CN105198442B - 双辊薄带连铸用氮化硼基侧封板及其制备方法 - Google Patents

双辊薄带连铸用氮化硼基侧封板及其制备方法 Download PDF

Info

Publication number
CN105198442B
CN105198442B CN201510689598.4A CN201510689598A CN105198442B CN 105198442 B CN105198442 B CN 105198442B CN 201510689598 A CN201510689598 A CN 201510689598A CN 105198442 B CN105198442 B CN 105198442B
Authority
CN
China
Prior art keywords
parts
boron nitride
side seal
seal board
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510689598.4A
Other languages
English (en)
Other versions
CN105198442A (zh
Inventor
陈磊
王玉金
冯锐
贾德昌
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510689598.4A priority Critical patent/CN105198442B/zh
Publication of CN105198442A publication Critical patent/CN105198442A/zh
Application granted granted Critical
Publication of CN105198442B publication Critical patent/CN105198442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Gasket Seals (AREA)
  • Ceramic Products (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

双辊薄带连铸用氮化硼基侧封板及其制备方法,它涉及一种氮化硼基侧封板及其制备方法。本发明是为了解决添加低熔点烧结助剂由于低熔点相残留导致侧封材料服役性能下降的矛盾的技术问题。双辊薄带连铸用氮化硼基侧封板按照重量份数由氮化硼、电熔氧化锆、碳化硅、硼酸盐和氧化铝制成,方法:一、称取原料;二、制备复合粉末;三、将复合粉末装入热压模具中,热压,即得双辊薄带连铸用氮化硼基侧封板。本发明所制备的双辊薄带连铸用氮化硼基侧封板的晶粒细小,分布均匀,致密度可达到95.0%~99.5%,具有优异的抗热震性能、抗钢水侵蚀性能、耐高温摩擦磨损以及良好的热机械性能和热稳定性能。本发明属于侧封板的制备领域。

Description

双辊薄带连铸用氮化硼基侧封板及其制备方法
技术领域
本发明涉及一种氮化硼基侧封板及其制备方法。
背景技术
双辊薄带连铸技术是一种新型的薄带钢生产工艺,作为钢铁工业发展方向的前沿技术,可不经连铸、加热和热轧等生产工序,直接由液态钢水生产出厚度为1~5mm的薄带坯,在短时间内完成从液态金属到固态薄带的全部过程。另外,在获得特殊性能方面具有独特优势,可实现高性能钢材的减量化生产途径,得到了世界钢铁界的广泛重视,但仍需要不断完善以尽快实现工业化生产。
侧封板是在结晶辊两端添加的防漏部件,起到约束金属液体,促进薄带成型,保证薄带边缘质量等作用。但结晶辊的工况要求较为复杂,对侧封板材料的机械性能和理化性能稳定性均提出了较为苛刻的要求,需同时具备抗热震性能、抗钢水侵蚀性能、耐高温摩擦磨损性能和高温尺寸稳定性等要求,致使传统的耐火材料不能满足侧封板的工况要求,亟需新型耐火材料的出现。
六方氮化硼陶瓷材料,具有高温自润滑作用、热膨胀系数低、热导率高、抗热震性能好、高温化学稳定性良好、对凝固物的剥离性好、与熔融金属不浸润等优点,是先进陶瓷材料家族中重要的一员,可广泛应用于金属冶炼以及高温摩擦磨损等关键工程领域。但氮化硼具有高熔点、共价键强和自扩散系数低等物理特性,以及在烧结过程中易形成卡片房结构,即使施加外力也很难将其破坏。采用一般的常规热压烧结工艺,需在1800~2000℃,20~40MPa的高温热压条件下才能将其烧结致密,增加了氮化硼陶瓷材料的制备成本,阻碍了氮化硼材料在工程领域的广泛应用。
尽管降低氮化硼复相陶瓷材料的烧结温度可以通过添加低熔点相实现,但烧结后低熔点相得残留会明显降低高温抗弯强度和抗钢水侵蚀性能,降低了侧封板的使用寿命和使用安全性,影响产品质量和整体生产线的运行。如何选择合理设计侧封板材料组分和相应的制备技术,一直是亟需解决的工程技术难题。因此,研制和开发出组分组成合理的侧封板材料和相应的制备技术,从而制备出服役性能优异的侧封板材料对薄带连铸技术的发展和大规律工业化生产具有重要的意义。
发明内容
本发明的目的是为了解决添加低熔点烧结助剂由于低熔点相残留导致侧封材料服役性能下降的矛盾的技术问题,提供了一种双辊薄带连铸用氮化硼基侧封板及其制备方法。
双辊薄带连铸用氮化硼基侧封板按照重量份数由60份~80份的氮化硼、12份~35份的电熔氧化锆、2份~15份的碳化硅、2~10份的硼酸钙盐和2~10份的氧化铝制成;
所述的硼酸钙盐为CaB4O7、CaB2O4、Ca2B2O5、Ca2B6O11、Ca3B2O6、Ca3B4O9、Ca4B10O19。CaB4O7·10H2O、CaB2O4·4H2O、CaB2O4·6H2O、Ca3B4O9·9H2O或Ca4B10O19·7H2O;
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取60份~80份的氮化硼、12份~35份的电熔氧化锆、2份~15份的碳化硅、5~10份的硼酸钙和2~10份的氧化铝,所述的硼酸钙盐为CaB4O7、CaB2O4、Ca2B2O5、Ca2B6O11、Ca3B2O6、Ca3B4O9、Ca4B10O19。CaB4O7·10H2O、CaB2O4·4H2O、CaB2O4·6H2O、Ca3B4O9·9H2O或Ca4B10O19·7H2O;
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入分散介质中,球磨10~48小时后,在80℃~100℃温度下真空干燥10~48h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,真空度小于10Pa,以10~40℃/min的升温速率升温,在1000℃~1100℃开始施加压力,在1200℃~1400℃时加压至10MPa~60MPa,保温保压0.5~5h,而后逐渐升温至1500℃~1800℃,在1500℃~1800℃温度条件下保温保压0.5~5h,以15~40℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
步骤二中所述分散介质为酒精、无水乙醇质量分数为55%~95%的无水乙醇水溶液或无水乙醇。
本发明所制备的双辊薄带连铸用氮化硼基侧封板的晶粒细小,分布均匀,致密度可达到95.0%~99.5%,具有优异的抗热震性能、抗钢水侵蚀性能、耐高温摩擦磨损以及良好的热机械性能和热稳定性能。
本发明步骤二中所提及的两段式烧结工艺,第一段为低温烧结阶段:特征在于两步法的烧结温度和加压时间与步骤一中所设计的复合材料组分存在对应关系,需在复合材料组分发生固相化学反应或某一物相发生软化时的温度前后设计保温温度、保温时间、烧结压力、保压时间和烧结气氛的烧结工艺制度参数,完成复合粉末颗粒重排和气孔排除,实现氮化硼复相陶瓷的初期烧结致密化;第二段为高温烧结阶段,可以进一步促进复合材料的致密化,调控显微组织结构,并通过在1500℃~1800℃下保温0.5~5h的烧结工艺条件下,降低低熔点脆性有害相的残留,提高氮化硼基侧封材料的高温热机械性能和服役性能。
本发明所提出的氮化硼基侧封板材料及其相应的制备工艺,有利的降低了氮化硼基侧封板材料的烧结温度,抑制物相晶粒的异常长大,改善了晶粒分布不均匀及局部组织偏聚等缺陷。并在烧结中后期,材料内部发生固相反应或固溶现象,有效的降低了氮化硼基侧封板材料中低熔点脆性有害相的残留。所制备的氮化硼基侧封板材料晶粒细小,具有优异的综合力学性能,同时降低了氮化硼基侧封板材料的制备成本,扩展了应用范围。
本发明所制备双辊薄带连铸用氮化硼基侧封板致密度可达到95%以上,并具有优异的综合力学性能和热机械性能。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.3,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于700μm,各项性能指标满足侧封板实际使用工况要求。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式双辊薄带连铸用氮化硼基侧封板按照重量份数由60份~80份的氮化硼、12份~35份的电熔氧化锆、2份~15份的碳化硅、2~10份的硼酸钙盐和2~10份的氧化铝制成;
所述的硼酸钙盐为CaB4O7、CaB2O4、Ca2B2O5、Ca2B6O11、Ca3B2O6、Ca3B4O9、Ca4B10O19。CaB4O7·10H2O、CaB2O4·4H2O、CaB2O4·6H2O、Ca3B4O9·9H2O或Ca4B10O19·7H2O。
具体实施方式二:本实施方式与具体实施方式一不同的是双辊薄带连铸用氮化硼基侧封板按照重量份数由60份~80份的氮化硼、20份~30份的电熔氧化锆、8份~12份的碳化硅、6~9份的硼酸钙盐和6~9份的氧化铝制成。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是双辊薄带连铸用氮化硼基侧封板按照重量份数由70份的氮化硼、15份的电熔氧化锆、5份的碳化硅、5份的硼酸钙盐和5份的氧化铝制成。其它与具体实施方式一或二之一相同。
具体实施方式四:具体实施方式一所述双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取60份~85份的氮化硼、15份~35份的电熔氧化锆、5份~15份的碳化硅、5~10份的硼酸钙盐和5~10份的氧化铝,所述的硼酸钙盐为CaB4O7、CaB2O4、Ca2B2O5、Ca3B2O6、CaB4O7·10H2O或CaB2O4·4H2O;
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入分散介质中,球磨10~48小时后,在80℃~100℃温度下真空干燥10~48h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,真空度小于15Pa,以10~40℃/min的升温速率升温,在1000℃~1100℃开始施加压力,在1200℃~1400℃时加压至10MPa~60MPa,保温保压0.5~5h,而后逐渐升温至1500℃~1800℃,在1500℃~1800℃温度条件下保温保压0.5~5h,以15~40℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
具体实施方式五:本实施方式与具体实施方式四不同的是步骤二中所述分散介质为酒精、无水乙醇质量分数为55%~95%的无水乙醇水溶液或无水乙醇。其它与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式四或五不同的是步骤二中在90℃温度下真空干燥28h。其它与具体实施方式四或五相同。
具体实施方式七:本实施方式与具体实施方式五至六之一不同的是步骤三中真空环境的真空度低于10Pa。其它与具体实施方式五至六之一相同。
具体实施方式八:本实施方式与具体实施方式五至七之一不同的是步骤三中以10℃/min的升温速率升温,在1000℃开始施加压力,在1200℃时加压至10MPa~60MPa,保温保压1h,而后逐渐升温至1600℃,在1600℃温度条件下保温保压1h。其它与具体实施方式五至七之一相同。
具体实施方式九:本实施方式与具体实施方式五至八之一不同的是步骤三中以11℃/min的升温速率升温,在1100℃开始施加压力,在1400℃时加压至30MPa,保温保压0.5h,而后逐渐升温至1700℃,在1700℃温度条件下保温保压2h。其它与具体实施方式五至八之一相同。
具体实施方式十:本实施方式与具体实施方式五至九之一不同的是步骤三中以10℃/min的升温速率升温,在1000℃开始施加压力,在1400℃时加压至30MPa,保温保压1h,而后逐渐升温至1600℃,在1600℃温度条件下保温保压1.5h。其它与具体实施方式五至九之一相同。
采用下述实验验证本发明效果:
实验一:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取65份的氮化硼、15份的电熔氧化锆、10份的碳化硅、5份的硼酸钙盐和5份的氧化铝,所述的硼酸钙盐为CaB4O7
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入酒精分散介质中,球磨48小时后,在80℃温度下真空干燥10h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以10℃/min的升温速率升温,在1000℃开始施加压力,在1200℃时加压至10MPa~60MPa,保温保压1h,而后逐渐升温至1600℃,在1600℃温度条件下保温保压1h,以25℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到97%以上,使具有优异的综合力学性能,其抗弯强度值可达到350MPa,高温力学性能测试中没有出现明显的软化现象。本发明所制备双辊薄带连铸用氮化硼基侧封板致密度可达到95%以上,并具有优异的综合力学性能和热机械性能。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.25,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于600μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验二:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取65份的氮化硼、10份的电熔氧化锆、10份的碳化硅、5份的硼酸钙盐和10份的氧化铝,所述的硼酸钙盐为CaB2O4
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入酒精分散介质中,球磨24小时后,在90℃温度下真空干燥18h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以11℃/min的升温速率升温,在1100℃开始施加压力,在1400℃时加压至30MPa,保温保压0.5h,而后逐渐升温至1700℃,在1700℃温度条件下保温保压2h,以20℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到97%以上,使具有优异的综合力学性能,其抗弯强度值可达到300MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.25,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于620μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验三:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取60份的氮化硼、20份的电熔氧化锆、10份的碳化硅、5份的硼酸钙盐和5份的氧化铝,所述的硼酸钙盐为Ca2B2O5
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入无水乙醇分散介质中,球磨30小时后,在100℃温度下真空干燥48h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以10℃/min的升温速率升温,在1000℃开始施加压力,在1400℃时加压至30MPa,保温保压1h,而后逐渐升温至1500℃,在1500℃温度条件下保温保压1.5h,以15℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到97%以上,使具有优异的综合力学性能,其抗弯强度值可达到350MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.27,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于550μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验四:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取60份的氮化硼、20份的电熔氧化锆、10份的碳化硅、5份的硼酸钙盐和5份的氧化铝,所述的硼酸钙盐为Ca3B2O6
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入无水乙醇质量分数为55%的无水乙醇水溶液分散介质中,球磨20小时后,在100℃温度下真空干燥48h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以10℃/min的升温速率升温,在1000℃开始施加压力,在1200℃时加压至30MPa,保温保压2h,而后逐渐升温至1500℃,在1500℃温度条件下保温保压2h,以18℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到97%以上,使具有优异的综合力学性能,其抗弯强度值可达到350MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.27,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于550μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验五:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取65份的氮化硼、10份的电熔氧化锆、10份的碳化硅、5份的硼酸钙盐和10份的氧化铝,所述的硼酸钙盐为Ca3B2O6
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入无水乙醇质量分数为75%的无水乙醇水溶液分散介质中,球磨40小时后,在100℃温度下真空干燥48h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以10℃/min的升温速率升温,在1000℃开始施加压力,在1200℃时加压至40MPa,保温保压2h,而后逐渐升温至1500℃,在1500℃温度条件下保温保压2h,以18℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到97%以上,使具有优异的综合力学性能,其抗弯强度值可达到340MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.25,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于650μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验六:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取70份的氮化硼、10份的电熔氧化锆、5份的碳化硅、5份的硼酸钙盐和10份的氧化铝,所述的硼酸钙盐为Ca4B10O19
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入无水乙醇质量分数为85%的无水乙醇水溶液分散介质中,球磨24小时后,在100℃温度下真空干燥24h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以10℃/min的升温速率升温,在1000℃开始施加压力,在1200℃时加压至40MPa,保温保压2h,而后逐渐升温至1500℃,在1500℃温度条件下保温保压2h,以18℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到97%以上,使具有优异的综合力学性能,其抗弯强度值可达到330MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于023,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于680μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验七:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取65份的氮化硼、15份的电熔氧化锆、5份的碳化硅、7份的硼酸钙盐和8份的氧化铝,所述的硼酸钙盐为CaB2O4·4H2O;
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入无水乙醇分散介质中,球磨24小时后,在90℃温度下真空干燥24h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以30℃/min的升温速率升温,在1000℃开始施加压力,在1250℃时加压至50MPa,保温保压2h,而后逐渐升温至1500℃,在1500℃温度条件下保温保压2h,以25℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到98%以上,使具有优异的综合力学性能,其抗弯强度值可达到360MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.25,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于610μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验八:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取70份的氮化硼、15份的电熔氧化锆、5份的碳化硅、5份的硼酸钙盐和5份的氧化铝,所述的硼酸钙盐为CaB4O7·10H2O;
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入无水乙醇分散介质中,球磨24小时后,在95℃温度下真空干燥24h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以30℃/min的升温速率升温,在1000℃开始施加压力,在1250℃时加压至50MPa,保温保压2h,而后逐渐升温至1500℃,在1500℃温度条件下保温保压2h,以25℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到98%以上,使具有优异的综合力学性能,其抗弯强度值可达到360MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.28,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于590μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验九:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取65份的氮化硼、20份的电熔氧化锆、5份的碳化硅、5份的硼酸钙盐和5份的氧化铝,所述的硼酸钙盐为CaB4O7·10H2O;
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入无水乙醇分散介质中,球磨24小时后,在95℃温度下真空干燥24h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以25℃/min的升温速率升温,在1000℃开始施加压力,在1270℃时加压至60MPa,保温保压2h,而后逐渐升温至1500℃,在1500℃温度条件下保温保压2h,以30℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到98%以上,使具有优异的综合力学性能,其抗弯强度值可达到360MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1000℃热震温差热震后没有裂纹产生,经过800℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.24,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于650μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。
实验十:
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取80份的氮化硼、12份的电熔氧化锆、3份的碳化硅、2份的硼酸钙盐和3份的氧化铝,所述的硼酸钙盐为CaB4O7·10H2O;
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入无水乙醇分散介质中,球磨24小时后,在90℃温度下真空干燥30h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,以20℃/min的升温速率升温,在1000℃开始施加压力,在1270℃时加压至60MPa,保温保压2.5h,而后逐渐升温至1600℃,在1600℃温度条件下保温保压2h,以35℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
所制备的双辊薄带连铸用氮化硼基侧封板的致密度可达到98%以上,使具有优异的综合力学性能,其抗弯强度值可达到300MPa,高温力学性能测试中没有出现明显的软化现象。侧封板经过1200℃热震温差热震后没有裂纹产生,经过1000℃热震温差热循环热震20次不存在断裂现象,与结晶辊具有良好的摩擦磨损相容性,相互摩擦系数小于0.3,具有良好的抗钢水侵蚀性能,在1600℃侵蚀条件下,侵蚀40分钟侵蚀深度小于700μm,各项性能指标满足侧封板实际使用工况要求,其各相性能满足侧封板材料的实际服役性能。

Claims (10)

1.双辊薄带连铸用氮化硼基侧封板,其特征在于双辊薄带连铸用氮化硼基侧封板按照重量份数由60份~80份的氮化硼、12份~35份的电熔氧化锆、2份~15份的碳化硅、2~10份的硼酸钙盐和2~10份的氧化铝制成;
所述的硼酸钙盐为CaB4O7、CaB2O4、Ca2B2O5、Ca2B6O11、Ca3B2O6、Ca3B4O9、Ca4B10O19、CaB4O7·10H2O、CaB2O4·4H2O、CaB2O4·6H2O、Ca3B4O9·9H2O或Ca4B10O19·7H2O;
双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取60份~80份的氮化硼、15份~35份的电熔氧化锆、5份~15份的碳化硅、5~10份的硼酸钙盐和5~10份的氧化铝,所述的硼酸钙盐为CaB4O7、CaB2O4、Ca2B2O5、Ca3B2O6、CaB4O7·10H2O或CaB2O4·4H2O;
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入分散介质中,球磨10~48小时后,在80℃~100℃温度下真空干燥10~48h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,真空度小于15Pa,以10~40℃/min的升温速率升温,在1000℃~1100℃开始施加压力,在1200℃~1400℃时加压至10MPa~60MPa,保温保压0.5~5h,而后逐渐升温至1500℃~1800℃,在1500℃~1800℃温度条件下保温保压0.5~5h,以15~40℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
2.根据权利要求1所述双辊薄带连铸用氮化硼基侧封板,其特征在于双辊薄带连铸用氮化硼基侧封板按照重量份数由60份~80份的氮化硼、20份~30份的电熔氧化锆、8份~12份的碳化硅、6~9份的硼酸钙和6~9份的氧化铝制成。
3.根据权利要求1所述双辊薄带连铸用氮化硼基侧封板,其特征在于双辊薄带连铸用氮化硼基侧封板按照重量份数由70份的氮化硼、15份的电熔氧化锆、5份的碳化硅、5份的硼酸钙盐和5份的氧化铝制成。
4.权利要求1所述双辊薄带连铸用氮化硼基侧封板的制备方法,其特征在于双辊薄带连铸用氮化硼基侧封板的制备方法如下:
一、按照重量份数称取60份~80份的氮化硼、15份~35份的电熔氧化锆、5份~15份的碳化硅、5~10份的硼酸钙盐和5~10份的氧化铝,所述的硼酸钙盐为CaB4O7、CaB2O4、Ca2B2O5、Ca3B2O6、CaB4O7·10H2O或CaB2O4·4H2O;
二、将氮化硼、电熔氧化锆、碳化硅、硼酸钙盐和氧化铝加入分散介质中,球磨10~48小时后,在80℃~100℃温度下真空干燥10~48h,然后将干燥后的混合粉末球磨破碎过200目标准筛,得到混合均匀的复合粉末;
三、将复合粉末装入热压模具中,采用真空气氛保护,真空度小于15Pa,以10~40℃/min的升温速率升温,在1000℃~1100℃开始施加压力,在1200℃~1400℃时加压至10MPa~60MPa,保温保压0.5~5h,而后逐渐升温至1500℃~1800℃,在1500℃~1800℃温度条件下保温保压0.5~5h,以15~40℃/min的降温速率降温至室温,并同时卸载压力,即得双辊薄带连铸用氮化硼基侧封板。
5.根据权利要求4所述双辊薄带连铸用氮化硼基侧封板的制备方法,其特征在于步骤二中所述分散介质为酒精、无水乙醇质量分数为55%~95%的无水乙醇水溶液或无水乙醇。
6.根据权利要求4所述双辊薄带连铸用氮化硼基侧封板的制备方法,其特征在于步骤二中在90℃温度下真空干燥28h。
7.根据权利要求4所述双辊薄带连铸用氮化硼基侧封板的制备方法,其特征在于步骤三中真空环境的真空度低于10Pa。
8.根据权利要求4所述双辊薄带连铸用氮化硼基侧封板的制备方法,其特征在于步骤三中以10℃/min的升温速率升温,在1000℃开始施加压力,在1200℃时加压至10MPa~60MPa,保温保压1h,而后逐渐升温至1600℃,在1600℃温度条件下保温保压1h。
9.根据权利要求4所述双辊薄带连铸用氮化硼基侧封板的制备方法,其特征在于步骤三中以11℃/min的升温速率升温,在1100℃开始施加压力,在1400℃时加压至30MPa,保温保压0.5h,而后逐渐升温至1700℃,在1700℃温度条件下保温保压2h。
10.根据权利要求4所述双辊薄带连铸用氮化硼基侧封板的制备方法,其特征在于步骤三中以10℃/min的升温速率升温,在1000℃开始施加压力,在1400℃时加压至30MPa,保温保压1h,而后逐渐升温至1600℃,在1600℃温度条件下保温保压1.5h。
CN201510689598.4A 2015-10-21 2015-10-21 双辊薄带连铸用氮化硼基侧封板及其制备方法 Active CN105198442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510689598.4A CN105198442B (zh) 2015-10-21 2015-10-21 双辊薄带连铸用氮化硼基侧封板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510689598.4A CN105198442B (zh) 2015-10-21 2015-10-21 双辊薄带连铸用氮化硼基侧封板及其制备方法

Publications (2)

Publication Number Publication Date
CN105198442A CN105198442A (zh) 2015-12-30
CN105198442B true CN105198442B (zh) 2017-11-03

Family

ID=54946470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510689598.4A Active CN105198442B (zh) 2015-10-21 2015-10-21 双辊薄带连铸用氮化硼基侧封板及其制备方法

Country Status (1)

Country Link
CN (1) CN105198442B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472660A (zh) * 2006-06-14 2009-07-01 艾克奴过滤系统有限公司 陶瓷过滤器
CN102173792A (zh) * 2011-02-23 2011-09-07 哈尔滨工业大学 一种用于薄带连铸侧封板的陶瓷复合材料及其制备方法
CN103964859A (zh) * 2014-04-22 2014-08-06 武汉钢铁(集团)公司 钢薄带连铸用侧封板及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472660A (zh) * 2006-06-14 2009-07-01 艾克奴过滤系统有限公司 陶瓷过滤器
CN102173792A (zh) * 2011-02-23 2011-09-07 哈尔滨工业大学 一种用于薄带连铸侧封板的陶瓷复合材料及其制备方法
CN103964859A (zh) * 2014-04-22 2014-08-06 武汉钢铁(集团)公司 钢薄带连铸用侧封板及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
薄带连铸用BN基侧封板材料的性能研究及应用;刘孟等;《耐火材料》;20151015;第49卷(第5期);第357-358页第1节 *

Also Published As

Publication number Publication date
CN105198442A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
CN105198443B (zh) 氮化硼复相陶瓷的过渡相辅助低温烧结方法
CN101215164B (zh) 一种碳化硼复合材料的制备方法
CN104876598B (zh) 薄带连铸用Max相‑氮化硼复合陶瓷侧封板及其制造方法
CN105198444B (zh) 薄带连铸用氮化硼基陶瓷侧封板材料的制备方法
CN102886942B (zh) 一种层状复合碳化硼基陶瓷材料及其制备方法
CN103951394B (zh) 一种高温抗热震氧化铝陶瓷承烧板及其制备工艺
CN105236943B (zh) 一种Al2O3/Ti(C,N)复合陶瓷刀具材料及其微波烧结工艺
CN102531670A (zh) 高抗压强度低密度的陶瓷金属复合材料的制备方法
CN101381242A (zh) 一种钛和钛合金熔炼用坩埚的制备方法
CN105198445A (zh) 氮化硼复相陶瓷侧封板及其制备方法
CN102442819A (zh) 一种低成本制备高性能大型氧化铝制品的方法
CN106800420A (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN111304479A (zh) 一种VCrNbMoW难熔高熵合金制备方法
CN105218105B (zh) 薄带连铸用氮化硼复相陶瓷侧封板及其制备方法
CN102924087B (zh) 一种立方氮化硼-碳化硅复相陶瓷材料的制备方法及其产品
CN110078511B (zh) 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法
CN102703201B (zh) 一种a-100钢模锻工艺用表面防护润滑剂
CN105418088A (zh) 抗热震耐火砖的制备方法
CN105272297A (zh) 一种Fe-Sialon-刚玉复合耐火材料及其制备方法
CN105198442B (zh) 双辊薄带连铸用氮化硼基侧封板及其制备方法
CN104591769A (zh) 一种铝镁硼增韧增强陶瓷及其制备方法
CN104561726A (zh) 一种高韧性铝镁硼陶瓷及其制备方法
CN105198450B (zh) 氮化硼复相陶瓷侧封板低温热压烧结方法
CN115947591A (zh) 一种高碳含量的中温烧成金属结合铝锆碳滑板砖及其制备方法
CN111439989B (zh) 一种环保型抗热震日用陶瓷制品及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant