CN105210284A - 具有电压平衡电路的辅助谐振换向极变流器 - Google Patents

具有电压平衡电路的辅助谐振换向极变流器 Download PDF

Info

Publication number
CN105210284A
CN105210284A CN201380066006.2A CN201380066006A CN105210284A CN 105210284 A CN105210284 A CN 105210284A CN 201380066006 A CN201380066006 A CN 201380066006A CN 105210284 A CN105210284 A CN 105210284A
Authority
CN
China
Prior art keywords
control device
switch
conductor
voltage
power converters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380066006.2A
Other languages
English (en)
Other versions
CN105210284B (zh
Inventor
埃里克·汉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bur Sai Si Co
Comsys AB
Original Assignee
Bur Sai Si Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bur Sai Si Co filed Critical Bur Sai Si Co
Publication of CN105210284A publication Critical patent/CN105210284A/zh
Application granted granted Critical
Publication of CN105210284B publication Critical patent/CN105210284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4811Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having auxiliary actively switched resonant commutation circuits connected to intermediate DC voltage or between two push-pull branches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/523Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit
    • H02M7/5233Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit the commutation elements being in a push-pull arrangement
    • H02M7/5236Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit the commutation elements being in a push-pull arrangement in a series push-pull arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/32Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供了一种谐振电力变流器。所述谐振电力变流器包括用于平衡馈给连接(N)中的电压的平衡电路(BC)。所述平衡电路(BC)包括:与电感器串联的第一正控制装置(BS1)和与电感器(BL)串联的第二负控制装置(BS2),其中第一正控制装置(BS1)和电感器(BL)在正DC导体(1a)与馈给连接(N)之间耦接,其中第二负控制装置(BS2)在负DC导体(1b)与馈给连接(N)之间耦接。所述第一正控制装置和所述第二负控制装置(BS1、BS2)适于交替地接通和关断以用于平衡谐振电力变流器,使得在馈给连接(N)中的电压实质上为正DC导体(1b)和负DC导体(1a)的平均电压。

Description

具有电压平衡电路的辅助谐振换向极变流器
技术领域
本发明总体上涉及用于限制切换所需功率的谐振电力转换的改进电路。
背景
在电力变流器中,当所有组件均不具有理想特性时产生损耗。损耗在电源电路中引入热量,其中除了消耗能量将热应变引入到所有部件中之外,还缩短了使用寿命。
期望增大电力变流器的操作频率,这样生成的输出然后可以被更准确地控制。增大切换频率导致较低的切换纹波、较小的组件值,继而导致本发明的更紧凑、重量轻且有成本效益的实现。另外,较低的切换纹波允许可能降低的EMI,继而更接近无干扰切换的目标。更进一步,具有高切换频率允许由电力变流器生成更高频率的电流,从而扩大了合适的变流器应用的范围。
但是,增大频率也增大了切换损耗,因为大部分损耗基于切换周期出现。在电流穿过半导体时或在其上存在电压差时迫使半导体换向,需要必须向半导体供应的能量。因此,减小穿过半导体的电流或其两端的电压降低了开关的总输入功率,并且因此降低了系统的总输入功率。
降低特定开关上的损耗的一种方式是添加谐振组件到电路,其中电流通过电感元件、通过电容器放电生成。采用这种技术的电路已知为谐振变流器。谐振变流器的使用实现软开关,这降低了在切换操作中消耗的能量。通常存在两种类型的软开关:零电压切换和零电流切换。零电压切换包括在换向之前将开关上的电压差减到最小,而零电流切换包括在切换之前将经过其中的电流减到最小。为使真实的零电压切换成为可能,谐振电路必须正确调节在开关一侧的电压,使得开关上不存在电势差。
生成较少的EMI噪声是其自身的重要目标。在其中变流器或逆变器被直接连接到电网的应用中,EMI噪声可导致问题,这些问题在正常情况下通过采用EMC滤波器解决。EMC滤波器必须与变流器串联地放置,从而处理满电流容量。通过将EMI降至最低,可使EMC滤波器从变流器设计中省去。
概要
提供一种谐振电力变流器。所述谐振电力变流器包括:DC电源,正DC导体、负DC导体、相导体、以及在DC电源与相导体之间耦接的电力转换单元。电力转换单元包括:在正DC导体与相导体之间耦接的第一开关,和与第一开关并联的第一二极管,以及在负DC导体与相导体之间耦接的第二开关,和与第二开关并联的第二二极管。电力转换单元还包括在DC电源的中点上的馈给连接与相导体之间耦接的谐振辅助切换电路。谐振辅助切换电路包括控制装置,以用于控制通过馈给连接与相导体之间的谐振辅助切换电路的电流。
谐振电力变流器还包括用于平衡馈给连接中的电压的平衡电路。平衡电路包括与电感器串联的第一正控制装置。第一正控制装置和电感器在正DC导体与馈给连接之间耦接。平衡电路还包括与电感器串联的第二负控制装置,其中第二负控制装置在负DC导体与馈给连接之间耦接。第一正控制装置和第二负控制装置适于交替地接通和关断以用于平衡谐振电力变流器,使得在馈给连接中的电压实质上为正DC导体和负DC导体的平均电压。
通过平衡DC电源,谐振电力变流器能够更好地减小开关两端的电压,使得切换可以以低损耗执行。
根据一个实施例,谐振电力变流器还包括与电感器并联或串联的辅助电容器,使得当电流流过谐振辅助切换电路时产生并联或串联谐振电路。
根据一个实施例,第一正控制装置和第二负控制装置与单个电感器串联连接,然后再耦接到馈给连接。该实施例用几个组件创建平衡电路。
正控制装置和负控制装置可适于与主开关一起进行切换,并且第一主开关和第一正控制装置的切换可同步,以及第二主开关和第二负控制装置的切换可同步,使得DC电源伴随着开关的切换而被持续地平衡。
第一正控制装置和第二负控制装置可适于被交替地开关,使得第一正控制装置在实质上50%的时间为接通并且在实质上50%的时间为关断,并且使第二负控制装置在实质上50%的时间为接通并且在实质上50%的时间为关断。
根据实施例中的任一个实施例的谐振电力变流器可适于在有源滤波器(activefilter)中使用。
还提供了一种用于减少电气系统中的谐波的有源滤波器。该有源滤波器包括根据本文实施例中的任一个实施例的谐振电力变流器和控制单元,该控制单元适于测量在电气系统中的一点处的电压和/或电流,以及基于测量的电压和/或电流来控制谐振电力变流器的切换。
在有源滤波器应用中平衡谐振电力变流器的DC电源是有利的,因为有源滤波器旨在纠正的电压/电流误差可迅速改变变化,迫使电力变流器在大电压时进行切换(如果DC电源未被平衡的话)。
控制单元还可适于控制谐振电力变流器的第一正控制装置和第二负控制装置,以用于平衡谐振电力变流器的DC电源,并且控制单元可适于控制开关和控制装置,使得第一开关和第一正控制装置的切换同步,并且使第二开关和第二负控制装置的切换同步。
请注意,除非明显矛盾,否则任何实施例可以以任何方式组合。
附图简述
现在参考附图借助于示例来描述本发明,在附图中:
图1a示出用于当输出电流从具有电压+V切换成具有电压-V时的谐振电力转换电路,
图1b示出用于当输出电流从具有电压+V切换成具有电压-V时的谐振电力转换电路的另选实施例,
图2示出用于为当输出电流从具有电压+V切换成具有电压-V时的谐振电力转换电路,
图3a示出用于当输出电流从具有电压-V切换成具有电压+V时的谐振电力转换电路,
图3b示出了图3a所示的谐振电力转换电路,其中不同的是DC电源是不平衡电源,
图4示出了包括平衡电路的谐振电力转换电路。
图5示出了包括谐振电力转换电路的有源滤波器的实施例。
详细描述
现在将根据对附图的参考,借助于示例描述使用谐振电力转换、或切换的电力变流器的基本原理。应理解,附图仅用于说明的目的并且不以任何方式限制范围。
在下图中,示出电力变流器用于在有源滤波器中的使用。但是,该实施例仅视作电力变流器的一个用途示例。由所附权利要求定义的发明概念可在其中需要谐振电力变流器的全部应用中使用,诸如在电源变压器等中使用。
在有源滤波器中的电力变流器创建补偿电流,该补偿电流对产生谐波的电气系统中的负载进行补偿。通过减少电气系统中的谐波,减少了干扰并且降低了电气系统中的损耗。关于有源滤波器的细节的进一步描述可在例如授予Persson的US7289888中找到。电气系统在附图中由能量供应单元4、能量消耗负载5和主导体3示出,其中主导体3用于将能量从能量供应单元4输送到能量消耗单元5。能量供应单元4可例如为电力网或降低从主电力网供应的电压的变压器。能量消耗负载5可例如为电动机。有源滤波器还包括电感器L1,该电感器L1通过以下方式将开关(控制装置)Gp、Gn所生成的脉冲转换成连续信号,所述方式为通过在电感器两端形成与电流变化率(根据I=-LdU/dt)成比例的电压,来对抗经过该电感器L1的电流的改变。对于被配置用于100A电流的有源滤波器,电感器通常为在200-250uH范围内的电感器。
图1a示出用于谐振电力转换的谐振电力变流器。该谐振电力变流器包括每相两个主开关器件Gp、Gn。开关器件具有与其并联连接的二极管Dp、Dn。谐振电力变流器还包括谐振辅助切换电路AUX,其包括与电感器L2和在DC电源DC上的馈给连接N串联耦接的辅助开关器件(控制装置)Sp、Sn。电感器L2适于与辅助电容器Cs产生谐振。DC电源DC根据本实施例是两个电容器C,每个电容器在馈给连接N处连接。DC电源DC在正导体1a中产生正电压V+,并在负导体V-中产生负电压V-。在一个示例中,正电压为+400V并且负电压为-400V。在优选实施例中,IGBT由于高的开关频率而被用于两个主开关器件Gp、Gn和辅助开关器件Sp、Sn,但本发明适于与许多类型的开关器件(诸如(但不限于)BJT、MOSFET、MCT、GTO或IGCT)一起使用。
在图1a中所示的实施例中,辅助电容器Cs在DC电源DC(电容器C)的中点与主开关Gp和Gn之间的中点之间与电感器L2并联连接。图1a描述当没有电流经过L1时谐振电力变流器的操作。为迫使电压从+V到-V,即从+400V到-400V,需要通过谐振辅助切换电路AUX提供额外的电流。作为切换循环中的第一步骤,开关Gp关断使得电流停止从正导体1a流出。在相导体e中的电压现在为正电压+V,并且无电流流动。开关Sp接通,闭合谐振电路,导致电容器Cs通过开关Sp和二极管Dap放电,并且因此改变电感器L2上的电势差,产生供应给相导体e的电流。谐振辅助切换电路AUX因此供应强制电势,该强制电势实质上等于-V和+V之间的电压差的一半,从而感应出在电感器L2中的磁场,该磁场保持电流流过电感器,从而使得相导体e中的电势朝-V下降。借助于驱动电流的电感器L2,强制电势导致电压从+400V下降到-400V。当电压下降结束时,电流开始流过负二极管Dn。此时,负开关Gn上的电势差减小,使得Gn可在其两端没有任何电压的情况下进行切换。
图1b示出谐振电力变流器的在功能上等同的另选实施例。在图1b所示的电路中,辅助电容器Cs在DC电源DC(电容器C)的中点N与辅助切换电路AUX之间与电感器L2串联连接。正如图1a,图1b描述当无电流经过电感器L1时谐振电力变流器的操作。
图2示出第二替换方案,其中的目的是当电流流过L1时从+V切换到-V。正开关Gp关断,但是当L1拥有磁场时,其将继续驱动从二极管Dn流出并经过其中的电流I2,使得主引线中的电压从+V下降到-V,因此降低开关Gn上的电压差,使得开关Gn能够以非常小的损耗进行切换。
图3a示出第三切换操作,其中当电流流过电感器L1时执行从-V到+V的切换。作为第一步骤,负开关Gn关断,导致由电感器L1驱动的电流I3继续经过负二极管Dn(被指定为二级管电流Id)。Sp接通,从而闭合谐振辅助切换电路AUX对Cs放电,并借助电感器L2驱动辅助电流I4,使得电压在主引线中上升,并且因此降低Gp上的电压差。当Gp上的电压接近零时,Gp接通并且电流IGp开始流过Gp并且Sp关断。经由辅助电路AUX所供应的电流,流动的电流I3的电压因此从-V转变成+V,使得在切换循环结束时,电流流过正主开关Gp。
因为谐振辅助切换电路AUX向图1a和3a中的电路供应充足的强制电势,使得相导体e中的电压分别从+V变成-V和从-V变成+V,DC电压源的电压需要实质上等于-V与+V之间的电压差的一半,此为图1-3a中所示实施例中的情况。但是,由于谐振电力变流器的组件的不对称,即组件的值(诸如电阻、电感等)偏离于标称值,并且由于在实践中计算的谐振电力变流器的组件的标称值偏离于理想电路的标称值这一事实,因此谐振电力变流器是非对称的,其继而意味着谐振辅助切换电路对于降低开关Gp、Gn两端的电压是不理想的。
在图3a所示的切换操作中,谐振辅助切换电路AUX旨在将相导体e中的电压从-400V改变成+400V,使得正开关Gp可在其两端无任何电压的情况下并且因此以非常小的损耗进行切换。图3b示出实施例,其中DC电源DC是非对称的,正导体1a具有+405V的电势而不是标称的+400V电势,负导体1b具有-395V的电势而不是标称的-400V电势,并且在馈给连接N处的电压保持在标称正电压与标称负电压的和的标称的一半,即0V。在所描述的情况中,不平衡导致谐振辅助切换电路AUX可使用以产生改变在相导体e处的电压的谐振电流的电势差是在馈给导体N中的电压与正导体1a中的电压之间的差(即405V)。为在Gp上无电势差的情况下进行切换,相导体e的电压需要从负导体1b的电压(-395V)转换成正导体1a的电压(+405V)。但是,馈给连接N处的电压(具有0V的标称电压)与负导体1b之间的电势差仅为395V,导致(在理想电路中)谐振辅助切换电路AUX只能将相导体e的电压改变790V,导致在谐振转换结束时相导体e中的电压为+395V,将切换时的电势差保持为10V,其在图3b的图中被指定为△。因此,正开关Gd将不得不在其两端存在10V的电势差的同时进行换向。另外,如果非对称非常大,则谐振电路的电容器Cs将不能与L2一起开始谐振,并且因此禁止谐振切换的不当操作。当电容器Cs耦接到点N并耦接到相导体e时,DC电源的非对称将使Cs在主开关Gp、Gn接通时被短路,这将对Cs造成热损坏。
在一个示例中,谐振电力变流器在有源滤波器中用于产生补偿电流,以补偿电压的波形和电流的波形之间的时间差。电压与电流之间的差异在一些情况下可迅速变得非常大,导致谐振电力变流器必须在相对长的时间段内产生正补偿电流或负补偿电流,从而将DC电源的电容器中的一个排空,使得在极端示例中,在导体中的一个中的电压为0伏,而在另一个导体中的电压保持在标称值。
图4示出与图1-3中所示电路类似的电路,不同的是电路另外包括平衡电路BC,该平衡电路BC用于平衡DC电源DC的馈给连接N,使得在馈给连接N处的电势总是保持在负导体1b与正导体1a之间的电压差的实质上一半。平衡电路BC包括第一平衡开关和第二平衡开关(控制装置)BS1、BS2,在本例中为第一IGBT和第二IGBT,并且还包括平衡电感器BL。平衡开关BS1、BS2交替,使得第一平衡开关BS1和第二平衡开关BS2分别在实质上50%的时间为接通并且在实质上50%的时间为关断。在第一平衡开关BS1的接通时间期间,电感器BL上的电势差感应出磁场,该磁场在第一开关BS1关断并且第二开关BS2接通时被排空(drained)。只要当每次平衡循环结束时BL上的电势差为0,那么将没有电流经过电感器BL。但是,在当由于DC电源中的不平衡而导致平衡电感器BL未被完全排空时的情况下,即,馈给连接具有除正导体1a与负导体1b之间的电势差的实质上一半之外的电势,电流IB经过平衡电感器BL,调节馈给连接N的电压,使得馈给连接N的电压返回至正导体1a与负导体1b之间的电势差的实质上一半。如果DC电源的对称未被维持,则谐振电力变流器的非对称可增大,并且最终完全消除电力变流器的谐振部分的影响。
第一平衡开关和第二平衡开关BS1、BS2由控制主开关器件Gn和Gp的相同控制单元控制,使得平衡开关BS1、BS2与主开关器件Gn和Gp一起进行切换。
图5示出包括参考图4描述的谐振电力变流器的有源滤波器。该有源滤波器耦接到电气系统3、4、5,并且适于产生补偿电流,该补偿电流补偿产生谐波的电气系统3、4、5中的负载。通过减少电气系统3、4、5中的谐波,产生的电抗效应减小,并且因此降低电气系统中的总体能耗。
有源滤波器包括控制单元CU,其适于经由测量导体19接收测量信号。测量信号包括电气系统的电压和电流,使得能够得到电气系统的电压波形和电流波形之间的差异。控制单元CU计算用于补偿电压波形与电流波形之间的时间上的差异的补偿电流,其被实现为脉宽调制(PWM)信号,该PWM信号借助控制引线18a被传输到谐振电力变流器的主开关Gp、Gn。控制单元CU还控制平衡开关BS1、BS2,使得平衡开关BS1、BS2与主开关Gn、Gp一起进行切换,连续地平衡DC电源DC,使得点N保持在是正DC导体与负DC导体之间的电势差的一半的电压。控制单元(CU)因此适于控制主开关Gp、Gn和平衡开关BS1、BS2,使得第一主开关Gp和第一正控制装置BS1的切换同步,并且使第二主开关Gn和第二负控制装置BS2的切换同步。
控制单元CU可包括单个CPU(中央处理单元),或者可包括两个或多于两个处理单元。例如,处理器可包括通用微处理器、指令集处理器和/或相关芯片集和/或专用微处理器(诸如ASIC(专用集成电路))。处理器还可包括用于缓存目的的在板存储器。
请注意任何实施例或实施例的部分可以以任何方式组合。本文的全部示例应视作整体描述的一部分,并且因此总体而言可能以任何方式进行组合。

Claims (11)

1.一种谐振电力变流器,包括:
DC电源(DC),
正DC导体(1a),
负DC导体(1b),
相导体(e),以及
电力转换单元(2),所述电力转换单元(2)耦接在所述DC电源(DC)与所述相导体(e)之间,所述电力转换单元包括:
第一开关(Gp)和第一二极管(Dp),所述第一开关(Gp)耦接在所述正DC导体(1a)与所述相导体(e)之间,所述第一二极管(Dp)与所述第一开关(Gp)并联连接,
第二开关(Gn)和第二二极管(Dp),所述第二开关(Gn)耦接在所述负DC导体(1b)与所述相导体(e)之间,所述第二二极管(Dp)与所述第二开关(Gn)并联连接,以及
谐振辅助切换电路(AUX),所述谐振辅助切换电路(AUX)耦接在所述DC电源(DC)上的馈给连接(N)与所述相导体(e)之间,所述谐振辅助切换电路(AUX)包括控制装置(Sp,Sn),用于控制通过所述馈给连接与所述相导体(e)之间的所述谐振辅助切换电路(AUX)的电流,其特征在于:
所述谐振电力变流器还包括用于平衡所述馈给连接(N)中的电压的平衡电路(BC),所述平衡电路(BC)包括:
与电感器串联的第一正控制装置(BS1),其中,所述第一正控制装置(BS1)和所述电感器(BL)耦接在所述正DC导体(1a)与所述馈给连接(N)之间,以及
与所述电感器(BL)串联的第二负控制装置(BS2),其中,所述第二负控制装置(BS2)耦接在所述负DC导体(1b)与所述馈给连接(N)之间,其中
所述第一正控制装置和所述第二负控制装置(BS1,BS2)适于交替地接通和关断以用于平衡所述谐振电力变流器,使得在所述馈给连接(N)中的电压实质上为所述正DC导体(1b)和所述负DC导体(1a)的平均电压。
2.根据权利要求1所述的谐振电力变流器,还包括辅助电容器(Cs),所述辅助电容器与电感器(L2)并联耦接,使得当电流流过所述谐振辅助切换电路(AUX)时产生并联谐振电路。
3.根据权利要求1所述的谐振电力变流器,还包括辅助电容器(Cs),所述辅助电容器与电感器(L2)串联耦接,使得当电流流过所述谐振辅助切换电路(AUX)时产生串联谐振电路。
4.根据权利要求1所述的谐振电力变流器,其中,所述第一正控制装置(BS1)和所述第二负控制装置(BS2)与单个电感器串联连接,然后再耦接到所述馈给连接(N)。
5.根据前述权利要求中的任一项所述的谐振电力变流器,其中,所述正控制装置和所述负控制装置(BS1,BS2)适于与所述开关(Gp,Gn)一起进行控制。
6.根据权利要求5所述的谐振电力变流器,其中,所述第一开关(Gp)和所述第一正控制装置(BS1)的切换适于被同步,并且所述第二开关(Gn)和所述第二负控制装置(BS2)的切换适于被同步。
7.根据前述权利要求中的任一项所述的谐振电力变流器,其中,所述第一正控制装置和所述第二负控制装置(BS1,BS2)适于被交替地开关,使得所述第一正控制装置(BS1)实质上在50%的时间为接通并且实质上在50%的时间为关断,并且所述第二负控制装置(BS2)实质上在50%的时间为接通并且实质上在50%的时间为关断。
8.根据前述权利要求中的任一项所述的谐振电力变流器在有源滤波器中的用途。
9.一种用于减少电气系统中的谐波的有源滤波器,所述有源滤波器包括根据权利要求1至7中的任一项所述的谐振电力变流器以及控制单元(CU),所述控制单元(CU)适于:
测量以下中的至少一个:在所述电气系统中的一点处的电压和电流,以及
基于所测量的电压和/或电流,控制所述谐振电力变流器的所述开关(Gp,Gn)。
10.根据权利要求9所述的有源滤波器,其中所述控制单元还适于控制所述谐振电力变流器的所述第一正控制装置和所述第二负控制装置(BS1,BS2),以用于平衡所述谐振电力变流器的所述DC电源。
11.根据权利要求10所述的有源滤波器,其中,所述控制单元适于控制所述开关(Gp,Gn)和控制装置(BS1,BS2),使得所述第一开关(Gp)和所述第一正控制装置(BS1)的切换同步,并且使所述第二开关(Gn)和所述第二负控制装置(BS2)的切换同步。
CN201380066006.2A 2012-12-19 2013-12-13 具有电压平衡电路的辅助谐振换向极变流器 Active CN105210284B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE1251462-6 2012-12-19
SE1251462A SE539852C2 (sv) 2012-12-19 2012-12-19 Symmetrisk krets
US201261739942P 2012-12-20 2012-12-20
US61/739,942 2012-12-20
PCT/SE2013/051506 WO2014098736A1 (en) 2012-12-19 2013-12-13 Auxiliary resonant commutated pole converter with voltage balancing circuit

Publications (2)

Publication Number Publication Date
CN105210284A true CN105210284A (zh) 2015-12-30
CN105210284B CN105210284B (zh) 2018-07-10

Family

ID=50978870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380066006.2A Active CN105210284B (zh) 2012-12-19 2013-12-13 具有电压平衡电路的辅助谐振换向极变流器

Country Status (5)

Country Link
US (1) US9344007B2 (zh)
EP (1) EP2936671A4 (zh)
CN (1) CN105210284B (zh)
SE (1) SE539852C2 (zh)
WO (1) WO2014098736A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114684A (zh) * 2016-12-06 2019-08-09 帕德博恩大学 用于测量导电体中的电流的电流测量装置和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE537227C2 (sv) * 2012-07-06 2015-03-10 Comsys Ab Resonansomriktare
US10027223B1 (en) 2017-06-12 2018-07-17 Linear Technology Holding Llc Soft-charging of switched capacitors in power converter circuits
US10181804B1 (en) 2017-08-11 2019-01-15 Linear Technology Holding Llc Soft-start circuit for switched resonant power converters
CN110247571A (zh) * 2019-05-31 2019-09-17 华为技术有限公司 一种逆变电路、逆变器及光伏发电系统
CN112398359B (zh) * 2020-11-09 2022-04-19 国创移动能源创新中心(江苏)有限公司 辅助谐振换流极变换器的控制电路、控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172882B1 (en) * 1998-12-22 2001-01-09 Tdk Corporation Partial resonance PWM converter
US6385028B1 (en) * 1998-06-19 2002-05-07 Denso Corporation Surge preventing circuit for an insulated gate type transistor
US20040240240A1 (en) * 2001-09-21 2004-12-02 Bo Bijlenga Converter and a method for controlling a converter
EP1487094A1 (en) * 2003-04-17 2004-12-15 Abb Ab A converter and a method for control thereof
US7336513B1 (en) * 2006-09-12 2008-02-26 National Chung Cheng University Method of compensating output voltage distortion of half-bridge inverter and device based on the method
CN101383562A (zh) * 2007-09-05 2009-03-11 力博特公司 一种开关电源中软开关电路的控制方法
CN102007553A (zh) * 2008-03-14 2011-04-06 沃特拉半导体公司 M相耦合的磁元件以及相关的电感结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294381A (ja) * 1996-04-25 1997-11-11 Hitachi Ltd 入出力非絶縁型電力変換装置
FR2753850B1 (fr) * 1996-09-24 1998-11-13 Convertisseur de puissance a commutation douce comprenant des moyens de correction de la tension mediane d'un diviseur de tension capacitif
DE10027575A1 (de) * 1999-09-02 2001-04-05 Abb Patent Gmbh ARCP Mehrpunktstromrichter mit potentialvariablen Zwischenkapazitäten
JP2004129320A (ja) * 2002-09-30 2004-04-22 Sony Corp スイッチング電源回路
US7126833B2 (en) * 2004-11-24 2006-10-24 Ut-Battelle, Llc Auxiliary quasi-resonant dc tank electrical power converter
JP2011109789A (ja) * 2009-11-17 2011-06-02 Fuji Electric Holdings Co Ltd 電力変換装置
CN102104333A (zh) * 2010-12-15 2011-06-22 南京航空航天大学 三电平半桥电压平衡变换器
CN102761285B (zh) * 2012-07-08 2015-08-19 张翔 一种可主动平衡中性点钳位电压的三电平三相电源变换装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385028B1 (en) * 1998-06-19 2002-05-07 Denso Corporation Surge preventing circuit for an insulated gate type transistor
US6172882B1 (en) * 1998-12-22 2001-01-09 Tdk Corporation Partial resonance PWM converter
US20040240240A1 (en) * 2001-09-21 2004-12-02 Bo Bijlenga Converter and a method for controlling a converter
EP1487094A1 (en) * 2003-04-17 2004-12-15 Abb Ab A converter and a method for control thereof
US7336513B1 (en) * 2006-09-12 2008-02-26 National Chung Cheng University Method of compensating output voltage distortion of half-bridge inverter and device based on the method
CN101383562A (zh) * 2007-09-05 2009-03-11 力博特公司 一种开关电源中软开关电路的控制方法
CN102007553A (zh) * 2008-03-14 2011-04-06 沃特拉半导体公司 M相耦合的磁元件以及相关的电感结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIH-SHENG LAI ET AL: "Fundamentals of a New Family of Auxiliary Resonant Snubber Inverters", 《3RD INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS,CONTROL AND INSTRUMENTATION,IEEE》 *
JOABEL MOIA ET AL: "Comparison of Three-Phase PWM Rectifiers to Interface Ac Grids and Bipolar DC Active Distribution Networks", 《3RD IEEE INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS(PEDG)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114684A (zh) * 2016-12-06 2019-08-09 帕德博恩大学 用于测量导电体中的电流的电流测量装置和方法
CN110114684B (zh) * 2016-12-06 2021-10-22 帕德博恩大学 用于测量导电体中的电流的电流测量装置和方法

Also Published As

Publication number Publication date
WO2014098736A1 (en) 2014-06-26
SE1251462A1 (sv) 2014-06-20
CN105210284B (zh) 2018-07-10
SE539852C2 (sv) 2017-12-19
EP2936671A1 (en) 2015-10-28
US9344007B2 (en) 2016-05-17
EP2936671A4 (en) 2016-08-24
US20150318794A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
US10651731B1 (en) Zero voltage switching of interleaved switched-capacitor converters
CN105210284A (zh) 具有电压平衡电路的辅助谐振换向极变流器
CN102918757B (zh) 电力变换装置
US9287790B2 (en) Electric power converter
US6583999B1 (en) Low output voltage, high current, half-bridge, series-resonant, multiphase, DC-DC power supply
JP5590124B2 (ja) Dc−dcコンバータ
EP3267568B1 (en) Power converter
EP2892752B1 (en) Controlling a modular converter
US8441237B2 (en) Power factor correction (PFC) circuit and method therefor
CN103516196A (zh) 开关电源装置
CN102684274A (zh) 用于电动车辆的充电器
JP2007505598A (ja) 力率補正回路
CN103457506B (zh) 一种宽输入单级双向升降压逆变器
CN106664770B (zh) 电源转换器电路及其转换交流电源的方法
CN103201939A (zh) 虚拟参数高压侧mosfet驱动器
JP2012050264A (ja) 負荷駆動装置
JP2017199628A (ja) 誘導加熱用シングルステージ商用周波−高周波コンバータおよびその制御方法
CN102545681B (zh) 可消除低频谐波的阶梯波合成式三相逆变器及控制方法
Balakrishnan et al. Soft switched ac link buck boost converter
CN1941589B (zh) 电功率转换器电路
EP3700074A1 (en) Dc-dc converter
CN104956564A (zh) 变流器和运行变流器的方法
WO2012093423A1 (ja) 非接触充電システムの給電装置
JP5432325B2 (ja) インバータ装置
JP6749078B2 (ja) 電力変換装置及びこれを用いた電源システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant