CN105162438A - TSPC (True Single Phase Clock) type data flip-flop (DFF) capable of reducing glitch - Google Patents
TSPC (True Single Phase Clock) type data flip-flop (DFF) capable of reducing glitch Download PDFInfo
- Publication number
- CN105162438A CN105162438A CN201510626563.6A CN201510626563A CN105162438A CN 105162438 A CN105162438 A CN 105162438A CN 201510626563 A CN201510626563 A CN 201510626563A CN 105162438 A CN105162438 A CN 105162438A
- Authority
- CN
- China
- Prior art keywords
- nmos tube
- pmos
- inverter
- grid
- flop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HGCFMGDVMNCLNU-UHFFFAOYSA-N 3-thiophen-2-ylsulfonylpyrazine-2-carbonitrile Chemical compound N=1C=CN=C(C#N)C=1S(=O)(=O)C1=CC=CS1 HGCFMGDVMNCLNU-UHFFFAOYSA-N 0.000 claims abstract 7
- 101100130882 Arabidopsis thaliana MNS2 gene Proteins 0.000 description 4
- 101001051674 Homo sapiens Meiosis-specific nuclear structural protein 1 Proteins 0.000 description 4
- 102100024962 Meiosis-specific nuclear structural protein 1 Human genes 0.000 description 4
- 101100182941 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ams1 gene Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Logic Circuits (AREA)
- Manipulation Of Pulses (AREA)
Abstract
本发明公开了一种降低毛刺的TSPC型D触发器,包括第一级反相器结构、第二级反相器结构、第三级反相器结构以及复位管。本发明对传统TSPC型触发器理论分析影响毛刺的因素,进行结构改进和参数优化,降低DFF毛刺影响,提高DFF的性能,在保持电路工作稳定性的同时提高降低了电路功耗,实现数字系统对于基本数字单元低功耗与面积紧凑型的要求。与传统TSPC电路相比,本发明结构的DFF毛刺降低明显,稳定性与功耗方面有明显优势。
The invention discloses a TSPC type D flip-flop for reducing burrs, which comprises a first-stage inverter structure, a second-stage inverter structure, a third-stage inverter structure and a reset tube. The present invention theoretically analyzes the factors affecting the burr of the traditional TSPC type flip-flop, improves the structure and optimizes the parameters, reduces the influence of the DFF burr, improves the performance of the DFF, improves and reduces the power consumption of the circuit while maintaining the stability of the circuit operation, and realizes the digital system Requirements for low power consumption and compact area of the basic digital unit. Compared with the traditional TSPC circuit, the DFF burr of the structure of the present invention is significantly reduced, and has obvious advantages in terms of stability and power consumption.
Description
技术领域technical field
本发明涉及一种降低毛刺的TSPC(TrueSinglePhaseClock,真单相时钟)型D触发器,具体为一种带有复位结构的高速主从型D触发器,属于数字信号技术。The invention relates to a TSPC (TrueSinglePhaseClock, true single-phase clock) type D flip-flop that reduces burrs, specifically a high-speed master-slave type D flip-flop with a reset structure, which belongs to digital signal technology.
背景技术Background technique
随着CMOS集成电路技术的飞速发展,单个芯片上集成规模越来越大,而且时钟频率飞速增加,对各种电路的速度有着较高的要求。计时、计数数字电路作为集成系统中几乎是必不可少的一部分,其速度直接影响系统性能。由于VLSI技术的不断进步,数字系统的运行速度要求不断提高。触发器是数字系统中常用的一种元器件,其性能对整个系统的性能影响很大。目前许多触发器研究和应用中都是以D触发器为基础进行的,对DFF的速度有更高的要求。With the rapid development of CMOS integrated circuit technology, the scale of integration on a single chip is getting larger and larger, and the clock frequency is increasing rapidly, which has higher requirements for the speed of various circuits. Timing and counting digital circuits are almost an essential part of an integrated system, and their speed directly affects system performance. Due to the continuous advancement of VLSI technology, the operating speed requirements of digital systems continue to increase. A flip-flop is a commonly used component in a digital system, and its performance has a great influence on the performance of the entire system. At present, many researches and applications of flip-flops are based on D flip-flops, which have higher requirements for the speed of DFF.
传统的同步或异步加法计数器加法,受进位链延迟的限制,当计数位数增加,计数器难以工作在高频计数时钟下。目前,高速高精度计数器的应用场合日渐增多,如果将面积因素考虑在内,普通的加减法计数器均不能满足要求。而线性反馈移位计数器(LFSR)作为一种重要的计数电路,尤其是在高速集成电路领域备受青睐。LFSR计数器只用到D触发器和异/同或门,所以延时不依赖于计数器的位数,仅与单个DFF和异/同或门的延时相关。传统的D触发器因工作速度限制带来的问题是:计数器的速度下降较为明显。此外应用于时间-数字转换电路(TDC)则是一种重要的计时电路,其组成主要也是计数器,计数器通过统计固定周期脉冲信号的周期个数,该数值与周期相乘,实现时间的数字量化,计数器主要由D触发器并配以少量的组合逻辑门电路组成。The addition of traditional synchronous or asynchronous adding counters is limited by the delay of the carry chain. When the number of counting digits increases, it is difficult for the counter to work under the high-frequency counting clock. At present, the application occasions of high-speed and high-precision counters are increasing day by day. If the area factor is taken into consideration, ordinary addition and subtraction counters cannot meet the requirements. As an important counting circuit, the Linear Feedback Shift Counter (LFSR) is favored especially in the field of high-speed integrated circuits. The LFSR counter only uses D flip-flops and exclusive/exclusive OR gates, so the delay does not depend on the number of bits of the counter, but is only related to the delay of a single DFF and exclusive/exclusive OR gates. The problem caused by the limitation of the working speed of the traditional D flip-flop is that the speed of the counter drops more obviously. In addition, the time-to-digital conversion circuit (TDC) is an important timing circuit, and its main composition is a counter. The counter counts the number of cycles of a fixed cycle pulse signal, and the value is multiplied by the cycle to realize the digital quantification of time. , The counter is mainly composed of D flip-flops and a small number of combinational logic gates.
数字集成电路中,D触发器种类繁多,按照逻辑功能的不同,触发器可分为RS,JK、D和T触发器等多种类型,按照电路结构的不同,又可分为主从型结构、灵敏放大器型结构和维持阻塞结构等。不同类型的D触发器,性能优越性侧重点也各不相同。比如,采用DFF的TDC电路工作频率通常较高,同时要求面积尽可能紧凑。这就对动态结构类型的D触发器提出更高要求。传统的TSPC型受到毛刺以及电荷共享,从而使得Qb端的电位不是理想高低电平,即高电平不为理想的VDD,低电位不为理想的GND。这一现象导致充放电时间的变化。虽然在关键点加入晶体管可以缓解该问题,但是这将限制该触发器的工作速度并消耗更多的功耗。In digital integrated circuits, there are many types of D flip-flops. According to different logic functions, flip-flops can be divided into RS, JK, D and T flip-flops and other types. According to different circuit structures, they can be divided into master-slave structures. , Sensitive amplifier structure and maintaining blocking structure, etc. Different types of D flip-flops have different performance advantages. For example, the operating frequency of a TDC circuit using DFF is usually high, and the area is required to be as compact as possible. This puts forward higher requirements for the D flip-flop of the dynamic structure type. The traditional TSPC type suffers from glitches and charge sharing, so that the potential of the Qb terminal is not ideal high and low levels, that is, the high level is not the ideal VDD, and the low potential is not the ideal GND. This phenomenon results in variations in charge and discharge times. Although adding transistors at key points can alleviate this problem, it will limit the operating speed of the flip-flop and consume more power.
发明内容Contents of the invention
发明目的:为了克服现有技术中存在的不足,本发明提供一种新型的TSPC型D触发器,降低D触发器的毛刺和功耗,并在此基础上保证较高的工作速度与较小的版图面积。Purpose of the invention: In order to overcome the deficiencies in the prior art, the present invention provides a novel TSPC type D flip-flop, which reduces the glitch and power consumption of the D flip-flop, and on this basis ensures higher operating speed and smaller area of the layout.
技术方案:为实现上述目的,本发明采用的技术方案为:Technical scheme: in order to achieve the above object, the technical scheme adopted in the present invention is:
一种降低毛刺的TSPC型D触发器,包括第一级反相器、第二级反相器、第三级反相器和复位结构,具体结构如下:A TSPC-type D flip-flop that reduces glitches, including a first-stage inverter, a second-stage inverter, a third-stage inverter, and a reset structure. The specific structure is as follows:
所述第一级反相器包括一号PMOS管MP1、二号PMOS管MP2、三号PMOS管MP3和一号NMOS管MN1;其中,一号PMOS管MP1的栅极连接时钟信号CLK,一号PMOS管MP1的漏极和二号PMOS管MP2的源极连接并作为第一级反相器的一号输出端;二号PMOS管MP2的漏极和三号PMOS管MP3的源极连接;三号PMOS管MP3的漏极和一号NMOS管MN1的漏极连接并作为第一级反相器的二号输出端;二号PMOS管MP2的栅极和一号NMOS管MN1的栅极连接并作为第一级反相器的输入端;一号NMOS管MN1的源极接地;三号PMOS管MP3的栅极连接时钟信号CLK;The first-stage inverter includes No. 1 PMOS transistor MP1, No. 2 PMOS transistor MP2, No. 3 PMOS transistor MP3 and No. 1 NMOS transistor MN1; wherein, the gate of No. 1 PMOS transistor MP1 is connected to the clock signal CLK, and the gate of No. 1 PMOS transistor MP1 is connected to the clock signal CLK. The drain of the PMOS transistor MP1 is connected to the source of the second PMOS transistor MP2 and used as the first output terminal of the first-stage inverter; the drain of the second PMOS transistor MP2 is connected to the source of the third PMOS transistor MP3; The drain of the No. PMOS transistor MP3 is connected to the drain of the No. 1 NMOS transistor MN1 and used as the No. 2 output terminal of the first-stage inverter; the gate of the No. 2 PMOS transistor MP2 is connected to the gate of the No. 1 NMOS transistor MN1 and As the input terminal of the first-stage inverter; the source of the first NMOS transistor MN1 is grounded; the gate of the third PMOS transistor MP3 is connected to the clock signal CLK;
所述第二级反相器包括四号PMOS管MP4、二号NMOS管MN2、三号NMOS管MN3、四号NMOS管MN4和五号NMOS管MN5;其中,四号PMOS管MP4的栅极和四号NMOS管MN4的栅极以及二号NMOS管MN2的漏极连接并作为第二级反相器的一号输入端;二号NMOS管MN2的栅极作为第二级反相器的二号输入端;四号PMOS管MP4的漏极和三号NMOS管MN3的漏极连接并作为第二级反相器的输出端;三号NMOS管MN3的栅极连接时钟信号CLK,三号NMOS管MN3的源极和四号NMOS管MN4的漏极连接;二号NMOS管MN2的源极和四号NMOS管MN4的源极以及五号NMOS管MN5的漏极连接;五号NMOS管MN5的栅极连接时钟信号CLK,五号NMOS管MN5的源极接地;The second-stage inverter includes No. 4 PMOS transistor MP4, No. 2 NMOS transistor MN2, No. 3 NMOS transistor MN3, No. 4 NMOS transistor MN4, and No. 5 NMOS transistor MN5; wherein, the gate of No. 4 PMOS transistor MP4 and The gate of the fourth NMOS transistor MN4 and the drain of the second NMOS transistor MN2 are connected and used as the first input terminal of the second-stage inverter; the gate of the second NMOS transistor MN2 is used as the second input terminal of the second-stage inverter Input terminal; the drain of the fourth PMOS transistor MP4 is connected to the drain of the third NMOS transistor MN3 and used as the output end of the second-stage inverter; the gate of the third NMOS transistor MN3 is connected to the clock signal CLK, and the gate of the third NMOS transistor MN3 is connected to the clock signal CLK. The source of MN3 is connected to the drain of the fourth NMOS transistor MN4; the source of the second NMOS transistor MN2 is connected to the source of the fourth NMOS transistor MN4 and the drain of the fifth NMOS transistor MN5; the gate of the fifth NMOS transistor MN5 The pole is connected to the clock signal CLK, and the source of the fifth NMOS tube MN5 is grounded;
所述第三级反相器包括五号PMOS管MP5和六号NMOS管MN6;其中,五号PMOS管MP5的栅极和六号NMOS管MN6的栅极连接并作为第三级反相器的输入端;五号PMOS管MP5的漏极和六号NMOS管MN6的漏极连接并作为第三级反相器的输出端;五号PMOS管MP5的源极接电源VDD;六号NMOS管MN6的源极接地;The third-stage inverter includes No. 5 PMOS transistor MP5 and No. 6 NMOS transistor MN6; wherein, the gate of No. 5 PMOS transistor MP5 is connected to the gate of No. 6 NMOS transistor MN6 and serves as the gate of the third-stage inverter Input terminal; the drain of the fifth PMOS transistor MP5 is connected to the drain of the sixth NMOS transistor MN6 and used as the output of the third-stage inverter; the source of the fifth PMOS transistor MP5 is connected to the power supply VDD; the sixth NMOS transistor MN6 The source of the ground;
所述复位结构包括六号PMOS管MP6与七号NMOS管MN7;其中六号PMOS管MP6的栅极连接复位信号R,六号PMOS管MP6的源极连接电源VDD,六号PMOS管MP6的漏极连接一号PMOS管MP1的源级;七号NMOS管MN7的栅极连接复位信号R,七号NMOS管MN7的漏极连接第一级反相器的一号输出端和第二级反相器的一号输入端,七号NMOS管MN7的源极接地;The reset structure includes the sixth PMOS transistor MP6 and the seventh NMOS transistor MN7; the gate of the sixth PMOS transistor MP6 is connected to the reset signal R, the source of the sixth PMOS transistor MP6 is connected to the power supply VDD, and the drain of the sixth PMOS transistor MP6 The pole is connected to the source of the first PMOS transistor MP1; the gate of the seventh NMOS transistor MN7 is connected to the reset signal R, and the drain of the seventh NMOS transistor MN7 is connected to the first output terminal of the first stage inverter and the second stage inverter The No. 1 input terminal of the device, the source of the No. 7 NMOS transistor MN7 is grounded;
第一级反相器的输入端接入TSPC型D触发器的输入信号D,第一级反相器的一号输出端连接第二级反相器的一号输入端,第一级反相器的二号输出端连接第二级反相器的二号输入端,第二级反相器的输出端连接第三级反相器的输入端,第三级反相器的输出端输出TSPC型D触发器的输出信号Q。The input terminal of the first-stage inverter is connected to the input signal D of the TSPC type D flip-flop, the No. 1 output terminal of the first-stage inverter is connected to the No. 1 input terminal of the second-stage inverter, and the first-stage inversion The No. 2 output of the inverter is connected to the No. 2 input of the second-stage inverter, the output of the second-stage inverter is connected to the input of the third-stage inverter, and the output of the third-stage inverter outputs TSPC The output signal Q of the type D flip-flop.
优选的,所述二号NMOS管MN2的尺寸大于三号NMOS管MN3的尺寸和四号NMOS管MN4的尺寸;该结构能够使得二号NMOS管MN2更快地将节点y2下拉到GND,使得低电平能很快传输到输出信号Q。Preferably, the size of the second NMOS transistor MN2 is larger than the size of the third NMOS transistor MN3 and the size of the fourth NMOS transistor MN4; this structure enables the second NMOS transistor MN2 to pull down the node y2 to GND faster, so that the low The level can be quickly transferred to the output signal Q.
本发明的电路结构中,复位结构的NMOS管和PMOS管组合可以实现高电平快速复位,同时保证低电位正常工作。In the circuit structure of the present invention, the combination of the NMOS transistor and the PMOS transistor of the reset structure can realize fast reset at high level and ensure normal operation at low potential at the same time.
