector with high responsivity and signal‐to‐noise ratio

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant