CN105226096A - 场效应半导体器件以及其运行和制造的方法 - Google Patents

场效应半导体器件以及其运行和制造的方法 Download PDF

Info

Publication number
CN105226096A
CN105226096A CN201510384781.3A CN201510384781A CN105226096A CN 105226096 A CN105226096 A CN 105226096A CN 201510384781 A CN201510384781 A CN 201510384781A CN 105226096 A CN105226096 A CN 105226096A
Authority
CN
China
Prior art keywords
power transistor
gate insulator
transistor
gate electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510384781.3A
Other languages
English (en)
Inventor
P.伊尔西格勒
J.G.拉文
H-J.舒尔策
H.施特拉克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN105226096A publication Critical patent/CN105226096A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及场效应半导体器件以及其运行和制造的方法。根据一种实施方式提出一种功率晶体管,该功率晶体管包括衬底、沟道、栅电极和栅绝缘体。该栅绝缘体至少部分地被布置在栅电极和沟道之间,并且包括以下材料,该材料关于其极化具有滞后现象,使得晶体管的通过在栅电极上所施加的电压产生的开关状态在切断该电压之后继续保持。此外,提出一种半桥电路,包括根据本发明的构造的高侧晶体管和低侧晶体管,以及提出用于控制的方法和电路。

Description

场效应半导体器件以及其运行和制造的方法
技术领域
本发明的实施方式涉及场效应半导体器件、尤其是垂直型场效应半导体晶体管并且涉及场效应半导体器件的制造方法。
背景技术
半导体晶体管、尤其是场效应受控的半导体晶体管、如n型金属氧化物半导体场效应晶体管(MOSFET,英文:metal-oxidesemiconductorfieldeffecttransistor)被用于不同的应用,其中特别是作为电源和变流器、电动汽车、空调以及还有立体声设备中的开关。
在场效应晶体管中,必须在栅极上相对于源极施加电压,以便将晶体管保持在接通的状态中。在桥电路(H桥或也称为半桥)中应用的情况下,在此在上面的(高侧)晶体管中必须特意地产生该电压,例如借助充电泵(自举电路(Bootstrap))和控制电子电路,或借助电分离的用于控制的自身的电源。控制信号典型地通过高压固定的构件、诸如光电耦合器被耦合输入到用于上面的栅极电路的控制电子电路中。这样的解决方案具有以下缺点,所述解决方案为了实现需要多个附加的构件,这在多个方面、尤其是关于所述解决方案的成本和持久性或者还有较高的错误和失效易发性是不利的。
因此存在对改进的场效应半导体器件以及场效应半导体器件的改进的制造方法的需求。
发明内容
根据一个实施方式提出一种功率场效应晶体管,该功率场效应晶体管包括衬底、沟道、栅电极和栅绝缘体。栅绝缘体至少部分地被布置在栅电极和沟道之间,并且包括以下材料,该材料关于其极化具有滞后现象,使得晶体管的通过施加在栅电极上的电压所产生的开关状态在切断电压之后继续保持。
根据另一种实施方式提出一种半桥电路,其包括高侧晶体管和低侧晶体管,其中高侧晶体管包括衬底、沟道、栅电极和栅绝缘体。在此,栅绝缘体至少部分地被布置在栅电极和沟道之间,并且包括以下材料,该材料关于其极化具有滞后现象,使得晶体管的通过施加在栅电极上的电压所产生的开关状态在切断电压之后继续保持。
根据另一种实施方式提出一种用于制造场效应晶体管的方法。该方法包括:提供衬底、制造p型体区域、制造栅绝缘体、施加栅电极和接触p型体区域。在此栅绝缘体包括以下材料,该材料关于其极化具有滞后现象。
根据另一种实施方式提出一种用于控制功率晶体管的方法,该功率晶体管包括漂移区、沟道、栅电极和栅绝缘体,其中栅绝缘体至少部分地被布置在栅电极和沟道之间,并且包括以下材料,该材料关于其极化具有滞后现象,使得晶体管的通过施加在栅电极上的电压所产生的开关状态在切断电压之后继续保持,该方法包括将电压脉冲形式的电压短时间地施加到栅电极上,以便产生功率半导体的持续的开关状态,其中第一极性的第一电压脉冲将功率半导体置于持续的、至少部分导通的状态,并且具有与第一极性相反的极性的第二电压脉冲部分地或完全地抵消该导通的程度,其中导通的程度和其降低优选地可以通过第一和第二电压脉冲的幅度来控制。
对于专业人员,在阅读随后的详细的说明书和观察附图时,其他的特征和优点变得清楚。
附图说明
图中的组件不必严格按照比例,其中更确切地说重点在于解释本发明的基本思想。此外,在图中,相同的参考数字表示相应的部分。其中:
图1示意性地示出铁电物质的极化的滞后现象;
图2和3示出根据实施方式的场效应半导体器件的垂直横截面;
图4和5示出根据实施方式的具有场效应半导体器件的示意电路;以及
图6示出根据实施方式的制造方法的示意图。
具体实施方式
在随后的详细的说明书中参考以下图来进行解释性的说明,所述图是该文件的组成部分并且在所述图中可以实际地实现特别的实施方式,在所述图中可以实际地实现本发明。方向指示、如“上”、“下”、“前”、“后”、“前面的”、“后面的”等等参考图的定向来使用。因为实施方式的构件能够以不同定向的列来定位,所以方向指示为了解释的目的而被使用并且不以任何方式来限制。提示:可以使用其他的实施方式并且进行结构或逻辑的变化,而不偏离本发明的范围。因此,随后的详细的说明书不应该以限制的意义来理解并且本发明的范围通过权利要求来确定。在该上下文中,此外提示:只要不另作说明,在说明书、附图和/或在权利要求中明确地仅关于装置公开的特征或特征组合、例如材料或材料组合和/或区域的布置对于专业人员也一起公开所属的制造方法的相应的特征或特征组合。类似地,在说明书、附图和/或在权利要求中明确地仅关于制造方法公开的特征或特征组合对于专业人员也公开所制造的装置的相应的特征或特征组合。
现在,详细地探讨不同的实施方式,由所述实施例来解释图中的一个或多个实例。每个实例为了解释的目的被给出并且不作为本发明的限制来理解。例如作为一个确定的实施方式的部分来解释或描述的特征可以在其他的实施方式中或结合其他的实施方式来使用,使得得出另外的实施方式。本发明应该一起包含这样的变化和变型。所述实例在使用特定的语言的情况下来描述,这不应该解释为对所附的权利要求的范围的限制。附图可以是不按比例的并且仅仅用于解释性的目的。出于清楚的原因,只要不另作说明,不同的附图中的相同的元件或制造步骤利用相同的附图标记来表示。
术语“水平的”应该在本说明书的范围内表示以下方向,该方向基本上平行于半导体衬底或半导体本体的第一或水平表面来延伸。这例如可以是晶片或芯片的表面。
在本说明书中以以下为出发点,即半导体衬底或半导体本体的第二表面由下面的或背部的表面(背面)构成,该表面典型地是平的并且平行于第一表面。
术语“垂直的”应该在本说明书的范围内表示以下方向,该方向基本上与第一表面和/或第二表面成直角、即基本上平行于半导体衬底或半导体本体的第一表面的法线方向和/或第二表面的法线方向。概念“之上”和“之下”关于垂直方向描述一种结构特征相对于另一种结构特征的相对布置。
在本专利文献中,n型掺杂的半导体区域被称为第一传导类型的半导体区域,而p型掺杂的半导体区域被称为第二传导类型的半导体区域。替代于此,半导体器件可以利用相反的掺杂关系来构造,使得第一传导类型可以对应于p型掺杂并且第二传导类型可以对应于n型掺杂。此外,在一些图中通过以下方式说明相对的掺杂浓度,即提供掺杂类型“-”或“+”。例如“n-”表示小于“n”掺杂区域的掺杂浓度的掺杂浓度,而“n+”掺杂区域具有比“n”掺杂区域更大的掺杂浓度。如果说明相对的掺杂浓度,然而并不意味着,具有相同的相对的掺杂浓度的掺杂区域必须具有相同的绝对的掺杂浓度,只要不另作说明的话。例如两个不同的n+掺杂区域可以具有不同的绝对的掺杂浓度。相同的例如适用于n+掺杂区域和p+掺杂区域。
在本专利文献中描述的特定的实施方式针对场效应半导体器件、特别是场效应半导体晶体管、如水平的和垂直的MOSFET和其制造方法,以及针对IGBT和其制造方法。
典型地涉及具有布置在上侧上的源极金属化部和绝缘的栅电极的垂直的功率MOSFET,该栅电极在上侧的附近典型地被布置在半导体区之间的沟槽中,以及涉及漏极金属化部,该漏极金属化部被布置在相对布置的背面上。金属化部典型地也提供相应的端子,例如在接触面区域中。垂直的半导体功率晶体管典型地在有效区域中包含多个单元、例如MOSFET单元,用于引导和/或控制负载电流。此外,从上面观察,有效面能够至少部分地由至少一个边缘截止结构来包围。
在本说明书的上下文中,术语“金属化部”应该描述关于导电性具有金属的或近似金属的特性的区域或层。金属化部可以与半导体区域接触并且构造半导体器件的电极、接触面(焊盘)和/或端子。金属化部可以由金属、如AL、Ti、W、Cu和Co构成或包括这样的金属,但是也可以由具有关于导电性金属的或近似金属的特性的材料来制造,如由强n型或p型掺杂的多晶硅、TiN或导电的硅化物、如TaSi2、TiSi2、PtSi、CoSi2、WSi2或诸如此类的来制造。金属化部也可以包含不同的导电物质、例如所述物质的堆。
术语“边缘截止结构”如在本专利文献中所使用的那样应该描述一种结构,该结构提供过渡区域,在该过渡区域中围绕着半导体器件的有效区域的高电场逐级变化到器件的边缘处的电位和/或参考电位、如地。边缘截止结构例如可以通过以下方式减小pn结附近的场强度,即边缘截止结构将电场线分布到截止区域上。
术语“功率半导体器件”在本专利文献的范围内应该描述在具有高电压和/或高电流控制或开关能力的单个芯片上的半导体器件。换句话说,功率半导体器件被考虑用于典型地在具有大约1安培的下限的安培范围内的高电流,和/或高于大约10或也高于大约500V的高电压。在本文献的范围内,术语“功率半导体器件”、“功率半导体构件”、“功率晶体管”和“功率晶体管”同义地被使用。
术语“场效应”在本专利文献的范围内应该表示第一传导类型的导电“沟道”的通过电场促成的形成和/或第二传导类型的半导体区域、典型地第二传导类型的体区域中的沟道的形式和/或导电性的控制。基于场效应,通过沟道区域构造和/或控制在第一传导类型的邻近体区域的源极区域和第一传导类型的邻近体区域的漏极区域之间的单极的电流路径。该漏极区域可以与第一传导类型的更高掺杂的漏极区域接触。
漏极区域与漏极金属化部进行欧姆接触。源极区域和体区域与源极金属化部保持欧姆接触。在本文献的上下文中,术语“欧姆接触”表示,如果没有电压或仅仅小的检查电压被施加到半导体器件处和/或上,那么在半导体器件的相应的元件或区段之间存在欧姆电流路径。在本专利文献的范围内,术语“电接触”、“电连接”和“欧姆接触”同义地被使用。
在本专利文献的上下文中,概念“MOS”(金属氧化物半导体)应该作为包含一般的概念“MIS”(金属绝缘体半导体)来理解。例如概念MOSFET(金属氧化物半导体场效应晶体管)应该理解成,MOSFET也包含具有不是氧化物的栅绝缘体的场效应晶体管(FET),即术语MOSFET在IGFET(具有绝缘栅的半导体场效应晶体管)或MISFET(金属绝缘体半导体场效应晶体管)的一般的意义上来使用。
在本专利文献的上下文中,术语“开关”应该描述一种半导体结构、典型地功率MOSFET或功率IGBT,该半导体结构被配置,使得其能够引导典型地在安培范围内的负载电流并且中断负载电流。
在本专利文献的上下文中,术语“栅电极”表示一种电极,该电极与体区域相邻并且绝缘并且被配置成,使得通过栅电极的合适的控制电压能够构造和/或控制通过体区域的、源极区域和漏极区域之间的沟道区域。
在本专利文献的上下文中,术语“居里温度”和“所定义的极限温度”同义地使用。
在下文中,主要参考硅(Si)半导体器件解释涉及半导体器件和用于构造半导体器件的制造方法的实施方式。与此相应地,单晶半导体区域或单晶半导体层典型地是单晶Si区域或Si层。但是应该指出,半导体本体可以由每种适合于制造半导体器件的半导体材料来制造。这样的材料的实例特别是元素半导体材料、如硅(Si)或锗(Ge),IV主族的化合物半导体材料、如碳化硅(SiC)或锗化硅(SiGe),二元的、三元的或四元的III-V半导体材料、如氮化镓(GaN)、砷化镓(GaAs)、磷化镓(GaP)、磷化铟(InP)、磷化铟镓(InGaP)、氮化铝镓(AlGaN)、氮化铝铟(AlInN)、氮化铟镓(InGaN)、氮化铝镓铟(AlGaInN)、或砷化磷化铟镓(InGaAsP),以及二元的或三元的II-VI半导体材料、如碲化镉(CdTe)和碲化汞镉(HgCdTe),以便仅仅例举一些。上述的半导体材料也被称为具有同质结的半导体物质。如果两个不同的半导体物质组合,那么形成具有异质结的半导体材料。具有异质结的半导体材料的实例特别是,而不局限于此:具有异质结的氮化铝镓(AlGaN)-氮化铝镓铟(AlGaInN)、氮化铟镓(InGaN)-氮化铝镓铟(AlGaInN)、氮化铟镓(InGaN)-氮化镓(GaN)、氮化铝镓(AlGaN)-氮化镓(GaN)、氮化铟镓(InGaN)-氮化铝镓(AlGaN)、硅-碳化硅(SiXC1-X)和硅-锗化硅半导体材料。对于功率半导体应用,当前主要使用Si、SiC、GaAs和GaN物质。如果半导体本体包括具有高的带间隙(>2eV)的材料、如SiC或GaN,该材料具有高的击穿场强或高的临界雪崩场强(雪崩击穿场强),那么可以更高地选择相应的半导体区域的掺杂,这减小ON状态电阻RON,该ON状态电阻在下文中也被称为接通电阻RON
实施例一般涉及功率晶体管,在所述功率晶体管中通过具有栅绝缘体的栅极进行沟道的控制,该栅绝缘体包括铁电的电介质。在此选择针对栅绝缘体所使用的材料或材料配对,使得所述材料和材料配对关于其极化具有足够的滞后表现。该相互关系在图1中示出。从基础状态、即非极化的状态0开始,在上升的外部施加的场强E的情况下,栅极电介质的电极化上升(区段a)。一旦外部的场强E、即所施加的电场之后又减小到零,然而栅极电介质的极化继续保持(区段b),直至施加具有一定强度E的相反方向的电场(点c)。
在本公开内容中,因此针对电场的介电存储介质被用在栅极中。铁电的电介质、诸如(非限制的)BaTiO3通过在充电和放电过程期间在该材料中存在的滞后现象来存储最终所力求的极化状态。虽然在栅电极上没有电压,但是功率晶体管之后保持在最后通过所施加的栅电压所定义的开关状态中,直至新的放电/充电脉冲到达栅极或栅电极上。因此功率晶体管也在没有所施加的栅电压的情况下在任意长的时间上保持接通或关断。仅仅相应的充电/放电脉冲改变功率晶体管的开关状态。由于该表现,这样的器件只需要简单的变压器来进行控制,使得特别对于在半桥电路中使用的控制电子电路是十分简单的。这样的栅极材料的另外的优点是铁电体的特性,使得所述栅极材料在高于居里点的温度下变成顺电的并且因此回跳到尽可能地无极化的基础状态。因此晶体管在跳到基础状态中之后在栅极上之后不再具有电场,并且自动地关断。因为顺电状态中的介电常数也强烈地变小,所以构件之后直至达到居里点之下的温度不能再接通。所述两个效应得出特别鲁棒的构件。所述效应也简化针对短路情况和过流条件下的保护措施,这导致系统的进一步的花费和成本降低。
栅绝缘体的居里温度和介电常数δ可以通过混合材料或材料组成部分进行调节,使得居里温度位于定义的所期望的温度范围中。在实施例中,该温度范围典型地位于150℃和250℃之间。
针对在功率MOSFET或IGBT中作为短路保护的应用,在接通运行状态中的具有恒定电压源的运行也是可以的,这对应于常规的栅极控制。独自通过介电常数在超过居里温度时的下降,构件可以不顾此外在栅极控制上施加的接通运行电位而转变到安全状态中。在相应的设计中,n型或p型沟道可以在超过居里温度时完全被闭合,或也仅仅部分地被闭合。后者能够大体上减小短路电流,使得产生抗短路的鲁棒的构件。此外,这允许具有相对高的饱和电流的抗短路的功率晶体管的设计。这导致,在实施例中过载保护由于栅绝缘体电介质的居里温度依赖性而根据温度触发并且不是电流控制的。因此,只要构件温度在电流尖锋期间保持在所设定的居里温度以下,就能够实现迄今未达到的、短期的过流尖锋,例如大于正常电流的四倍的最大的短期的工作电流。总的短路能量在此保持在临界的范围以下。栅绝缘体的不同的介电常数也能够在实施例中实现在固定的使用电压的情况下的较高的p型体区域掺杂,由此能够显著地提高功率半导体的闩锁效应强度进而也提高宇宙辐射强度。
图2示出根据实施例的示例的、非限制性的功率晶体管10、MOSFET或MISFET。弱p型掺杂的硅单晶用作基础材料、衬底13。两个强n型掺杂的区域被嵌进到衬底13中,所述两个强n型掺杂的区域形成源极14或漏极16,具有源电极40。在其间剩余的间隙、p型体区域22的子区域上,现在施加绝缘层35。包括铁电的栅绝缘体30的电介质将位于其上的金属的或准金属的栅电极25与包括沟道20的p型体区域22分离。作为栅电极25的材料使用金属、例如铝或典型地n+或p+掺杂(变质的)多晶硅。所示出的是垂直的功率晶体管,所描述的技术也可以用到水平的功率半导体上。原则上,如果没有特别的、构件相关的技术上的障碍来妨碍铁电的栅绝缘体30的方案,那么铁电的栅绝缘体30的方案可以应用到每个通过场效应开关的功率半导体上。
通过电场,少数载流子(p型硅中的电子)在衬底12中迁移到边界层并且与多数载流子(p型硅中的空穴)复合。这作为耗尽对多数载流子的排挤产生影响。从确定的阈值电压Uth起,多数载流子的排挤是如此大,使得多数载流子不再可供复合使用。形成少数载流子的积聚,由此实际p型掺杂的衬底在靠近绝缘层处变得n导通的、强的反型。所形成的薄的n导通的沟道现在连接两个n型区域源极14和漏极16,由此载流子能够尽可能地无阻碍从源极14向漏极16流动。
根据实施例,栅绝缘体30至少部分地被布置在栅电极25和沟道20或p型体区域22之间。栅绝缘体30包括以下材料,该材料关于其极化具有滞后现象,使得晶体管10的曾经通过在栅电极25上施加的电压所产生的开关状态在切断该电压之后继续保持,参见图1中的关于场强的极化曲线。此外,功率晶体管10包括漂移区15。栅绝缘体30在实施例中包括至少一个铁电材料,该铁电材料导致栅绝缘体30的极化表现的滞后现象。
栅绝缘体30在实施例中可以具有不同的层包或层堆,所述层包或层堆例如包含一个铁电体也或多个不同的铁电体、一个或多个SiO2层也或其他的通常的绝缘层。例如钛酸铅锆、钛酸钡、氧化铪铝和钽酸锶铋属于可以用在栅绝缘体30中的铁电物质。
在实施例中,栅绝缘体30被设计成,使得在超过所定义的极限温度的情况下其介电常数下降到小于1/2。在该情况下,典型地在过高温度的情况下,功率晶体管根据设计部分地或完全截止。这可以用作有效的过热保护。极限温度引起,功率晶体管不能再导通,直至又低于该极限温度。在根据实施例的典型的应用情况下,栅绝缘体30具有大约150℃至大约250℃的范围内的极限温度(该极限温度同时是居里温度)。
如上已经提及的,功率晶体管10在实施例中基本上可以是每个通过场效应、即沟道的存在来控制的功率半导体类型、例如功率MOSFET、补偿器件或绝缘栅双极型晶体管(IGBT)。用于衬底的典型的材料例如(并非最后的)是Si、SiC和GaN。
栅绝缘体30的极化的滞后现象根据实施方式一般允许功率半导体构件10、11仅以栅电极25上的短暂的电压脉冲来接通或导通以用于控制。相应地,“On状态”于是在时间上在脉冲切断/结束之后继续保持。直到具有相反电压的另外的脉冲的情况下,构件才又被关断或截止,因为栅绝缘体的在接通时所产生的极化又被抵消或消除。状态“接通”和“关断”因此通过栅电极25被脉冲。相对于常规的功率FET,栅电压因此不必在整个On状态期间持续地保持。相同的适用于不完全导通的状态,即电压脉冲可以将功率半导体10、11例如持久地置于具有部分导通的状态中。持续的栅电压也可以如在常规的FET中那样被用于控制。
在实施例中,功率晶体管10可以是如下耗尽型,该耗尽型在超过极限温度时截止。同样,功率晶体管10可以是如下耗尽型,该耗尽型在运行中可以被切换到增强型。该类型相应地在超过栅绝缘体30的居里温度时落回增强型的原理并且于是持久地被接通。为了更改该表现,可以选择居里温度,使得落回表现被排除,功率晶体管10因此恒定地保持耗尽型。在该情况下,上述的过高温度保护通过栅绝缘体30中的铁电体而不用考虑。在实施例中,可以由为“常导通状态的”器件的JFET产生“常闭状态的”器件,这例如可以用在基于SiC的JFET或GaN功率器件中。
图3示出根据实施例的绝缘栅双极型晶体管(IGBT)11。IGBT11借助栅电极25来控制。IGBT在实施例中具有均匀地高掺杂的p型衬底(n型沟道IGBT),该p型衬底在背面具有特别构造的pn结。在n型衬底上施加弱掺杂的n型外延层41并且随后通过扩散引入p型阴极槽42(可选地高掺杂)和高掺杂的n型岛44。因此形成n型沟道IGBT的n+pnp+结构(参见图3)。p型沟道IGBT相应地具有p+npn+结构。pn结和根据实施例至少包括栅电极25和具有铁电体的栅绝缘体30的栅负责IGBT的功能。在集电极46上(相对于发射极48)施加正电位,使得背面的结处于正向运行并且不处于相反的截止运行中。正向运行可以分成两个范围:分成截止范围和导通范围。只要FET的阈值电压(栅极-发射极电压UGE)还未达到,IGBT就处于截止运行中。如果电压被提高到UGE,那么IGBT进入到导通范围中。如在正常的MIS场效应晶体管中,在栅极之下在p型阴极槽中形成导通的n型沟道。这能够实现从发射极48到n型外延层41中的电子传输。因为背面的pn结以导通方向连接,所以空穴从p+衬底注入到n外延层41中,在此形成电子空穴等离子体,该电子空穴等离子体负责实际的传导。该等离子体必须在每个切换过程中建立或消除,由此比在功率MOSFET中形成更高的开关损耗。在消除该等离子体时也可能出现,IGBT重新短时间导通。通过使用包括铁电体的栅绝缘体30,可以在栅电极上的电压被切断之后保持开关状态。
根据实施例提出具有两个半桥92和94的桥电路91,该桥电路示例性地在图4中示出;所述半桥分别包括高侧晶体管60和低侧晶体管65,其中两个高侧晶体管60包括参考图2或图3描述的功率晶体管10、11的特征。在此,高侧晶体管60的栅电极25通过电变压器70的次级侧71、72利用同步T1prim来控制。高侧晶体管60作为开关相对于低侧晶体管65不精细地被同步,并且因此特别适合于该应用。
在根据实施例的功率晶体管10、11应用在这样的桥电路91(包括两个半桥92、94)中时,在此在上面的高侧晶体管60中不必产生自身的电压。因此对于高侧晶体管60的控制省去常规流行的充电泵(自举电路(Bootstrap))或自身的控制电子电路,以及否则可能需要的电分离的自身的电源。用于上面的栅极电路的控制电子电路中的典型地高压固定的构件、诸如光电耦合器也能够有利于简单的变压器70而省去。
图5示出根据实施例的功率晶体管10、11作为高侧晶体管60的应用(在半桥92、94中,仅片段方式地示出)。在实施例中,为了控制栅电极25在此仅使用两个器件、电阻R和电容C(RC元件98)。利用不同极性的短暂的电压脉冲(参见图5中的栅电极上的电压曲线的图示,在栅电极25之上),因此可以在“持久导通”和“持久关闭”状态之间进行切换。电压脉冲的长度根据功率构件的特性来调整,理论上,所述长度必须只能这样长,使得达到栅绝缘体30的所期望的极化,例如为了完全导通所需要的长度。图5中的电路根据上面的脉冲曲线所得的导通表现在图中左侧的on-off图中被示出。栅电极25上的第一电压脉冲引起到导通的On状态中的连接,栅电极25上的之后的负的第二脉冲引起截止或到“Off状态”中的连接。根据实施例,用于功率半导体10、11的脉冲控制电路或时钟的脉冲控制电路根据以下实施方式来提出,所述实施方式中的多个示例性地参考图4和图5来描述。对于专业人员可以毫无困难地理解的是,这样的控制电路的其他的实施方案和修改方案也是可以的,所述实施方案和修改方案在根据本发明的功率半导体中由(短的)控制脉冲产生持久的开关状态。这同样被视为属于该公开内容。
根据实施方式的控制电路典型地具有以下特性,通过将电压脉冲形式的电压短时间地施加到功率半导体10、11的栅电极25上,产生功率半导体的持久的开关状态。在此,第一极性的第一电压脉冲将功率半导体10、11接入到持久的、至少部分导通的状态中。该状态继续保持,直至具有与第一极性相反的极性的第二电压脉冲部分或完全抵消导通的程度。在此典型地,导通的程度和之后导通的降低可以通过第一和第二电压脉冲的幅度来控制。根据应用领域,其他的时间曲线也是可以的,因此例如短的第一脉冲可以使功率半导体25%导通,其中在一定时间之后相同极性的另一脉冲引起至50%或100%的导通。典型的脉冲持续时间此外取决于功率半导体10、11的类型和尺寸以及控制电路的种类。特别是可以因此通过控制的占空比和/或脉冲序列来控制接通或关断表现或者接通或关断电流沿。在利用常规的控制方案的常规的器件中,通常通过栅电极之前的通常固定构建的栅电阻来调节开关沿。相对于晶体管控制的常规方案,针对实施例中的不同的运行状态的开关沿可以在持续运行中通过控制的占空比和/或脉冲序列来优化地调节或优化。因此例如半桥或桥电路的控制的适配能力通过以下方式被改进,即形成附加的自由度或参数作为对控制的影响可能性。因此功率半导体的控制的参数或电路的运行例如可以在持续运行中被适配并且被适配于外部的参数和运行条件并且被优化。
根据实施例的功率场效应晶体管基本上可以根据属于相应的类型的已知的标准方法来制造,其中在栅绝缘体30的制造中附加或替代于常见的栅绝缘体材料施加至少一种铁电物质。该铁电物质典型地与栅电极25相邻也或接触。在实施例中以下步骤属于典型的步骤:提供衬底并且制造源极14和漏极16。p型体区域22位于源极和漏极之间。栅绝缘体30、可能利用绝缘层35、如氧化物被施加到p型体区域22上。在该栅绝缘体上提供栅电极25。如例如参考图1所描述的,在此栅绝缘体30包括铁电材料。该铁电材料可以是钛酸铅锆、钛酸钡、氧化铪铝和钽酸锶铋之一,特别是SrBi2TaO9、(HfO2x(Al2O31-x、Hf-Al-O和HfO2中的至少一个或上述的组合。
用于制造功率场效应晶体管10的方法300包括在框310中提供衬底12、在框320中制造p型体区域22、在框330中制造栅绝缘体30、在框340中施加栅电极25、在框350中接触p型体区域22,其中栅绝缘体300包括以下材料,该材料关于其极化具有滞后现象。
虽然公开了本发明的不同的示例性的实施方式,但是对于相关专业人员明显的是,可以进行不同的变化和修改,利用所述变化和修改实现本发明的优点中的一些,而不因此与本发明的本质和范围相偏离。此外,对于一般专业人员清楚的是,满足相同功能的其他构件可以相应地被替换。应该指出,下面参照特定的图来解释的特征可以与其他图的特征组合,更确切地说也存在这样的情况,在所述情况中这没有明确被提及。有创造性的方案的这种修改应该一同被包括到所附的权利要求中。
空间相对的概念、如“在…下面”、“之下”、“下面的”、“在…上面”等等为了更好的描述而被使用,以便说明一个元件相对于第二元件的相对定位。所述概念除了在图中所描述的不同的定向之外还应该包括器件的不同定向。此外,术语如“第一”、“第二”等等也被使用,以便描述不同的元件、区域、范围等等,并且同样不局限地考虑。在整个说明书中,相同的概念涉及相同的元件。
在当前的语言惯用语中,概念“具有”、“含有”、“包含”、“包括”等等是开放性的概念,所述概念示出所说明的元件或特征的存在,但是不排除附加的元件或特征。冠词“一个”和“该”应该不仅包括复数而且包括单数,只要在上下文中没有明确的其他说明。
鉴于上面的变型和应用范围能够以以下为出发点,即本发明既不通过在前的说明书又不通过附图来限制。代替于此,本发明仅仅通过随后的权利要求和其权利对等来限制。
附图标记列表
功率晶体管10
衬底12、13
源极14
漂移区15
漏极16
沟道20
p型体区域22
栅电极25
栅绝缘体30
绝缘层35
源电极40
n型外延层41
p阴极槽42
n型岛44
集电极46
发射极48
高侧晶体管60
低侧晶体管65
变压器70
次级侧71、72
桥电路91
半桥92、94
RC元件98
方法300

Claims (22)

1.功率晶体管(10),包括:
a.漂移区(15),
b.沟道(20),
c.栅电极(25),
d.栅绝缘体(30),
其中所述栅绝缘体(30)至少部分地被布置在所述栅电极(25)和所述沟道(20)之间,并且包括以下材料,所述材料关于其极化具有滞后现象,使得所述晶体管(10)的通过在栅电极(25)上所施加的电压产生的开关状态在切断所述电压之后继续保持。
2.根据权利要求1所述的功率晶体管,其中所述栅绝缘体(30)包括铁电材料。
3.根据权利要求1或2所述的功率晶体管,其中所述功率晶体管(10)保持在通过栅电极(25)上的第一电压脉冲所定义的状态中,直至与第一不同的第二电压脉冲施加到所述栅电极上。
4.根据上述权利要求之一所述的功率晶体管,其中所述栅绝缘体(30)包括钛酸铅锆、钛酸钡、氧化铪铝和钽酸锶铋中的至少一个。
5.根据上述权利要求之一所述的功率晶体管,其中所述栅绝缘体(30)具有层堆,包括SrBi2TaO9、(HfO2x(Al2O31-x、Hf-Al-O和HfO2中的至少一个。
6.根据上述权利要求之一所述的功率晶体管,其中所述栅绝缘体(30)被构造成,使得在超过所定义的极限温度时所述栅绝缘体变成顺电的。
7.根据权利要求6所述的功率晶体管,所述功率晶体管被设计成,使得在超过所定义的极限温度时所述功率晶体管部分地或完全截止,由此得到相对于过热和/或过流的保护效果。
8.根据权利要求6所述的功率晶体管,其中所述栅绝缘体(30)被设计成,在超过所定义的极限温度时所述栅绝缘体的介电常数下降到小于1/2,由此所述功率晶体管部分地或完全截止,并且作为过热保护不能再导通,直至又低于所述极限温度。
9.根据上述权利要求之一所述的功率晶体管,其中所述栅绝缘体(30)具有大约150℃至大约250℃的范围内的居里温度。
10.根据上述权利要求之一所述的功率晶体管,其中所述栅绝缘体(30)除了第一铁电层之外包括以下中的至少一个:
a.与第一层不同的第二铁电体,
b.SiO2层,
c.由其他的介电材料构成的绝缘层作为SiO2
11.根据上述权利要求之一所述的功率晶体管,所述功率晶体管是垂直的功率晶体管,特别是功率MOSFET、补偿器件或绝缘栅双极型晶体管(IGBT)。
12.根据上述权利要求之一所述的功率晶体管,所述功率晶体管包括物质Si、SiC和GaN中的至少一个。
13.根据上述权利要求之一所述的功率晶体管,其中所述功率晶体是耗尽型,所述耗尽型在超过极限温度时截止。
14.根据上述权利要求之一所述的功率晶体管,其中所述功率晶体是耗尽型,所述耗尽型在运行中能够被切换成增强型。
15.半桥电路,包括高侧晶体管(60)和低侧晶体管(65),其中所述高侧晶体管包括:
a.漂移区(15),
b.沟道(20),
c.栅电极(25),
d.栅绝缘体(30),
其中所述栅绝缘体至少部分地被布置在所述栅电极(25)和所述沟道(20)之间,并且包括以下材料,所述材料关于其极化具有滞后现象,使得所述高侧晶体管的通过在栅电极(25)上所施加的电压产生的开关状态在切断所述电压之后继续保持。
16.根据权利要求15所述的半桥电路,其中所述高侧晶体管(60)的栅电极(25)通过电变压器(70)和RC元件之一来控制。
17.用于制造功率晶体管(10)的方法(300),包括:
-提供衬底(310),
-制造p型体区域(320),
-制造栅绝缘体(330),
-施加栅电极(25),
其中所述栅绝缘体(30)包括以下材料,所述材料关于其极化具有滞后现象。
18.根据权利要求17所述的方法,其中所述栅绝缘体(30)包括铁电材料。
19.根据权利要求17或18所述的方法,其中所述栅绝缘体(30)包括钛酸铅锆、钛酸钡、氧化铪铝和钽酸锶铋中的至少一个,并且其中所述栅绝缘体(30)被设计成,使得在超过所定义的极限温度时所述栅绝缘体变成顺电的。
20.用于控制根据权利要求1至14之一的功率晶体管(10、11)或根据权利要求15或16的半桥电路的方法,包括:
-将电压脉冲形式的电压短时间地施加到栅电极(25)上,以便产生功率晶体管(10、11)的持久的开关状态,
其中第一极性的第一电压脉冲将功率半导体置于持久的、至少部分导通的状态中,并且具有与第一极性相反的极性的第二电压脉冲部分地或完全抵消所述导通的程度,
其中可选地,通过第一和第二电压脉冲的幅度来控制所述导通的程度和抵消导通的程度。
21.根据权利要求20所述的方法,其中所述功率晶体管(10、11)是半桥电路(92、94)的部分并且被施加具有同步的电压脉冲。
22.控制电路,所述控制电路被设计用于实施根据权利要求20或21的方法,其中所述电路优选地包括变压器(70)和RC元件中的至少一个。
CN201510384781.3A 2014-06-30 2015-06-30 场效应半导体器件以及其运行和制造的方法 Pending CN105226096A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014109147.7A DE102014109147A1 (de) 2014-06-30 2014-06-30 Feldeffekthalbleiter-Bauelement sowie Verfahren zu dessen Betrieb und Herstellung
DE102014109147.7 2014-06-30

Publications (1)

Publication Number Publication Date
CN105226096A true CN105226096A (zh) 2016-01-06

Family

ID=54839602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510384781.3A Pending CN105226096A (zh) 2014-06-30 2015-06-30 场效应半导体器件以及其运行和制造的方法

Country Status (3)

Country Link
US (1) US9496364B2 (zh)
CN (1) CN105226096A (zh)
DE (1) DE102014109147A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176499A (zh) * 2019-05-06 2019-08-27 上海功成半导体科技有限公司 超结mos器件结构及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024413B2 (en) * 2013-01-17 2015-05-05 Infineon Technologies Ag Semiconductor device with IGBT cell and desaturation channel structure
US10098585B2 (en) 2013-03-15 2018-10-16 Cadwell Laboratories, Inc. Neuromonitoring systems and methods
DE102015117994B8 (de) 2015-10-22 2018-08-23 Infineon Technologies Ag Leistungshalbleitertransistor mit einer vollständig verarmten Kanalregion
US9935395B1 (en) 2017-01-23 2018-04-03 Cadwell Laboratories, Inc. Mass connection plate for electrical connectors
US11253182B2 (en) * 2018-05-04 2022-02-22 Cadwell Laboratories, Inc. Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation
US11992339B2 (en) 2018-05-04 2024-05-28 Cadwell Laboratories, Inc. Systems and methods for dynamic neurophysiological stimulation
US11443649B2 (en) 2018-06-29 2022-09-13 Cadwell Laboratories, Inc. Neurophysiological monitoring training simulator
CN109768087B (zh) * 2018-12-20 2021-04-27 中国科学院微电子研究所 半导体器件、其制造方法、集成电路及电子设备
US20210005728A1 (en) * 2019-07-02 2021-01-07 National Taiwan Normal University Storage memory device
KR20210143046A (ko) * 2020-05-19 2021-11-26 삼성전자주식회사 산화물 반도체 트랜지스터
US11710775B2 (en) * 2020-05-29 2023-07-25 Taiwan Semiconductor Manufacturing Co., Ltd. Ferroelectric field effect transistor
US11569382B2 (en) * 2020-06-15 2023-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of fabricating the same
EP4064363A1 (en) * 2021-03-24 2022-09-28 Hitachi Energy Switzerland AG Semiconductor device with an insulated gate, method for manufacturing the same and power module comprising the same
US11791383B2 (en) * 2021-07-28 2023-10-17 Infineon Technologies Ag Semiconductor device having a ferroelectric gate stack
US12068390B2 (en) * 2021-07-28 2024-08-20 Infineon Technologies Ag Power semiconductor device having a gate dielectric stack that includes a ferroelectric insulator
US11527649B1 (en) * 2021-08-30 2022-12-13 Taiwan Semiconductor Manufacturing Company Limited Ferroelectric field effect transistor devices and methods for forming the same
US11646376B2 (en) * 2021-09-20 2023-05-09 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896199A (en) * 1985-11-29 1990-01-23 Nippondenso Co., Ltd. Semiconductor device with protective means against overheating
JPH07193236A (ja) * 1993-12-27 1995-07-28 Nissan Motor Co Ltd 半導体装置とそのためのゲート電極駆動回路
CN1379475A (zh) * 2001-03-30 2002-11-13 松下电器产业株式会社 半导体存储装置及其驱动方法
US20050111252A1 (en) * 2003-11-26 2005-05-26 International Business Machines Corporation Field effect device with a channel with a switchable conductivity

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307305A (en) * 1991-12-04 1994-04-26 Rohm Co., Ltd. Semiconductor device having field effect transistor using ferroelectric film as gate insulation film
US6392859B1 (en) * 1999-02-14 2002-05-21 Yazaki Corporation Semiconductor active fuse for AC power line and bidirectional switching device for the fuse
CN100468638C (zh) * 2001-12-18 2009-03-11 松下电器产业株式会社 半导体元件的制造方法
JP4609621B2 (ja) * 2002-12-24 2011-01-12 セイコーエプソン株式会社 強誘電体キャパシタの製造方法
WO2007075942A2 (en) * 2005-12-22 2007-07-05 Mears Technologies, Inc. Electronic device including a selectively polable superlattice and associated methods
DE202006005725U1 (de) * 2006-04-07 2007-08-16 Wyremba, Hans-Peter Treiberanordnung für ein Gate zumindest eines Transistors
JP2009152235A (ja) * 2007-12-18 2009-07-09 Panasonic Corp 強誘電体積層構造及びその製造方法、電界効果トランジスタ及びその製造方法、並びに強誘電体キャパシタ及びその製造方法
JP2011159763A (ja) * 2010-01-29 2011-08-18 Toshiba Corp 電力用半導体装置
US9018629B2 (en) * 2011-10-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US20140001480A1 (en) 2012-07-02 2014-01-02 Infineon Technologies Ag Lead Frame Packages and Methods of Formation Thereof
KR102052936B1 (ko) * 2012-11-13 2019-12-06 삼성전자 주식회사 반도체 소자 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896199A (en) * 1985-11-29 1990-01-23 Nippondenso Co., Ltd. Semiconductor device with protective means against overheating
JPH07193236A (ja) * 1993-12-27 1995-07-28 Nissan Motor Co Ltd 半導体装置とそのためのゲート電極駆動回路
CN1379475A (zh) * 2001-03-30 2002-11-13 松下电器产业株式会社 半导体存储装置及其驱动方法
US20050111252A1 (en) * 2003-11-26 2005-05-26 International Business Machines Corporation Field effect device with a channel with a switchable conductivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176499A (zh) * 2019-05-06 2019-08-27 上海功成半导体科技有限公司 超结mos器件结构及其制备方法
CN110176499B (zh) * 2019-05-06 2022-06-24 上海功成半导体科技有限公司 超结mos器件结构及其制备方法

Also Published As

Publication number Publication date
US20150380511A1 (en) 2015-12-31
DE102014109147A1 (de) 2015-12-31
US9496364B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
CN105226096A (zh) 场效应半导体器件以及其运行和制造的方法
US11404565B2 (en) Power semiconductor device with an auxiliary gate structure
CN103262244B (zh) 具有隔离区的晶体管
US8928003B2 (en) Nitride semiconductor device
US9502398B2 (en) Composite device with integrated diode
US9559093B2 (en) Method of forming a semiconductor device having a GaNFET, an overvoltage clamping component, and a voltage dropping component
KR101562879B1 (ko) 반도체 장치
US8941117B2 (en) Monolithically integrated vertical JFET and Schottky diode
US11336279B2 (en) Power semiconductor device with a series connection of two devices
CN105743477B (zh) 桥接电路
WO2017015225A1 (en) Field-plate structures for semiconductor devices
US11257811B2 (en) Power semiconductor device with an auxiliary gate structure
CN116682728A (zh) 隔离式iii-n族半导体装置
CN103311271B (zh) 电荷补偿半导体器件
CN102646720B (zh) 常关半导体开关和常关jfet
JP2008258261A (ja) 半導体装置
US9691892B2 (en) High voltage transistor operable with a high gate voltage
US20230411504A1 (en) P-type gate hemt device
US8742550B2 (en) Charge compensation semiconductor device
CN111048576B (zh) 一种半导体器件及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160106

WD01 Invention patent application deemed withdrawn after publication