有益效果:本发明提供的降低毛刺的TSPC型D触发器,具有如下优势:1、与现有的TSPC型结构相比,可以避免因毛刺问题而导致触发器产生错误状态的情况发生,可以使得Qb输出端的电位接近理想高低电平,即高电平为理想的VDD,低电位为理想的GND;2、现有的TSPC型触发器结构中,由于采用前后两级复位方式,增加了信号D到输出Q的延时;本发明中复位信号管仅置于第一级反相器位置,降低触发器的传输延时;3、与现有的TSPC型触发器相比,本发明提出的一种TSPC触发器,结构更为精简,版图面积更小,复位结构简单,更适用于在高速计数器中的使用。Beneficial effects: the TSPC-type D flip-flop with reduced burrs provided by the present invention has the following advantages: 1. Compared with the existing TSPC-type structure, it can avoid the occurrence of an error state in the flip-flop caused by the burr problem, and can make The potential of the output terminal of Qb is close to the ideal high and low levels, that is, the high level is the ideal VDD, and the low potential is the ideal GND; to the delay of the output Q; in the present invention, the reset signal tube is only placed in the first-stage inverter position, reducing the transmission delay of the flip-flop; 3, compared with the existing TSPC type flip-flop, the present invention proposes a A TSPC flip-flop has a more streamlined structure, a smaller layout area, and a simple reset structure, and is more suitable for use in high-speed counters.
附图说明Description of drawings
图1和图2为两种经典的TSPC型D触发器结构;Figure 1 and Figure 2 are two classic TSPC type D flip-flop structures;
图3为经典D触发器的仿真时序图;Figure 3 is a simulation timing diagram of a classic D flip-flop;
图4为初始设计的TSPC型D触发器结构;Fig. 4 is the structure of the TSPC type D flip-flop of initial design;
图5为在图4的基础上添加晶体管实现复位功能的结构。FIG. 5 is a structure in which a transistor is added to realize a reset function on the basis of FIG. 4 .
具体实施方式Detailed ways
下面结合附图对本发明作更进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
如图5所示为一种降低毛刺的TSPC型D触发器,包括第一级反相器、第二级反相器、第三级反相器和复位结构,具体结构如下:As shown in Figure 5, a TSPC-type D flip-flop that reduces glitches includes a first-stage inverter, a second-stage inverter, a third-stage inverter, and a reset structure. The specific structure is as follows:
所述第一级反相器包括一号PMOS管MP1、二号PMOS管MP2、三号PMOS管MP3和一号NMOS管MN1;其中,一号PMOS管MP1的栅极连接时钟信号CLK,一号PMOS管MP1的漏极和二号PMOS管MP2的源极连接并作为第一级反相器的一号输出端;二号PMOS管MP2的漏极和三号PMOS管MP3的源极连接;三号PMOS管MP3的漏极和一号NMOS管MN1的漏极连接并作为第一级反相器的二号输出端;二号PMOS管MP2的栅极和一号NMOS管MN1的栅极连接并作为第一级反相器的输入端;一号NMOS管MN1的源极接地;三号PMOS管MP3的栅极连接时钟信号CLK;The first-stage inverter includes No. 1 PMOS transistor MP1, No. 2 PMOS transistor MP2, No. 3 PMOS transistor MP3 and No. 1 NMOS transistor MN1; wherein, the gate of No. 1 PMOS transistor MP1 is connected to the clock signal CLK, and the gate of No. 1 PMOS transistor MP1 is connected to the clock signal CLK. The drain of the PMOS transistor MP1 is connected to the source of the second PMOS transistor MP2 and used as the first output terminal of the first-stage inverter; the drain of the second PMOS transistor MP2 is connected to the source of the third PMOS transistor MP3; The drain of the No. PMOS transistor MP3 is connected to the drain of the No. 1 NMOS transistor MN1 and used as the No. 2 output terminal of the first-stage inverter; the gate of the No. 2 PMOS transistor MP2 is connected to the gate of the No. 1 NMOS transistor MN1 and As the input terminal of the first-stage inverter; the source of the first NMOS transistor MN1 is grounded; the gate of the third PMOS transistor MP3 is connected to the clock signal CLK;
所述第二级反相器包括四号PMOS管MP4、二号NMOS管MN2、三号NMOS管MN3、四号NMOS管MN4和五号NMOS管MN5;其中,四号PMOS管MP4的栅极和四号NMOS管MN4的栅极以及二号NMOS管MN2的漏极连接并作为第二级反相器的一号输入端;二号NMOS管MN2的栅极作为第二级反相器的二号输入端;四号PMOS管MP4的漏极和三号NMOS管MN3的漏极连接并作为第二级反相器的输出端;三号NMOS管MN3的栅极连接时钟信号CLK,三号NMOS管MN3的源极和四号NMOS管MN4的漏极连接;二号NMOS管MN2的源极和四号NMOS管MN4的源极以及五号NMOS管MN5的漏极连接;五号NMOS管MN5的栅极连接时钟信号CLK,五号NMOS管MN5的源极接地;The second-stage inverter includes No. 4 PMOS transistor MP4, No. 2 NMOS transistor MN2, No. 3 NMOS transistor MN3, No. 4 NMOS transistor MN4, and No. 5 NMOS transistor MN5; wherein, the gate of No. 4 PMOS transistor MP4 and The gate of the fourth NMOS transistor MN4 and the drain of the second NMOS transistor MN2 are connected and used as the first input terminal of the second-stage inverter; the gate of the second NMOS transistor MN2 is used as the second input terminal of the second-stage inverter Input terminal; the drain of the fourth PMOS transistor MP4 is connected to the drain of the third NMOS transistor MN3 and used as the output end of the second-stage inverter; the gate of the third NMOS transistor MN3 is connected to the clock signal CLK, and the gate of the third NMOS transistor MN3 is connected to the clock signal CLK. The source of MN3 is connected to the drain of the fourth NMOS transistor MN4; the source of the second NMOS transistor MN2 is connected to the source of the fourth NMOS transistor MN4 and the drain of the fifth NMOS transistor MN5; the gate of the fifth NMOS transistor MN5 The pole is connected to the clock signal CLK, and the source of the fifth NMOS tube MN5 is grounded;
所述第三级反相器包括五号PMOS管MP5和六号NMOS管MN6;其中,五号PMOS管MP5的栅极和六号NMOS管MN6的栅极连接并作为第三级反相器的输入端;五号PMOS管MP5的漏极和六号NMOS管MN6的漏极连接并作为第三级反相器的输出端;五号PMOS管MP5的源极接电源VDD;六号NMOS管MN6的源极接地;The third-stage inverter includes No. 5 PMOS transistor MP5 and No. 6 NMOS transistor MN6; wherein, the gate of No. 5 PMOS transistor MP5 is connected to the gate of No. 6 NMOS transistor MN6 and serves as the gate of the third-stage inverter Input terminal; the drain of the fifth PMOS transistor MP5 is connected to the drain of the sixth NMOS transistor MN6 and used as the output of the third-stage inverter; the source of the fifth PMOS transistor MP5 is connected to the power supply VDD; the sixth NMOS transistor MN6 The source of the ground;
所述复位结构包括六号PMOS管MP6与七号NMOS管MN7;其中六号PMOS管MP6的栅极连接复位信号R,六号PMOS管MP6的源极连接电源VDD,六号PMOS管MP6的漏极连接一号PMOS管MP1的源级;七号NMOS管MN7的栅极连接复位信号R,七号NMOS管MN7的漏极连接第一级反相器的一号输出端和第二级反相器的一号输入端,七号NMOS管MN7的源极接地;The reset structure includes the sixth PMOS transistor MP6 and the seventh NMOS transistor MN7; the gate of the sixth PMOS transistor MP6 is connected to the reset signal R, the source of the sixth PMOS transistor MP6 is connected to the power supply VDD, and the drain of the sixth PMOS transistor MP6 The pole is connected to the source of the first PMOS transistor MP1; the gate of the seventh NMOS transistor MN7 is connected to the reset signal R, and the drain of the seventh NMOS transistor MN7 is connected to the first output terminal of the first stage inverter and the second stage inverter The No. 1 input terminal of the device, the source of the No. 7 NMOS transistor MN7 is grounded;
第一级反相器的输入端接入TSPC型D触发器的输入信号D,第一级反相器的一号输出端连接第二级反相器的一号输入端,第一级反相器的二号输出端连接第二级反相器的二号输入端,第二级反相器的输出端连接第三级反相器的输入端,第三级反相器的输出端输出TSPC型D触发器的输出信号Q。The input terminal of the first-stage inverter is connected to the input signal D of the TSPC type D flip-flop, the No. 1 output terminal of the first-stage inverter is connected to the No. 1 input terminal of the second-stage inverter, and the first-stage inversion The No. 2 output of the inverter is connected to the No. 2 input of the second-stage inverter, the output of the second-stage inverter is connected to the input of the third-stage inverter, and the output of the third-stage inverter outputs TSPC The output signal Q of the type D flip-flop.
本案通过对传统的TSPC型触发器的电路结构与工作原理进行分析,找出了发生毛刺与电荷共享的原因;并在此基础上,提出了消除毛刺与电荷共享的方法,获得了高性能的触发器。In this case, by analyzing the circuit structure and working principle of the traditional TSPC flip-flop, the cause of the glitch and charge sharing was found; and on this basis, a method to eliminate the glitch and charge sharing was proposed, and a high-performance trigger.
经典的TSPC结构分别如图1、图2所示。本质上两种结构原理相同,结构类似,主要区别为第一级反相器及第三级反相器中钟控信号位置不同。但是因时钟信号CLK在级间的相对位置没有变化,因此功能不变。The classic TSPC structures are shown in Figure 1 and Figure 2 respectively. Essentially, the two structures have the same principle and similar structures, and the main difference is that the positions of the clock control signals in the first-stage inverter and the third-stage inverter are different. However, since the relative position of the clock signal CLK between the stages does not change, the function remains unchanged.
以图1为例简要说明经典TSPC结构的工作原理:当CLK=0时,输入反相器在节点X上采样反相的D输入。第二个(动态)反相器处于预充电状态,由M6将节点Y充电至VDD。第三个反相器处于维持状态,因为M8和M9均关断。因此在时钟的低电平阶段,最后一个(静态)反相器的输入保持着它原来的值,因此输出Q处于稳定状态。在时钟的上升沿,动态反相器M4-M6求值。如果X在上升沿处是高电平,那么节点Y放电。在时钟的高电平阶段第三个反相器M7-M9导通,把Y节点上的值传送到输出Q。注意,在时钟的正电平阶段,如果D输入翻转到高电平,则节点X翻转到低电平。因此输入必须保持稳定,直到节点X在时钟上升沿之前的值传送到Y。这即是寄存器的维持时间。寄存器的传播延时实际上就是三个反相器的延时。因为节点X上的值必须传送到输出Q。最后,建立时间是使节点X有效的时间,所以该结构的建立时间为一个反相器延时。Take Figure 1 as an example to briefly illustrate the working principle of the classic TSPC structure: when CLK=0, the input inverter samples the inverted D input on node X. The second (dynamic) inverter is in the precharge state, and node Y is charged to VDD by M6. The third inverter is maintained because both M8 and M9 are off. So during the low phase of the clock, the input to the last (static) inverter holds its original value, so the output Q is in a stable state. On the rising edge of the clock, dynamic inverters M4-M6 are evaluated. If X is high at the rising edge, then node Y discharges. In the high-level phase of the clock, the third inverter M7-M9 is turned on, and the value on the Y node is transmitted to the output Q. Note that during the positive phase of the clock, if the D input toggles high, node X toggles low. So the input must remain stable until the value at node X is transferred to Y before the rising edge of the clock. This is the hold time of the register. The propagation delay of the register is actually the delay of the three inverters. Because the value on node X has to be transferred to output Q. Finally, setup time is the time to enable node X, so the setup time for this structure is one inverter delay.
注意到图1、图2中TSPC结构受到毛刺以及电荷共享,从而使得Qb端的电位不再是理想高低电平,即高电平不为理想的VDD,低电位不为理想的GND。因Qb后接入反相器进行整形,因此在不采用Qb端的情况下,该触发器可正常工作,但是电位的不理想将引起充放电时间的变化。为解决这些问题,可以在关键点加入晶体管,但是这将限制该触发器的工作速度同时使得功耗增加。Note that the TSPC structure in Figure 1 and Figure 2 is subject to burrs and charge sharing, so that the potential of the Qb terminal is no longer the ideal high and low level, that is, the high level is not the ideal VDD, and the low potential is not the ideal GND. Because Qb is connected to an inverter for shaping, the flip-flop can work normally without using the Qb terminal, but the unsatisfactory potential will cause changes in the charging and discharging time. To solve these problems, transistors can be added at key points, but this will limit the working speed of the flip-flop and increase power consumption.
图2所示的TSPC由9个MOS晶体管构成。当CLK为低电平且D为高电平,节点n1、y2预充电至VDD,而y1放电至GND。若CLK从低到高变化,MN3以及MNS2导通,Qb变为低电位。若CLK保持高电平不变且D从高到低变化,MN1关断,MP1导通。此时n1以及y1将形成电荷共享,进而产生的影响是y1电位超过MN2的阈值电压。当CLK为高电平,MNS1导通,节点y2缓慢放电,这将导致MP2导通,Qb变为高电位。因此这种结构的触发器在实际应用中可能会出现严重的问题。The TSPC shown in Figure 2 consists of nine MOS transistors. When CLK is low and D is high, nodes n1 and y2 are precharged to VDD, and y1 is discharged to GND. If CLK changes from low to high, MN3 and MNS2 are turned on, and Qb becomes low potential. If CLK remains high and D changes from high to low, MN1 is turned off and MP1 is turned on. At this time, n1 and y1 will form charge sharing, and then the impact will be that the potential of y1 exceeds the threshold voltage of MN2. When CLK is at a high level, MNS1 is turned on, and node y2 is slowly discharged, which will cause MP2 to be turned on, and Qb becomes a high potential. Therefore, a flip-flop with this structure may have serious problems in practical applications.
对于边沿触发器,毛刺问题也可能使得触发器产生错误状态。例如,对于图2,当CLK=0且D=0,y1与y2预充电至高电平。如果CLK由低变高,节点y2将放电至低电位,但是这种情形不会立即出现。换句话说,在较短的时间内y2保持高电平,此时MN3与MNS2导通,Qb可能变低。但是如果调整MN2以及MNS1尺寸,改变放电速度,在Qb变低之前y2需提前放完电,则Qb将回到正确的逻辑值。For edge flip-flops, glitch issues can also cause the flip-flop to generate an incorrect state. For example, for FIG. 2, when CLK=0 and D=0, y1 and y2 are precharged to high level. If CLK goes from low to high, node y2 will discharge to low, but not immediately. In other words, y2 maintains a high level in a short period of time, at this time MN3 and MNS2 are turned on, and Qb may become low. However, if the size of MN2 and MNS1 is adjusted, the discharge speed is changed, and y2 needs to be fully discharged before Qb becomes low, then Qb will return to the correct logic value.
针对上述D触发器结构存在的毛刺分析,图3给出了该种触发器的仿真时序图,仿真结果印证了上述内容:当D=0,CK由0到1变化,则Qb为出现一个向下的尖峰脉冲,高电平幅值跌落了0.8V左右,而该电位近似接近MOS管的翻转点。因此为避免出现逻辑错误,必须消除该尖峰。此外,若D=1,CLK从低到高变化,则Qb在保持低电平的时候出现一个向上的尖峰脉冲,幅值近似为800mV。For the glitch analysis of the above-mentioned D flip-flop structure, Figure 3 shows the simulation timing diagram of this flip-flop, and the simulation results confirm the above content: when D=0, CK changes from 0 to 1, then Qb appears a direction Under the peak pulse, the high-level amplitude drops by about 0.8V, and this potential is approximately close to the flipping point of the MOS tube. This spike must therefore be eliminated to avoid logic errors. In addition, if D=1, and CLK changes from low to high, an upward spike occurs when Qb keeps low, and the amplitude is approximately 800mV.
图4所示的D触发器结构为本次改进方案,该触发器可以解决上述内容提到的问题。与上述两种电路结构类似,图4中的时钟信号同样为4个晶体管提供驱动信号,而由CLK驱动的晶体管MPS2可以有效降低图2中电荷共享问题影响。在图2中,当CLK=0时,节点n1与y2电位为VDD。当CLK=1,节点n1电位不重要,但是y2可能是高电平或者放电至低电平。基于此,可以考虑合并两个上拉晶体管。图2中晶体管MPS1、MPS2可以合并成图4中的MPS1。同理,将图2中的MNS1、MNS2合并成图4中的MNS1。合并晶体管的目的是为了降低功耗,图4中引入MNS2是为了减小Qb点的毛刺。The structure of the D flip-flop shown in FIG. 4 is an improved solution, and the flip-flop can solve the problems mentioned above. Similar to the above two circuit structures, the clock signal in Figure 4 also provides driving signals for the four transistors, and the transistor MPS2 driven by CLK can effectively reduce the impact of the charge sharing problem in Figure 2 . In FIG. 2, when CLK=0, the potentials of nodes n1 and y2 are VDD. When CLK=1, the potential of node n1 is not important, but y2 may be high or discharged to low. Based on this, one can consider merging two pull-up transistors. Transistors MPS1 and MPS2 in FIG. 2 can be combined into MPS1 in FIG. 4 . Similarly, MNS1 and MNS2 in FIG. 2 are merged into MNS1 in FIG. 4 . The purpose of merging transistors is to reduce power consumption. The introduction of MNS2 in Figure 4 is to reduce the burr at Qb point.
在图4的基础上添加晶体管实现复位功能,如图5所示。仅在第一级反相器放置晶体管在保证实现复位功能的基础上,减少了因复位管带来的延时,同时相比传统结构节省版图面积。On the basis of Figure 4, a transistor is added to realize the reset function, as shown in Figure 5. Only placing transistors in the first-stage inverter can reduce the delay caused by reset transistors on the basis of ensuring the realization of the reset function, and at the same time save the layout area compared with the traditional structure.
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also possible. It should be regarded as the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510626563.6A CN105162438B (en) | 2015-09-28 | 2015-09-28 | It is a kind of to reduce the TSPC type d type flip flops of burr |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510626563.6A CN105162438B (en) | 2015-09-28 | 2015-09-28 | It is a kind of to reduce the TSPC type d type flip flops of burr |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105162438A true CN105162438A (en) | 2015-12-16 |
CN105162438B CN105162438B (en) | 2017-10-20 |
Family
ID=54803221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510626563.6A Active CN105162438B (en) | 2015-09-28 | 2015-09-28 | It is a kind of to reduce the TSPC type d type flip flops of burr |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105162438B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105958974A (en) * | 2016-04-22 | 2016-09-21 | 宁波大学 | TSPC trigger based on Fin FET devices |
CN106571825A (en) * | 2016-11-07 | 2017-04-19 | 中山大学 | Asynchronous clock signal generation circuit based on TSPC circuit |
CN109379061A (en) * | 2018-09-29 | 2019-02-22 | 上海华虹宏力半导体制造有限公司 | TSPC trigger with set function |
CN109756207A (en) * | 2018-11-21 | 2019-05-14 | 西北工业大学 | A TSPC edge trigger with automatic feedback gated clock |
CN109768797A (en) * | 2018-12-28 | 2019-05-17 | 普冉半导体(上海)有限公司 | A kind of the memory data reading latch transmission circuit and control method of saving area |
CN110429922A (en) * | 2019-07-17 | 2019-11-08 | 上海华虹宏力半导体制造有限公司 | Trigger |
CN110677142A (en) * | 2019-09-09 | 2020-01-10 | 中国人民解放军国防科技大学 | A glitch-free asynchronous reset TSPC type D flip-flop with scanning structure |
CN110690873A (en) * | 2019-09-09 | 2020-01-14 | 中国人民解放军国防科技大学 | No-burr TSPC type D trigger |
CN111030689A (en) * | 2019-12-25 | 2020-04-17 | 重庆大学 | Dual Modulus Divider Applied to Clock Spread Spectrum Phase Locked Loop |
CN111917397A (en) * | 2020-06-18 | 2020-11-10 | 华南理工大学 | Trigger circuit and chip based on unipolar transistor |
US11349483B1 (en) | 2021-08-02 | 2022-05-31 | Qualcomm Incorporated | Prescaler for a frequency divider |
US11366161B2 (en) | 2019-12-10 | 2022-06-21 | Samsung Electronics Co., Ltd. | True single phase clock (TSPC) pre-charge based flip-flop |
US11569799B2 (en) | 2020-11-30 | 2023-01-31 | Samsung Electronics Co., Ltd. | True single-phase clock (TSPC) NAND-based reset flip-flop |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6388471B1 (en) * | 2000-05-12 | 2002-05-14 | Sandcraft, Inc. | Single phase edge trigger register |
KR100682266B1 (en) * | 2006-04-10 | 2007-02-15 | 엘지전자 주식회사 | Differential Output TSPC D-Type Flip-Flop and Frequency Divider Using the Same |
CN101471624A (en) * | 2007-12-29 | 2009-07-01 | 瑞昱半导体股份有限公司 | VCO |
CN101471643A (en) * | 2007-12-29 | 2009-07-01 | 瑞昱半导体股份有限公司 | trigger |
KR20140077464A (en) * | 2012-12-14 | 2014-06-24 | 금오공과대학교 산학협력단 | Tspc dynamic flip flop having leakage current compensation function |
CN104796132A (en) * | 2014-01-22 | 2015-07-22 | 陈祺琦 | Flip-flop circuit |
-
2015
- 2015-09-28 CN CN201510626563.6A patent/CN105162438B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6388471B1 (en) * | 2000-05-12 | 2002-05-14 | Sandcraft, Inc. | Single phase edge trigger register |
KR100682266B1 (en) * | 2006-04-10 | 2007-02-15 | 엘지전자 주식회사 | Differential Output TSPC D-Type Flip-Flop and Frequency Divider Using the Same |
CN101471624A (en) * | 2007-12-29 | 2009-07-01 | 瑞昱半导体股份有限公司 | VCO |
CN101471643A (en) * | 2007-12-29 | 2009-07-01 | 瑞昱半导体股份有限公司 | trigger |
KR20140077464A (en) * | 2012-12-14 | 2014-06-24 | 금오공과대학교 산학협력단 | Tspc dynamic flip flop having leakage current compensation function |
CN104796132A (en) * | 2014-01-22 | 2015-07-22 | 陈祺琦 | Flip-flop circuit |
Non-Patent Citations (1)
Title |
---|
QIUTING HUANG 等: "A glithc-free single-phase CMOS DFF for gigahertz applications", 《CIRCUITS AND SYSTEMS》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105958974B (en) * | 2016-04-22 | 2019-03-05 | 宁波大学 | A kind of TSPC trigger based on FinFET |
CN105958974A (en) * | 2016-04-22 | 2016-09-21 | 宁波大学 | TSPC trigger based on Fin FET devices |
CN106571825A (en) * | 2016-11-07 | 2017-04-19 | 中山大学 | Asynchronous clock signal generation circuit based on TSPC circuit |
CN109379061B (en) * | 2018-09-29 | 2022-06-21 | 上海华虹宏力半导体制造有限公司 | TSPC trigger with setting function |
CN109379061A (en) * | 2018-09-29 | 2019-02-22 | 上海华虹宏力半导体制造有限公司 | TSPC trigger with set function |
CN109756207A (en) * | 2018-11-21 | 2019-05-14 | 西北工业大学 | A TSPC edge trigger with automatic feedback gated clock |
CN109768797A (en) * | 2018-12-28 | 2019-05-17 | 普冉半导体(上海)有限公司 | A kind of the memory data reading latch transmission circuit and control method of saving area |
CN109768797B (en) * | 2018-12-28 | 2023-10-24 | 普冉半导体(上海)股份有限公司 | Memory data reading and latching transmission circuit capable of saving area and control method |
CN110429922A (en) * | 2019-07-17 | 2019-11-08 | 上海华虹宏力半导体制造有限公司 | Trigger |
CN110429922B (en) * | 2019-07-17 | 2023-07-04 | 上海华虹宏力半导体制造有限公司 | Trigger device |
CN110690873A (en) * | 2019-09-09 | 2020-01-14 | 中国人民解放军国防科技大学 | No-burr TSPC type D trigger |
CN110677142A (en) * | 2019-09-09 | 2020-01-10 | 中国人民解放军国防科技大学 | A glitch-free asynchronous reset TSPC type D flip-flop with scanning structure |
US11366161B2 (en) | 2019-12-10 | 2022-06-21 | Samsung Electronics Co., Ltd. | True single phase clock (TSPC) pre-charge based flip-flop |
CN111030689A (en) * | 2019-12-25 | 2020-04-17 | 重庆大学 | Dual Modulus Divider Applied to Clock Spread Spectrum Phase Locked Loop |
CN111917397B (en) * | 2020-06-18 | 2021-08-10 | 华南理工大学 | Trigger circuit and chip based on unipolar transistor |
CN111917397A (en) * | 2020-06-18 | 2020-11-10 | 华南理工大学 | Trigger circuit and chip based on unipolar transistor |
US11569799B2 (en) | 2020-11-30 | 2023-01-31 | Samsung Electronics Co., Ltd. | True single-phase clock (TSPC) NAND-based reset flip-flop |
US11349483B1 (en) | 2021-08-02 | 2022-05-31 | Qualcomm Incorporated | Prescaler for a frequency divider |
Also Published As
Publication number | Publication date |
---|---|
CN105162438B (en) | 2017-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105162438B (en) | It is a kind of to reduce the TSPC type d type flip flops of burr | |
Rasouli et al. | Low-power single-and double-edge-triggered flip-flops for high-speed applications | |
EP2869467A1 (en) | Latch circuit | |
CN104333351A (en) | High-speed master-slave D flip-flop with reset structure | |
Tang et al. | Low power dynamic logic circuit design using a pseudo dynamic buffer | |
CN105577160A (en) | A Self-Recovery Single Event Resistant Latch Structure Based on Delay Unit | |
CN103199864B (en) | A kind of gradual approaching A/D converter | |
CN1761153B (en) | High-speed master-slave type D trigger in low power consumption | |
CN109525222B (en) | A single-phase clock double-edge D flip-flop | |
CN102035527B (en) | Offset voltage elimination technology for differential time domain comparator | |
CN102420585A (en) | Double-edge pulse D trigger | |
CN102055463A (en) | Contention constrained RAM latch | |
CN102684647B (en) | Sampling pulse type trigger | |
CN105958975B (en) | A kind of pulse-type D flip-flop based on FinFET | |
KR102535664B1 (en) | Apparatus for flip-flop | |
Upadhyay et al. | Triangular power supply based adiabatic logic family | |
CN1744437B (en) | High-performance low-power master-slave D flip-flop | |
Noble et al. | A novel flip-flop design for low power clocking system | |
Sukhavasi et al. | Implementation of synchronous up counter by using self resetting logic | |
Saravanan et al. | Design of Low Power Flip Flop and Implementation in a 4-bit Counter | |
Arunya et al. | Design Of 3 bit synchronous Counter using DLDFF | |
Kim et al. | Dynamic Differential Flip-Flop without Explicit Output Latching Stage for High-Speed SoC | |
Singh et al. | Design & analysis of modified conditional data mapping flip-flop to ultra low power and high-speed applications | |
CN104299639B (en) | Soft failure resistant memory cell, latch and trigger | |
Khan et al. | A High-Speed Sense Amplifier Based Flip Flop with a Single Ended Latch Design and Low Voltage Operating Capabilities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |