CN105164057A - 用于处理被污染的介质的化学氧化和生物衰减方法 - Google Patents

用于处理被污染的介质的化学氧化和生物衰减方法 Download PDF

Info

Publication number
CN105164057A
CN105164057A CN201480024326.6A CN201480024326A CN105164057A CN 105164057 A CN105164057 A CN 105164057A CN 201480024326 A CN201480024326 A CN 201480024326A CN 105164057 A CN105164057 A CN 105164057A
Authority
CN
China
Prior art keywords
surrounding medium
trivalent metal
decay
persulphate
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480024326.6A
Other languages
English (en)
Inventor
迈克尔·斯卡利
安东尼斯·卡拉查利昂斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovative Environmental Technologies Inc
Original Assignee
Innovative Environmental Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/891,934 external-priority patent/US9126245B2/en
Application filed by Innovative Environmental Technologies Inc filed Critical Innovative Environmental Technologies Inc
Publication of CN105164057A publication Critical patent/CN105164057A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5263Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Abstract

本文提出了一种用于去除土壤、污泥、地下水、工艺水以及废水中的半挥发性有机化合物的方法。氧化过程和生物衰减过程利用过氧化物、过硫酸盐、过碳酸盐和/或其它氧化剂连同三价金属,如三价铁离子(Fe3+)或三价锰离子(Mn3+)作为活化剂。所引起的化学氧化过程产生降解化合物,所述化合物经由生物过程促进进一步的衰减。

Description

用于处理被污染的介质的化学氧化和生物衰减方法
对相关专利申请的交叉引用
本申请是名称为“用于处理被污染的介质的化学氧化和生物衰减方法(ChemicalOxidationandBiologicalAttenuationProcessfortheTreatmentofContaminatedMedia)”并且由相同的发明人在2013年5月10日提交的共同未决的美国专利申请序列号13/891,934的部分继续申请,在此要求该美国专利申请序列号13/891,934的优先权。
技术领域
本发明涉及土壤、污泥、地下水、工艺水以及废水中的有机化合物的原位氧化和异位氧化。更确切地说,本发明涉及使用三价金属活化的过硫酸盐、过碳酸盐以及过氧化物在使用诸如赤铁矿和磁铁矿处的铁氧化物的情况下使土壤和地下水中的挥发性有机化合物和半挥发性有机化合物、农药和除草剂、以及其它难降解有机化合物进行氧化和生物衰减。
背景技术
当前使用活化过硫酸盐的氧化技术特定地与用于处理土壤和地下水中的有机污染物的应用相关并且限于使用二价铁、UV、热、碳酸盐、以及液体过氧化物(过氧化氢)的活化技术。螯合的二价金属络合物的使用阻止了生物介导的修复过程中的第二和关键的步骤。这些技术有效用于饱和带内整个范围的有机物;然而,每一种活化工艺均靶向特定范围的有机污染物。与其它过硫酸盐活化工艺相比,在修复过程中并入生物组分使得单一处理成为可能,所述其它过硫酸盐活化工艺需要另外的氧化事件来完全处理所靶向的化合物的吸附相。
氯化溶剂和石油烃(包括聚芳烃)是特征在于它们在较高的浓度下对生物体的毒性的化合物并且广泛分布在被油污染的土壤和地下水中。
包括氯化脂族烃(CAH)在内的卤化挥发性有机化合物(VOC)是美国的超级基金污染场地(Superfundsite)和其它危险废物场地的土壤和地下水中最常出现的污染物类型。美国环境保护局(EnvironmentalProtectionAgency,EPA)估计这些场地的清理在未来的几十年间将花费超过450亿美元(1996年)。
CAH是人造有机化合物。它们通常是由天然存在的烃成分(甲烷、乙烷、以及乙烯)和氯经由各种方法制成的,这些方法用氯原子取代一个或多个氢原子或使氯化化合物选择性地脱氯成更少氯化的状态。CAH被用于多种应用中,包括用作溶剂和脱脂剂以及用于制造原料。CAH包括诸如四氯乙烯(PCE)、三氯乙烯(TCE)、四氯化碳(CT)、氯仿(CF)以及二氯甲烷(MC)之类的溶剂。在历史上对含有CAH的废物的管理已经对土壤和地下水造成污染,CAH存在于美国的许多被污染的地下水场地处。TCE是那些污染物中最普遍的。此外,CAH和它们的降解产物,包括二氯乙烷(DCA)、二氯乙烯(DCE)和氯乙烯(VC)倾向于存留在地下,从而对公众健康和环境造成危害。
苯、甲苯、乙苯以及二甲苯(BTEX)的特征在于它们在较高的浓度下对生物体的毒性,并且由于与石油的其它组分相比相对高的水溶性而广泛分布在被油污染的土壤、地下水、以及沉积物中。据美国环境保护局(美国EPA)估计,35%的美国汽油和柴油燃料地下储罐(UST)正在泄露,并且这些泄漏的UST中的约40%可能引起BTEX对土壤和地下水的污染。BTEX是占汽油的水溶性馏分的50%的挥发性和水溶性成分。地下水中BTEX的存在可能对公众健康和环境造成危害。
BTEX在有氧地表水和土壤系统中是容易降解的;然而,在地下环境中,有机化合物的污染常常导致有效氧被固有微生物完全消耗以及产生无氧条件。在不存在氧气的情况下,BTEX的降解仅可以通过使用替代性电子受体,如硝酸盐、硫酸盐或三价铁而发生,或以发酵方式连同产甲烷作用一起发生。
多氯联苯(PCB)是有机氯化合物,这些化合物是被称为同系物的最多209种单个氯化化合物的混合物。氯联苯(基础化学品)的这些同系物混合物由不同的鉴定系统所提及。
PCB从大约1929年起已经被商业生产并且作为纯油或以等同形式出售。它们是非常稳定的化合物,具有优异的电绝缘和传热特性。这些特征已经使得它们广泛用于多种工业、商业以及国内应用中。
PCB可以由危险废物场地;对工业废物和消费品的非法或不正确的处置;从含有PCB的旧的电力变压器的泄漏;以及焚化一些废物而释放到环境中。它们主要的缺点在于它们不容易在环境中分解并且因此可能在非常长的时间内残留在那里。它们可以在空气中传播长距离并且沉积在远离释放它们处的区域中。
在可能发生水污染的同时,许多PCB溶解或粘到底部沉积物上或本身附着到有机颗粒上。类似地,PCB可能容易附着到土壤颗粒上。它们还可以被小生物体和鱼吸收并且可以经由食物链传播到其它动物。PCB在鱼和海洋哺乳动物体内积聚,从而达到可能是水中的水平的数千倍的水平。
美国EPA已经制定了由公共水系统所供应的饮用水中化学污染物的容许水平。这些水平被称作最高污染物水平(MCL)。为了推导出这些MCL,美国EPA使用了许多保守的假设,从而确保对公众的充分保护。在已知的或疑似的致癌物质(如苯或PCE)的情况下,基于以下假设来计算MCL:平均成人重154磅并且在一生中(70岁)每天饮用约2夸脱的水。MCL被设定以使得一生暴露于MCL浓度的污染物将引起每一百万个暴露的人多出不超过1例至100例(这取决于化学品)癌症。下表概述了BTEX的MCL数字。
化合物 化学MCL(μg/L)
PCE 5
TCE 5
氯苯 100
PCB 0.5
5
甲苯 1,000
乙苯 700
二甲苯(总) 10,000
因此,在本领域中需要一种使土壤、沉积物、粘土、岩石、沙、地下水以及所有其它环境介质中的挥发性有机化合物和半挥发性有机化合物、农药和除草剂以及其它难降解的有机化合物氧化和生物衰减的方法。
发明内容
本文公开了原位或引入的非螯合的三价金属的用途,其中所述活化化学品允许与过硫酸盐、过碳酸盐或过氧化物或其组合同时或依次施用,并且提供了过硫酸盐、过碳酸盐以及过氧化物的所需活化以及所靶向的处理区域内受控的反应这两者而没有发生迁移。可以用这种技术有效处理的污染物包括但不限于石油化学品、氯化有机物、农药、高能物质(energetic)以及高氯酸盐。
本发明是一种用于处理含有有机污染物的被污染的土壤、沉积物、粘土、岩石、沙等(在下文中被统称为“土壤”)的方法,所述有机污染物包括但不限于挥发性有机化合物、半挥发性有机化合物、非挥发性有机化合物、农药以及除草剂。本发明还提供了对含有这些化合物的被污染的地下水(即存在于地下土壤、沙以及岩石中的裂缝和间隙中的水)、工艺水(即由各种工业过程产生的水)或废水(即含有生活废物或工业废物的水,常被称为污水)的处理。
容易由本发明的组合物所处理的污染物特别包括各种人造的挥发性烃和天然存在的挥发性烃,包括氯化烃和非氯化烃、芳环或聚芳环化合物、溴化化合物、推进剂或炸药等。氯化烃的实例是挥发性有机化合物,如氯化烯烃,包括PCE、TCE、顺式-1,2-二氯乙烷和氯乙烯;以及非挥发性有机化合物,如PCB或二氯苯。常见的非氯化化合物包括总石油烃(TPH),包括苯、甲苯、二甲苯、甲基苯以及乙苯;以及甲基叔丁基醚(MTBE)、叔丁醇(TBA)或聚芳烃(PAH),如萘。容易由本发明的组合物处理的污染物的另外的实例是溴化溶剂、1,4-二烷、杀虫剂等。炸药的实例是硝基苯胺三硝基甲苯。
本发明使用三价铁(Fe3+)来活化过氧化物和/或过硫酸盐和/或过碳酸盐的系统以使所靶向的污染物进行化学氧化并且最终引起它们的化学衰减。三价铁的来源可以是固有的二价铁(亚铁)或其它相关的所引入的铁物质,包括零价铁和相关的零价金属。将过氧化氢或另外的氧化剂引入到希望被处理的介质中,从而使固有的或所引入的金属物质转化成三价金属离子。在替代性实施方案中,可以使用其它三价金属离子,如锰(III)或三价锰离子(Mn3+)和铁(III)或三价铁离子(Fe3+)。
根据本发明的一个实施方案,所引起的活化过硫酸盐反应有效地氧化一种或多种所靶向的污染物,同时提供了利用所得的硫酸盐和三价铁作为末端电子受体的兼性过程的连续生物衰减支路。
本领域技术人员将了解的是,作为本公开的基础的构思可以容易地被用作设计用于实现本发明的若干个目的的其它结构、方法以及系统的基础。因此,重要的是,权利要求书被认为包括了这些等同构造,只要它们没有脱离本发明的精神和范围即可。
具体实施方式
本发明的修复方法最初氧化地下的污染物,然后促进所述污染物的兼性生物降解。羟基、过氧基以及硫酸根自由基的独特混合物的引入允许进行芬顿样反应(Fenton-likereaction)和长时间的硫酸根自由基氧化这两者。这些反应延续了氧化剂和自由基残留,并且进一步刺激了所靶向的污染物的生物矿化。
在本发明的修复设计的第一个阶段期间,羟基和硫酸根自由基攻击有机化合物污染物的芳族烃键。在本发明的修复方法的化学氧化步骤后然后接着是经由使用本发明的化学氧化过程的副产物(例如铁和硫酸盐)进行的生物矿化或生物衰减。由于过硫酸盐的分解所产生的硫酸根离子允许在硫酸盐还原条件下发生所靶向的污染物的衰减。此外,在地下存在的铁提供了末端电子受体以用于持续的生物矿化。因而,如本文所用的术语“生物衰减”指的是利用生物过程使化合物降解以及因此减少正被处理的基质中被视作污染物的物质。
过氧化氢(H2O2)已经被用作化学试剂来从土壤和地下水中去除氯化溶剂和石油污染物。它单独是氧化剂,但是在低浓度(<0.1%)时,它在动力学上没有快到足以在发生分解之前降解许多危险的有机污染物。添加金属显著地提高了过氧化物的氧化强度。这种提高归因于羟基自由基(OH·)的产生。此外,引发了链反应,从而引起新的自由基的形成。自由基是具有不成对电子,从而使得它们具有高度反应性和短寿命的分子片段。氢氧根离子是非常强效的氧化剂,并且特别好地与有机化合物反应。羟基自由基使常见的石油成分(如PCE和BTEX)以及石油芳族化合物PAH和MTBE的氯化和石油烃键断裂。
在一个实施方案中,经由临时井或永久井将修复材料引入到所靶向的环境介质中,并且可以通过重力进料、引发的气流、泵或通过这些系统的组合来实现。根据情形,在回填之前将修复材料引入到露天坑道中也可以是优选的。在另一个实施方案中,如果情形使然,那么可以经由气流或液流实现引入。
在H2O2存在下,零价铁(Fe0)最初被转化成亚铁(Fe2+),如化学方程式(1)中所示。然后,亚铁与H2O2在传统的芬顿氧化反应(Fenton'soxidationreaction)中反应以形成三价铁(Fe3+),如化学方程式(2)中所示:
H2O2+Fe0→Fe2++OH-+OH·(1)
H2O2+Fe2+→Fe3++OH-+OH·(2)
羟基自由基是非常强的氧化剂。通常发生链增长序列,这还可以产生超氧离子(O2 -·)、氢过氧化物离子(HO2 -)、以及有机自由基(R·)。涉及自由基的反应是链增长反应或链终止反应。化学方程式1和2是由于初始羟基自由基形成而引起的链引发反应的实例。涉及过氧化氢的自由基反应的其它实例概述于以下化学方程式(3)至(8)中。
链反应:
H2O2+OH·→H2O+HO2·(3)
HO2·→O2 -·+H+(4)
OH·+RH→R·+OH-(5)
H2O2+R·→ROH+OH·(6)
HO2·+Fe2+→Fe3++H++O2(7)
HO2·+Fe2+→Fe3++HO2 -(8)
当存在过量的过氧化氢时,产生更多的自由基。除了氧化剂与所存在的有机物之间发生的反应之外,还发生涉及过量的H2O2的自由基增长反应。因此,存在更多的自由基可供用于与污染物反应。在几乎所有情况下,在这些反应中产生的中间体在与母体化合物相比时更可生物降解。
过硫酸盐(特别是二过硫酸盐)是强氧化剂,它们已经被广泛用于许多行业中以用于引发乳液聚合反应、净化游泳池、毛发漂白、铜印刷电路板的微蚀刻、以及TOC分析。近几年,对过硫酸钠作为氧化剂用于破坏广泛的土壤和地下水污染物的关注越来越多。过硫酸盐通常被制成钠盐、钾盐以及铵盐。钠形式最常用于环境应用。过硫酸根阴离子是过氧化合物家族的最强效的氧化剂并且是用于修复中的最强氧化剂之一。反应的标准氧化-还原电位是2.1V,相比之下,过氧化氢的氧化-还原电位是1.8V(Block等,2004)。
S2O8 2-+2H++2e-→2HSO4 -(9)
除了直接氧化之外,过硫酸钠还可以经由三价铁(Fe3+)(或相关三价金属,如三价锰离子(Mn3+))的存在而活化以形成硫酸根自由基,从而提供了类似于由芬顿化学方法所产生的羟基自由基途径的自由基反应机制。
S2O8 2-→2SO4 -·(10)
使用三价铁进行的过硫酸盐活化与热活化相比需要更低的活化能,这使得铁活化过硫酸盐成为一种更高效和快速的降解污染物的方式。在化学氧化中发生的反应可以见于以下化学方程式(11)至(17)中:
氧化链反应:
S2O8 2-+H2O→HO2 -+2SO4 -+H+(11)
S2O8 2-+RH→R·+HSO4 -+SO4 -·(12)
SO4 -·+OH-→OH·+SO4 2-(13)
H2O2+Fe+2(固有)→Fe+3+OH-+OH.(14)
H2O2+Fe0(添加的ZVI)→Fe+3+OH-+OH.(15)
Fe+3+H2O2→Fe+2+H+HO2 .(16)
S2O8+Fe0→Fe+3+SO4-+SO4 -.(17)
(NaS2O8和H2O2的直接氧化)
衰减过程:
硫酸盐残留:
在处理区域中溶解氧已经被耗尽之后,硫酸盐(过硫酸盐氧化的副产物)可以用作电子受体以进行厌氧生物降解。这个过程被称作产硫作用(sufanogenesis)或产硫化物作用(sulfidogenesis)并且引起硫化物的产生。硫酸盐浓度可以用作燃料化合物的厌氧降解的指标。在化学计量上,由微生物消耗的每1.0mg/L的硫酸盐引起对约0.21mg/L的BTEX的破坏。硫酸盐可以在对石油产品的生物修复中起重要的作用,同样充当共代谢过程中的电子受体。苯、甲苯以及二甲苯在硫酸盐还原作用下的矿化的基础反应分别呈现于化学方程式(18)、(19)以及(20)中:
C6H6+3.75SO4 2-+3H2O→0.37H++6HCO3 -+2.25HS-+2.25H2S-(18)
C7H8+4.5SO4 2-+3H2O→0.25H++7HCO3 -+1.87HS-+1.88H2S-(19)
C8H10+5.25SO4 2-+3H2O→0.125H++8HCO3 -+2.625HS-+2.625H2S-(20)
亚铁:
三价铁在硫酸盐耗尽之后或有时联同硫酸盐一起在许多污染物的厌氧生物降解期间也用作电子受体。在这个过程期间,三价铁被还原成亚铁,所述亚铁可溶于水。亚铁然后可以用作厌氧活性的指标。作为实例,在化学计量上,1mg/L的BTEX降解引起约21.8mg/L的亚铁产生。
亚铁由于使用三价铁物质作为末端电子受体而形成,在这些相同的条件下,残留的硫酸盐由兼性生物体用作末端电子受体,从而产生硫化物。亚铁和硫化物共同促进作为修复副产物的黄铁矿的形成。本文所述的机制对抗硫化物和硫化氢积聚对兼性细菌的毒性作用,同时还提供了经由土壤矿物(黄铁矿)悬浮液去除目标有机物的手段。
这种技术利用存在的硫酸盐和三价铁之间的相互作用。三价铁(Fe3+)被还原成亚铁(Fe2+);从而容易提供电子以与硫化物交换和反应,如化学方程式(14)中所示。硫化物和铁共同形成黄铁矿,即一种具有有利的还原能力的含铁的土壤矿物。
Fe2++2S2-→FeS2(14)
黄铁矿具有与它的还原能力和衰变率这两者成正比的对目标有机物的有限数目的反应位点。黄铁矿在环境的还原条件下充当三级处理机制。含铁的土壤矿物(如黄铁矿)的还原能力最初通过使污染物与作为末端电子受体的硫酸盐之间的竞争减到最低程度而引起对目标有机物的快速去除。阻止这些与三价铁的不利的相互作用提供了持续的电子交换来源,从而使得经由黄铁矿悬浮液及时地去除污染物。
一旦满足了黄铁矿的还原能力,所结合的有机污染物倾向于沉淀出,从而快速地去除污染物而没有产生子体产物。
因此,上文被认为是仅说明了本发明的原理。此外,由于许多的修改方案和变化方案将容易被本领域技术人员想到,因此并不期望将本发明限于所示的和所描述的确切构造和操作,并且因此,可以采用所有合适的修改方案和等同方案而落入本发明的范围内。

Claims (17)

1.一种用于在环境介质中氧化挥发性有机化合物,继而发生生物衰减的方法,所述方法包括使用至少一种非螯合的三价金属以引起氧化剂的活化,所述氧化剂包含过氧化物、过硫酸盐或其组合。
2.如权利要求1所述的方法,其中所述环境介质是土壤或地下水。
3.如权利要求1所述的方法,其中所述三价金属的来源是所述环境介质固有的。
4.如权利要求1所述的方法,其中将所述三价金属的来源以氧化物质的形式由一种或多种零价金属引入到所述环境介质中。
5.如权利要求1所述的方法,其中经由临时井或永久井将所述三价金属引入到所述环境介质中。
6.如权利要求1所述的方法,其中在气流或液流中的压力下将所述三价金属引入到所述环境介质中。
7.如权利要求1所述的方法,其中经由重力进料、引发的气流、泵或其组合将所述氧化剂引入到所述环境介质中。
8.如权利要求1所述的方法,其中在所述环境介质回到还原条件时所述生物衰减发生。
9.如权利要求8所述的方法,其中所述生物衰减依赖于兼性生物反应。
10.如权利要求9所述的方法,其中所述生物衰减利用硫酸盐化合物和所述三价金属作为末端电子受体。
11.如权利要求10所述的方法,其中所述生物衰减产生具有硫化物和二价金属的产物。
12.如权利要求11所述的方法,其中所述所得产物还包括至少一种反应性地质矿物。
13.如权利要求12所述的方法,其中所述反应性地质矿物是黄铁矿、赤铁矿或磁铁矿。
14.如权利要求1所述的方法,其中所述三价金属是Fe3+或Mn3+
15.如权利要求1所述的方法,其中所述过硫酸盐是基于钠、钾或铵的。
16.如权利要求16所述的方法,其中所述三价金属充当所述过硫酸盐的活化剂以形成硫酸根自由基。
17.一种用于在环境介质中氧化挥发性有机化合物,继而发生生物衰减的方法,所述方法包括向所述环境介质中引入包含过氧化物、过碳酸盐或其组合的氧化剂以引起所述三价金属的形成,继而引入过硫酸盐。
CN201480024326.6A 2013-05-10 2014-05-02 用于处理被污染的介质的化学氧化和生物衰减方法 Pending CN105164057A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13/891,934 2013-05-10
US13/891,934 US9126245B2 (en) 2013-05-10 2013-05-10 Chemical oxidation and biological attenuation process for the treatment of contaminated media
US14/268,629 US9427786B2 (en) 2013-05-10 2014-05-02 Chemical oxidation and biological attenuation process for the treatment of contaminated media
PCT/US2014/036642 WO2014182572A2 (en) 2013-05-10 2014-05-02 Chemical oxidation and biological attenuation process for the treatment of contaminated media
US14/268,629 2014-05-02

Publications (1)

Publication Number Publication Date
CN105164057A true CN105164057A (zh) 2015-12-16

Family

ID=51865056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480024326.6A Pending CN105164057A (zh) 2013-05-10 2014-05-02 用于处理被污染的介质的化学氧化和生物衰减方法

Country Status (8)

Country Link
US (1) US9427786B2 (zh)
JP (1) JP2016522743A (zh)
CN (1) CN105164057A (zh)
AU (1) AU2014263011B2 (zh)
BR (1) BR112015028317B1 (zh)
CA (1) CA2908394A1 (zh)
MX (1) MX2015014984A (zh)
WO (1) WO2014182572A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686407A (zh) * 2017-09-21 2018-02-13 哈尔滨工业大学 一种利用过碳酸盐处理抗生素菌渣制取有机肥的方法
CN108160694A (zh) * 2017-12-26 2018-06-15 北京宜为凯姆环境技术有限公司 用于环境修复的过硫酸盐的复合活化方法
CN109160590A (zh) * 2018-09-17 2019-01-08 天津大学 一种含苯胺废水的处理方法
CN109626544A (zh) * 2018-12-07 2019-04-16 华南农业大学 一种基于四硫化三铁活化过硫酸盐降解水体中环境激素双酚a的方法
CN109702005A (zh) * 2018-12-07 2019-05-03 华南农业大学 一种基于四硫化三铁活化过硫酸盐降解工农业污染土壤中持久性有机污染物的方法
CN110563191A (zh) * 2019-07-30 2019-12-13 中山大学 一种利用过硫酸盐强化铁盐混凝工艺去除饮用水中有机微污染物的方法
CN108543808B (zh) * 2018-03-21 2021-07-27 轻工业环境保护研究所 利用化学氧化-厌氧微生物联合降解土壤中多环芳烃污染物的方法
CN113307350A (zh) * 2021-04-21 2021-08-27 南昌航空大学 一种电镀废水中重金属快速沉淀和cod高效去除的高级氧化工艺

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10252303B2 (en) 2015-06-01 2019-04-09 Michael Lindstrom Method to remediate soil and groundwater
JP2018079416A (ja) * 2016-11-15 2018-05-24 鹿島建設株式会社 地下水の浄化システム、及び浄化方法
CN107089735A (zh) * 2017-05-08 2017-08-25 上海城市污染控制工程研究中心有限公司 一种养殖污水脱色方法
CN108191038B (zh) * 2018-01-31 2021-02-02 哈尔滨工业大学 Ff型纳米催化剂催化氧化的深度处理方法
CN112142279A (zh) * 2020-05-20 2020-12-29 华能大庆热电有限公司 热电厂碳酸钙污泥再生处置药剂及工艺
CN111732462A (zh) * 2020-05-28 2020-10-02 中国农业大学 一种畜禽粪污厌氧消化的处理剂及方法
CN112496020A (zh) * 2020-10-30 2021-03-16 煜环环境科技有限公司 一种降低农田土壤中重金属有效态的修复方法
CN114289488B (zh) * 2021-11-23 2022-12-23 生态环境部南京环境科学研究所 一种用于修复有机污染土壤的亚铁离子活化方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189855A1 (en) * 2003-07-29 2007-08-16 Dalbir Sethi Treatment of environmental contaminants
US20070280785A1 (en) * 2004-02-26 2007-12-06 Block Philip A Oxidation Of Organic Compounds At High Ph
CN101264968A (zh) * 2008-04-16 2008-09-17 合肥工业大学 一种催化氧化处理邻甲酚废水的方法及催化剂制备方法
US20080264876A1 (en) * 2005-10-20 2008-10-30 Fmc Corporation Oxidation of Organic Compounds
US20080272063A1 (en) * 2005-05-31 2008-11-06 Solvay Ex Situ and in Situ Remediation with Activated Persulfate
US20100185039A1 (en) * 2007-09-26 2010-07-22 Verutex Technologies ,Inc. Method for extraction and surfactant enhanced subsurface contaminant recovery
US20100215437A1 (en) * 2009-02-24 2010-08-26 Geo-Cleanse International, Inc. Manganese-mediated redox processes for environmental contaminant remediation
US20100227381A1 (en) * 2007-07-23 2010-09-09 Verutek Technologies, Inc. Enhanced biodegradation of non-aqueous phase liquids using surfactant enhanced in-situ chemical oxidation
US20110139695A1 (en) * 2007-05-04 2011-06-16 Solutions-Ies, Inc. In situ ph adjustment for solid and groundwater remediation
US20120114852A1 (en) * 2002-07-12 2012-05-10 Remediation Products, Inc. Method of Manufacturing Compositions for Removing Halogenated Hydrocarbons from Contaminated Environments

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610065A (en) * 1991-06-21 1997-03-11 Institute Of Gas Technology Integrated chemical/biological treatment of organic waste
US6019548A (en) 1998-05-05 2000-02-01 United Technologies Corporation Chemical oxidation of volatile organic compounds
US6726406B2 (en) 1999-10-28 2004-04-27 Battelle Memorial Institute In situ formation of reactive barriers for pollution control
WO2004002902A1 (en) 2002-06-26 2004-01-08 Fmc Corporation Oxidation of organic compounds
US7044152B2 (en) 2003-01-06 2006-05-16 Innovative Environmental Technologies, Inc. Apparatus for in-situ remediation using a closed delivery system
US20040197150A1 (en) 2003-04-04 2004-10-07 Xpert Design And Diagnostics, Llc Chemical oxidation of organic and inorganic contaminants by chelated transition metals catalyzed persulfate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114852A1 (en) * 2002-07-12 2012-05-10 Remediation Products, Inc. Method of Manufacturing Compositions for Removing Halogenated Hydrocarbons from Contaminated Environments
US20070189855A1 (en) * 2003-07-29 2007-08-16 Dalbir Sethi Treatment of environmental contaminants
US20070280785A1 (en) * 2004-02-26 2007-12-06 Block Philip A Oxidation Of Organic Compounds At High Ph
US20080272063A1 (en) * 2005-05-31 2008-11-06 Solvay Ex Situ and in Situ Remediation with Activated Persulfate
US20080264876A1 (en) * 2005-10-20 2008-10-30 Fmc Corporation Oxidation of Organic Compounds
US20110139695A1 (en) * 2007-05-04 2011-06-16 Solutions-Ies, Inc. In situ ph adjustment for solid and groundwater remediation
US20100227381A1 (en) * 2007-07-23 2010-09-09 Verutek Technologies, Inc. Enhanced biodegradation of non-aqueous phase liquids using surfactant enhanced in-situ chemical oxidation
US20100185039A1 (en) * 2007-09-26 2010-07-22 Verutex Technologies ,Inc. Method for extraction and surfactant enhanced subsurface contaminant recovery
CN101264968A (zh) * 2008-04-16 2008-09-17 合肥工业大学 一种催化氧化处理邻甲酚废水的方法及催化剂制备方法
US20100215437A1 (en) * 2009-02-24 2010-08-26 Geo-Cleanse International, Inc. Manganese-mediated redox processes for environmental contaminant remediation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孔晓宏等: "《生态强省 科学发展》", 31 May 2012, 合肥工业大学出版社 *
程同锦: "《第四届全国油气化探学术会议论文集》", 30 April 1998, 中国地质大学出版社 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686407A (zh) * 2017-09-21 2018-02-13 哈尔滨工业大学 一种利用过碳酸盐处理抗生素菌渣制取有机肥的方法
CN108160694A (zh) * 2017-12-26 2018-06-15 北京宜为凯姆环境技术有限公司 用于环境修复的过硫酸盐的复合活化方法
CN108543808B (zh) * 2018-03-21 2021-07-27 轻工业环境保护研究所 利用化学氧化-厌氧微生物联合降解土壤中多环芳烃污染物的方法
CN109160590A (zh) * 2018-09-17 2019-01-08 天津大学 一种含苯胺废水的处理方法
CN109626544A (zh) * 2018-12-07 2019-04-16 华南农业大学 一种基于四硫化三铁活化过硫酸盐降解水体中环境激素双酚a的方法
CN109702005A (zh) * 2018-12-07 2019-05-03 华南农业大学 一种基于四硫化三铁活化过硫酸盐降解工农业污染土壤中持久性有机污染物的方法
CN109626544B (zh) * 2018-12-07 2020-12-11 华南农业大学 一种基于四硫化三铁活化过硫酸盐降解水体中环境激素双酚a的方法
CN110563191A (zh) * 2019-07-30 2019-12-13 中山大学 一种利用过硫酸盐强化铁盐混凝工艺去除饮用水中有机微污染物的方法
CN113307350A (zh) * 2021-04-21 2021-08-27 南昌航空大学 一种电镀废水中重金属快速沉淀和cod高效去除的高级氧化工艺

Also Published As

Publication number Publication date
AU2014263011A1 (en) 2015-10-22
US9427786B2 (en) 2016-08-30
AU2014263011B2 (en) 2018-01-18
WO2014182572A3 (en) 2015-05-07
BR112015028317A2 (pt) 2017-07-25
WO2014182572A2 (en) 2014-11-13
CA2908394A1 (en) 2014-11-13
US20140335602A1 (en) 2014-11-13
JP2016522743A (ja) 2016-08-04
BR112015028317B1 (pt) 2021-09-14
MX2015014984A (es) 2016-07-21

Similar Documents

Publication Publication Date Title
CN105164057A (zh) 用于处理被污染的介质的化学氧化和生物衰减方法
US9701556B1 (en) Compositions, methods, and systems for reducing contamination
Zhang et al. Degradation of p-chloroaniline by pyrite in aqueous solutions
Johnson et al. Acid mine drainage remediation options: a review
Thiruvenkatachari et al. Permeable reactive barrier for groundwater remediation
US20170239699A1 (en) Chemical Oxidation and Biological Attenuation Process for the Treatment of Contaminated Media
Bigg et al. Zero-valent iron for water treatment
Hitchman et al. Disposal methods for chlorinated aromatic waste
US8579544B2 (en) Combined chemical oxidation/assisted bioremediation of contaminants
US20190262877A1 (en) Situ Ferrate Generation
JP2007209824A (ja) 汚染土壌または汚染地下水の浄化方法
Yang Integrated electrokinetic processes for the remediation of phthalate esters in river sediments: A mini-review
US9126245B2 (en) Chemical oxidation and biological attenuation process for the treatment of contaminated media
Li et al. Degradation of 2, 4-dinitrotoluene using ferrous activated persulfate: Kinetics, mechanisms, and effects of natural water matrices
Abass et al. Nano-Fe mediated treatment of real hydraulic fracturing flowback and its practical implication on membrane fouling in tandem anaerobic-oxic membrane bioreactor
Goi Advanced oxidation processes for water purification and soil remediation
JP3784654B2 (ja) 化学物質汚染物の浄化方法
McGachy et al. From Theory to Practice: Leveraging Chemical Principles To Improve the Performance of Peroxydisulfate-Based In Situ Chemical Oxidation of Organic Contaminants
Roohi et al. Fast and environmental-friendly degradation of tert-butyl mercaptan from contaminated soil using bimetallic-modified Fenton process
Chen et al. Research on treating acid wastewater containing heavy metals by sulfate-reducing bacteria
Ekwuluo et al. Advances on chemical oxidants for remediation of ground water contaminated with petroleum hydrocarbon products
Dehghan Abkenar et al. Recent Advances in Electrochemical Treatment Technology for the Remediation of Contaminated Soil
JP4362294B2 (ja) 土壌の浄化方法
Chiarenzelli et al. Bench‐and pilot‐scale applications of electrochemical peroxidation: A new remedial concept
Anderson Process identification and description

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151216