CN105161487A - 一种互连寄生电阻电容校准结构 - Google Patents

一种互连寄生电阻电容校准结构 Download PDF

Info

Publication number
CN105161487A
CN105161487A CN201510514462.XA CN201510514462A CN105161487A CN 105161487 A CN105161487 A CN 105161487A CN 201510514462 A CN201510514462 A CN 201510514462A CN 105161487 A CN105161487 A CN 105161487A
Authority
CN
China
Prior art keywords
capacitance
metal
interconnection
interconnect
standard cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510514462.XA
Other languages
English (en)
Other versions
CN105161487B (zh
Inventor
彭兴伟
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201510514462.XA priority Critical patent/CN105161487B/zh
Publication of CN105161487A publication Critical patent/CN105161487A/zh
Priority to US15/241,108 priority patent/US9954001B2/en
Application granted granted Critical
Publication of CN105161487B publication Critical patent/CN105161487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11809Microarchitecture
    • H01L2027/11822Microarchitecture relative P to N transistor sizes
    • H01L2027/11825Microarchitecture relative P to N transistor sizes for delay time adaptation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11868Macro-architecture
    • H01L2027/1187Number of core or basic cells in the macro (RAM, ROM)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11868Macro-architecture
    • H01L2027/11874Layout specification, i.e. inner core region
    • H01L2027/11875Wiring region, routing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11868Macro-architecture
    • H01L2027/11874Layout specification, i.e. inner core region
    • H01L2027/11881Power supply lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本发明公开了一种环形振荡器电路延迟仿真的互连寄生电阻电容校准结构,该环形振荡器电路除包括多个标准单元和分频器,还包括在每一个所述的标准单元前面增加特定的互连寄生电阻子结构和/或电容子结构,用于区分并校准在提取多晶硅互连和金属互连的寄生电阻,以及多晶硅互连和金属互连之间的寄生电容时存在的误差。因此,本发明能够通过环形振荡器延迟测量值和仿真值的对比,确定是哪部分互连寄生RC提取存在误差,从而对互连寄生RC的提取进行校正,得到更加精确的电路仿真结果,校正后的器件模型和后道互连模型也更为精确,使电路设计者得到的仿真值与测量值的误差更小,减小了重新修改电路设计的风险。

Description

一种互连寄生电阻电容校准结构
技术领域
本发明涉及集成电路领域,尤其涉及半导体器件的模型领域,更具体地说,涉及一种新的互连寄生电阻电容校准结构。
背景技术
请参阅图1,图1所示为现有技术中电路(常用的环形振荡器结构)延迟仿真结构的示意图。如图所示,该环形振荡器结构电路延迟仿真结构通常包括奇数个标准单元10,且奇数个标准单元10的个数通常是大于等于3的,标准单元10例如可以是反相器(inverter)、与非门(nand)和或非门(nor)等等,三个首尾串联的标准单元10构成一个环形振荡器,最后一个标准单元10的输出端加上分频器12,分频器12可以用于校准不同的电路。
请参阅图2,图2为现有技术中正常的标准单元延迟测试结构的示意图。如图所示,两个标准单元10分别包括1个PMOS和1个NMOS,其中,AA为有源区,POLY为多晶硅层,CONTACT为接触孔,M1为金属互连层,VSS为接地端,VDD为电源端。两个标准单元10的一个标准单元的输出端直接通过M1金属互连层中的金属线与另一个标准单元的输入端相串联相连。
本领域技术人员清楚,如果这些环形振荡器结构电路仿真与实测数据没有问题,就可以进行接下来进行电路设计了。但是,电路延迟仿真与实测数据经常会有一定的误差。误差存在的原因,主要的原因有两个:
①、器件模型精度不够;
②、后段互连寄生电阻电容提取存在一定误差。
当电路延迟仿真与实测数据存在误差时,由于确定是器件模型的误差还是后段互连寄生电阻电容提取误差的难度较高,现有技术中还没有可行的确定是器件模型的误差还是后段互连寄生电阻电容提取的误差的方法。
通常的做法是,用器件模型的电容去补偿后道互连寄生RC提取的误差。由于该种方法无法确定仿真误差原因在哪里,往往会得到和仿真值相差较远的测量结果,即直接造成了器件模型和后道模型都不准确的结果;可想而知,如果电路设计者用这些不准确的模型去指导电路设计,是无法达到期望的电路设计效果的。
因此,确定是器件模型的误差还是后段互连寄生电阻电容提取的误差,是减小电路仿真误差的关键,也是业界急需解决的问题。
发明内容
本发明的主要目的在于克服现有技术的缺陷,提供一种环形振荡器电路的互连寄生电阻电容校准结构,其可以准确的确定是哪部分后道提取存在误差,进而进行校正,得到精确的后道模型和器件模型,电路设计者使用此模型就可以得到准确的仿真结果,使电路设计更加符合期望的设计目标。
为达成上述目的,本发明的技术方案如下:
一种环形振荡器电路的互连寄生电阻电容校准结构,所述环形振荡器电路包括N个标准单元和分频器;其中,所述N为大于等于3的正奇数;N个首尾串联的所述标准单元构成一个环形振荡器,其中一个所述标准单元的输出端与所述分频器的输入端相连;其还包括:在每一个所述的标准单元前面增加特定的互连寄生电阻子结构和/或电容子结构,用于区分并校准在提取多晶硅互连和金属互连的寄生电阻,以及多晶硅互连和金属互连之间的寄生电容时存在的误差。
优选的,所述标准单元为反相器、与非门和或非门中的一种或多种。
优选的,所述互连寄生电阻子结构为在每个标准单元前面增加的蛇形多晶硅互连电阻单元,以校准多晶硅互连的阻值。
优选的,所述互连寄生电容子结构为在每个标准单元输出端和接地端之间增加梳状多晶硅互连电容单元,以校准多晶硅互连对衬底的寄生电容。
优选的,所述互连寄生电容子结构为所述在每个标准单元输出端和接地端之间增加插指状多晶硅互连电容单元,以校准多晶硅互连之间的寄生耦合电容。
优选的,所述互连寄生电容子结构为所述在每个标准单元输出端和接地端之间增加插指状多晶硅电容单元,以校准多晶硅互连之间的寄生耦合电容。
优选的,所述互连寄生电容子结构为在每个标准单元前面增加蛇形金属互连电阻单元,以校准金属互连的阻值;其中,所述蛇形金属互连电阻单元位于多层金属互连中的任意一层。
优选的,所述互连寄生电阻子结构为在每个标准单元输出端和接地端之间增加梳状金属互连电容单元,以校准金属互连对衬底的寄生电容。
优选的,所述梳状金属互连电容单元位于多层金属互连中的任意一层或多层中。
优选的,所述互连寄生电容子结构为在每个标准单元输出端和接地端之间增加同层插指状金属互连电容单元,以校准同层金属互连之间的寄生耦合电容;其中,所述插指状金属互连电容单元的两极在同层金属中分为两部分。
优选的,所述同层插指状金属互连电容单元位于多层金属互连中的任意一层。
优选的,所述互连寄生电容子结构为在每个标准单元输出端和接地端之间增加的相邻两层金属插指状电容单元,以校准相邻两层金属互连之间的寄生电容;其中,所述插指状电容单元的两极分别为位于相邻两层金属中的两个部分,其中,所述的金属层的数量为两层以上。
优选的,所述多晶硅电阻单元和/或所述多晶硅电容单元上面覆盖有一层金属硅化物。
从上述技术方案可以看出,本发明提供的环形振荡器电路的互连寄生电阻电容校准结构的设计,能够通过环形振荡器延迟测量值和仿真值的对比,确定是哪部分互连寄生RC提取存在误差,从而对互连寄生RC的提取进行校正,得到更加精确的电路仿真结果,校正后的器件模型和后道互连模型也更为精确,使电路设计者得到的仿真值与测量值的误差更小,大大减小了重新修改电路设计的风险。
附图说明
图1所示为现有技术中电路(常用的环形振荡器结构)延迟仿真结构的示意图
图2为现有技术中正常的标准单元延迟测试结构的连接关系示意图
图3为本发明一实施例环形振荡器的延迟仿真结构(在环形振荡器的每个标准单元前面串联互连电阻结构)的等效电路示意图
图4为本发明一实施例环形振荡器的延迟仿真结构(在环形振荡器的每个标准单元输出端和接地端之间增加互连电容结构)的等效电路示意图
图5为本发明一实施例环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电阻子结构(即在每个标准单元前面增加蛇形多晶硅互连电阻单元)的示意图
图6为本发明一实施例环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电容子结构(即在每个标准单元输出端和接地端之间增加梳状多晶硅互连电容单元)的示意图
图7为本发明一实施例环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电容子结构(即在每个标准单元输出端和接地端之间增加插指状多晶硅互连电容单元)的示意图
图8为本发明一实施例环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电阻子结构(即在每个标准单元前面增加蛇形金属互连电阻单元)的示意图
图9为本发明一实施例环形振荡器的环形振荡器电路延迟仿真的互连寄生电阻校准结构中的互连寄生电容子结构(即在即在每个标准单元输出端和接地端之间增加梳状金属互连电容单元)
图10为本发明一实施例环形振荡器的环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电容子结构(即在每个标准单元输出端和接地端之间增加同层插指状金属互连电容单元)的示意图
图11为本发明一实施例环形振荡器的环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电阻子结构(即每个标准单元输出端和接地端之间增加插指状金属互连电容单元,其中,插指状电容两极位于相邻两层金属层)的示意图
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。在本说明书中及在权利要求书中,应理解当一元件被称为“连接”到另一元件或与另一元件“相连”时,其可直接连接,或可存在介入元件。
请参阅图3和图4,图3为本发明一实施例环形振荡器的延迟仿真结构(在环形振荡器的每一级的标准单元前面串联互连电阻结构)的等效电路示意图;图4为本发明一实施例环形振荡器的延迟仿真结构(在环形振荡器的每一级的标准单元前面增加互连电容结构)的等效电路示意图。
在图3和图4中,环形振荡器电路可以包括多个标准单元10和分频器12;其中,标准单元10的个数通常为大于等于3的正奇数,在本发明的下述实施例中,仅以包括3个标准单元10为例进行说明。
如图3所示,三个首尾串联的标准单元10构成一个环形振荡器,其中一个标准单元10的输出端与分频器12的输入端相连,标准单元10为反相器(inverter)、与非门(nand)和或非门(nor)中的一种或多种;本发明环形振荡器电路的互连寄生电阻电容校准结构的关键点是,其还包括:在每一个标准单元10前面增加特定的互连寄生电阻子结构14,用于区分并校准多晶硅互连和金属互连的寄生电阻提取时存在的误差。
如图4所示,三个首尾串联的标准单元10构成一个环形振荡器,其中一个标准单元10的输出端与分频器12的输入端相连,标准单元10为反相器(inverter)、与非门(nand)和或非门(nor)中的一种或多种;本发明环形振荡器电路的互连寄生电阻电容校准结构的关键点是,其还包括:在每一个标准单元10输出端和接地端之间增加特定的电容子结构16,用于区分并校准多晶硅互连和金属互连之间的寄生电容提取时存在的误差。
通过增加上述这两种子结构,即在每个标准单元前面串联互连电阻子结构14(如图3所示)和在每个标准单元输出端和接地端之间并联互连电容子结构16(如图3所示),找到电路仿真误差是器件模型引起的或是互连寄生电阻和电容引起的。在本发明的实施例中,可以提供下述几种比较典型的互连电阻子结构或并联互连电容子结构:
实施例一
请参阅图5,图5为本发明一实施例环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电阻子结构(即在每个标准单元前面增加蛇形多晶硅互连电阻单元)的示意图。该互连寄生电阻子结构为在每个标准单元前面增加的蛇形多晶硅互连电阻单元,以校准多晶硅互连的阻值。
如图所示,两个标准单元10分别包括1个PMOS和1个NMOS,其中,AA为有源区,POLY为多晶硅层,CONTACT为接触孔,M1为金属互连层,VSS为接地端,VDD为电源端。其中,两个标准单元10的通过位于POLY多晶硅层中的蛇形多晶硅互连电阻单元相连。
具体地,该蛇形多晶硅互连电阻单元的一端通过CONTACT通孔层中的通孔与M1金属互连层中的,两个标准单元10的一金属线相连个标准单元的输出端与该金属线相连;该蛇形多晶硅互连电阻单元的另一端通过M1金属互连层中的金属线与另一个标准单元的输入端相连。较佳地,多晶硅互连电阻单元上面覆盖有一层金属硅化物。
实施例二
请参阅图6,图6为本发明一实施例环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电容子结构(即在每个标准单元输出端和接地端之间增加梳状多晶硅互连电容单元)的示意图。该互连寄生电容子结构为在每个标准单元10的输出端和接地端之间增加梳状多晶硅互连电容单元,以校准多晶硅互连对衬底的寄生电容。
如图所示,两个标准单元10分别包括1个PMOS和1个NMOS,其中,AA为有源区,POLY为多晶硅层,CONTACT为通孔层,M1为金属互连层,VSS为接地端,VDD为电源端。其中,两个标准单元10的一个标准单元的输出端直接通过M1金属互连层中的金属线与另一个标准单元的输入端相串联,位于POLY多晶硅层中的梳状多晶硅互连电容单元通过CONTACT通孔层中的通孔也与该M1金属互连层中的金属线相连。
具体地,该梳状多晶硅互连电容单元通过CONTACT通孔层中的通孔与M1金属互连层中的金属线相连,两个标准单元10中的一个标准单元的输出端,通过M1金属互连层中的该金属线与另一个标准单元的输入端相串联。较佳地,多晶硅互连电容单元上面覆盖有一层金属硅化物。
实施例三
请参阅图7,图7为本发明一实施例环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电容子结构(即在每个标准单元输出端和接地端之间增加插指状多晶硅互连电容单元)的示意图。也就是说,该互连寄生电容子结构为在每个标准单元10输出端和接地端之间增加插指状多晶硅互连电容单元,以校准多晶硅互连之间的寄生耦合电容。
如图所示,两个标准单元10分别包括1个PMOS和1个NMOS,其中,AA为有源区,POLY为多晶硅层,CONTACT为通孔层,M1为金属互连层,VSS为接地端,VDD为电源端。其中,两个标准单元10中的一个标准单元的输出端直接通过M1金属互连层中的金属线与另一个标准单元的输入端相串联,位于POLY多晶硅层中的插指状多晶硅电容单元通过CONTACT通孔层中的通孔也与该M1金属互连层中的金属线相连。
具体地,该插指状多晶硅互连电容单元通过CONTACT通孔层中的通孔与M1金属互连层中的金属线相连,两个标准单元中的一个标准单元的输出端,通过M1金属互连层中的该金属线与另一个标准单元的输入端相串联相连。较佳地,多晶硅互连电容单元上面覆盖有一层金属硅化物。
实施例四
请参阅图8,图8为本发明一实施例环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电阻子结构(即在每个标准单元前面增加蛇形金属互连电阻单元)的示意图。也就是说,该互连寄生电阻子结构为在每个标准单元10前面增加蛇形金属互连电阻单元,以校准金属互连的阻值。需要说明的是,该蛇形金属互连电阻单元可以位于多层金属互连中的任意一层,金属互连采用的金属材料可以为铝、铜、或其他金属。如果蛇形金属互连电阻单元没有位于M1金属互连层中,那么,该蛇形金属互连电阻单元就通过via通孔层中的通孔与M1金属互连层中的金属线相连。
如图所示,两个标准单元10分别包括1个PMOS和1个NMOS,其中,AA为有源区,POLY为多晶硅层,CONTACT为通孔层,M1为金属互连层,VSS为接地端,VDD为电源端。在本实施例中,两个标准单元10间直接通过M1金属互连层中的蛇形金属互连电阻单元相串联。
实施例五
请参阅图9,图9为本发明一实施例环形振荡器的环形振荡器电路延迟仿真的互连寄生电阻校准结构中的互连寄生电容子结构(即在即在每个标准单元输出端和接地端之间增加梳状金属互连电容单元)。也就是说,该互连寄生电容子结构为在每个标准单元输出端和接地端之间增加梳状金属互连电容单元,以校准金属互连对衬底的寄生电容。
如图所示,两个标准单元10分别包括1个PMOS和1个NMOS,其中,AA为有源区,POLY为多晶硅层,CONTACT为通孔层,M1为金属互连层,VSS为接地端,VDD为电源端。在本实施例中,两个标准单元10中的一个标准单元的输出端直接通过M1金属互连层中的金属线与另一个标准单元的输入端相串联,位于M1金属互连层中的梳状金属互连电容单元也与该M1金属互连层中的金属线相连。
需要说明的是,该梳状金属互连电容单元可以为多层金属互连中的任意一层,金属互连采用的金属材料可以为铝、铜、或其他金属。如果该梳状金属互连电容单元没有位于M1金属互连层中,那么,该梳状金属互连电容单元就通过via通孔层中的通孔与M1金属互连层中的金属线相连。
实施例六
请参阅图10,图10为本发明一实施例环形振荡器的环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电容子结构(即在每个标准单元输出端和接地端之间增加同层插指状金属互连电容单元)的示意图。也就是说,该互连寄生电容子结构为在每个标准单元输出端和接地端之间增加插指状金属互连电容单元,以校准同层金属互连之间的寄生耦合电容。
如图所示,两个标准单元10分别包括1个PMOS和1个NMOS,其中,AA为有源区,POLY为多晶硅层,CONTACT为通孔层,M1为金属互连层,VSS为接地端,VDD为电源端。在本实施例中,两个标准单元10中的一个标准单元的输出端直接通过M1金属互连层中的金属线与另一个标准单元的输入端相串联,位于M1金属互连层中的插指状金属互连电容单元也与该M1金属互连层中的金属线相连。
需要说明的是,该插指状金属互连电容单元可以位于M1金属互连层中,也可以位于其它的金属互连层中,但该插指状金属互连电容单元均在同一金属层中,该插指状金属互连电容单元的两极在同层金属中分为两部分;此外,金属互连采用的金属材料可以为铝、铜、或其他金属。
具体地,该插指状金属互连电容单元具有三个端口,其中一个端口与M1金属互连层中的金属线相连,另一个端口与VSS接地端相连,剩下一个端口同VDD电源端相连。两个标准单元10中的一个标准单元的输出端,通过M1金属互连层中的该金属线与另一个标准单元的输入端相串联。
实施例七
请参阅图11,图11为本发明一实施例环形振荡器的环形振荡器电路延迟仿真的互连寄生电阻电容校准结构中的互连寄生电阻子结构(即每个标准单元输出端和接地端之间增加插指状金属互连电容单元,其中,插指状电容两极位于相邻两层金属层)的示意图。也就是说,该互连寄生电容子结构为在每个标准单元输出端和接地端之间增加插指状金属互连电容单元,以校准相邻两层金属互连之间的寄生电容。
需要说明的是,该插指状电容两极位于相邻两层金属可以位于多层金属互连中的任意相邻两层,金属互连采用的金属材料可以为铝、铜、或其他金属。如果插指状电容相邻两层金属均没有位于M1金属互连层中,那么,该插指状电容相邻两层金属中的一层就可以通过CONTACT通孔层中的通孔与M1金属互连层中的金属线相连。此外,该插指状电容单元的两极分别为位于相邻两层金属中的两个部分。
如图所示,两个标准单元10分别包括1个PMOS和1个NMOS,其中,AA为有源区,POLY为多晶硅层,CONTACT为通孔层,M1为第一金属互连层,M2为第二金属互连层,VSS为接地端,VDD为电源端。具体地,该插指状金属互连电容单元具有三个部分(每个部分包括一个连接端口和一个悬空端口),其中一个部分与M1金属互连层中的金属线相连,另一个部分与VSS接地端相连,剩下一个部分同VDD电源端相连。两个标准单元10中的一个标准单元的输出端,通过M1金属互连层中的该金属线与另一个标准单元的输入端相串联。
在本实施例中,位于M1金属互连层中的插指状金属互连电容单元第一部分与M1第一金属互连层中的金属线相连,插指状金属互连电容单元第二和第三部分位于M2第二金属互连层中,插指状金属互连电容单元第二部分的连接端口与VSS接地端相连,插指状金属互连电容单元第三部分的连接端口与VDD电源端相连。
综上所述,上述实施例均在每个标准单元前面增加了不同结构的寄生电阻和电容,对上述不同结构的环形振荡器进行延迟测量和仿真,通过这些结构找到电路仿真误差是器件模型引起的或是互连寄生电阻和电容引起的。也就是说,可以通过环形振荡器延迟测量值和仿真值的对比,确定是哪部分互连寄生RC提取存在误差,从而对互连寄生RC的提取进行校正,得到更加精确的电路仿真结果,校正后的器件模型和后道互连模型也更为精确,使电路设计者得到的仿真值与测量值的误差更小,大大减小了重新修改电路设计的风险。
下面通过实验数据对本发明的有益效果证实如下:
请参阅表1,表1所示为校正后道模型前环形振荡器测量值与仿真值对比结果(没有在每个标准单元前面串联互连电阻子结构和/或在每个标准单元输出端接地端之间并联互连电容子结构的情况):
表1
如表1所示,如果某一部分寄生电阻电容提取存在误差,相应环形振荡器的延迟仿真就会与测量值出现误差。
请参阅表2,表2所示为校正后道模型前环形振荡器测量值与仿真值对比结果(有在每个标准单元前面串联互连电阻子结构和/或在每个标准单元输出端接地端之间并联互连电容子结构的情况):
表2
从表2结果可以看出(对照表1),如果在每个标准单元前面增加了不同结构的寄生电阻和电容,对上述不同结构的环形振荡器进行延迟测量和仿真,并对相应结构的电阻电容提取进行校准,重新进行仿真,这样就可以使后道互连寄生电阻电容提取更为准确,减小了了电路仿真误差,使仿真更接近测量值。
虽然本发明已以较佳实施例揭示如上,然所述诸多实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

Claims (12)

1.一种环形振荡器电路延迟仿真的互连寄生电阻电容校准结构,所述环形振荡器电路包括N个标准单元和分频器;其中,所述N为大于等于3的正奇数;N个首尾串联的所述标准单元构成一个环形振荡器,其中一个所述标准单元的输出端与所述分频器的输入端相连;其特征在于,还包括:
在每一个所述的标准单元前面增加特定的互连寄生电阻子结构和/或电容子结构,用于区分并校准在提取多晶硅互连和金属互连的寄生电阻,以及多晶硅互连和金属互连之间的寄生电容时存在的误差。
2.根据权利要求1所述的互连寄生电阻电容校准结构,其特征在于,所述标准单元为反相器、与非门和或非门中的一种或多种。
3.根据权利要求1所述的互连寄生电阻电容校准结构,其特征在于,所述互连寄生电阻子结构为在每个标准单元前面增加的蛇形多晶硅互连电阻单元,以校准多晶硅互连的阻值。
4.根据权利要求1所述的互连寄生电阻电容校准结构,其特征在于,所述互连寄生电容子结构为在每个标准单元输出端和接地端之间增加梳状多晶硅互连电容单元,以校准多晶硅互连对衬底的寄生电容。
5.根据权利要求1所述的互连寄生电阻电容校准结构,其特征在于,所述互连寄生电容子结构为所述在每个标准单元输出端和接地端之间增加插指状多晶硅互连电容单元,以校准多晶硅互连之间的寄生耦合电容。
6.根据权利要求1所述的互连寄生电阻电容校准结构,其特征在于,所述互连寄生电容子结构为在每个标准单元前面增加蛇形金属互连电阻单元,以校准金属互连的阻值;其中,所述蛇形金属互连电阻单元位于多层金属互连中的任意一层。
7.根据权利要求1所述的互连寄生电阻电容校准结构,其特征在于,所述互连寄生电阻子结构为在每个标准单元输出端和接地端之间增加梳状金属互连电容单元,以校准金属互连对衬底的寄生电容。
8.根据权利要求7所述的互连寄生电阻电容校准结构,其特征在于,所述梳状金属互连电容单元位于多层金属互连中的任意一层或多层中。
9.根据权利要求1所述的互连寄生电阻电容校准结构,其特征在于,所述互连寄生电容子结构为在每个标准单元输出端和接地端之间增加同层插指状金属互连电容单元,以校准同层金属互连之间的寄生耦合电容;其中,所述插指状金属互连电容单元的两极在同层金属中分为两部分。
10.根据权利要求9所述的互连寄生电阻电容校准结构,其特征在于,所述同层插指状金属互连电容单元位于多层金属互连中的任意一层。
11.根据权利要求1所述的互连寄生电阻电容校准结构,其特征在于,所述互连寄生电容子结构为在每个标准单元输出端和接地端之间增加的相邻两层金属插指状电容单元,以校准相邻两层金属互连之间的寄生电容;其中,所述插指状电容单元的两极分别为位于相邻两层金属中的两个部分,其中,所述的金属层的数量为两层以上。
12.根据权利要求3、4或5所述的互连寄生电阻电容校准结构,其特征在于,所述多晶硅电阻单元和/或所述多晶硅电容单元上面覆盖有一层金属硅化物。
CN201510514462.XA 2015-08-20 2015-08-20 一种互连寄生电阻电容校准结构 Active CN105161487B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510514462.XA CN105161487B (zh) 2015-08-20 2015-08-20 一种互连寄生电阻电容校准结构
US15/241,108 US9954001B2 (en) 2015-08-20 2016-08-19 Structure for interconnect parasitic extraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510514462.XA CN105161487B (zh) 2015-08-20 2015-08-20 一种互连寄生电阻电容校准结构

Publications (2)

Publication Number Publication Date
CN105161487A true CN105161487A (zh) 2015-12-16
CN105161487B CN105161487B (zh) 2018-10-16

Family

ID=54802301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510514462.XA Active CN105161487B (zh) 2015-08-20 2015-08-20 一种互连寄生电阻电容校准结构

Country Status (2)

Country Link
US (1) US9954001B2 (zh)
CN (1) CN105161487B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899320A (zh) * 2018-07-20 2018-11-27 上海华力微电子有限公司 一种mosfet栅氧化层电容校准结构
CN110416104A (zh) * 2019-07-25 2019-11-05 华东师范大学 一种源漏抬升fdsoi器件的栅围寄生互连电容提取方法
CN110674612A (zh) * 2019-09-25 2020-01-10 华东师范大学 超大规模集成电路工艺的后道互连寄生电容电阻的建模方法
CN111800129A (zh) * 2020-06-22 2020-10-20 华中科技大学 一种支持环境感知的puf单元、puf和混合puf
CN112834911A (zh) * 2021-01-06 2021-05-25 上海燧原智能科技有限公司 一种电迁移测试方法、装置、设备及存储介质
CN116825170A (zh) * 2023-08-31 2023-09-29 芯砺智能科技(上海)有限公司 晶粒到晶粒互连的自动校准架构和芯片
WO2024077892A1 (zh) * 2022-10-11 2024-04-18 深圳市中兴微电子技术有限公司 模型设计方法、装置、设备及计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10553537B2 (en) * 2018-02-17 2020-02-04 Sandisk Technologies Llc Interconnects containing serpentine line structures for three-dimensional memory devices and methods of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463570B1 (en) * 2000-07-26 2002-10-08 Advanced Micro Devices Apparatus and method for verifying process integrity
CN101088015A (zh) * 2004-12-23 2007-12-12 皇家飞利浦电子股份有限公司 硅上互连电容提取
KR20080001923A (ko) * 2006-06-30 2008-01-04 주식회사 하이닉스반도체 반도체 소자의 링 발진기
JP2013007691A (ja) * 2011-06-27 2013-01-10 Renesas Electronics Corp 容量測定回路、半導体装置および容量測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811983A (en) * 1996-09-03 1998-09-22 Integrated Device Technology, Inc. Test ring oscillator
US6133799A (en) * 1999-02-25 2000-10-17 International Business Machines Corporation Voltage controlled oscillator utilizing threshold voltage control of silicon on insulator MOSFETS
JP3770224B2 (ja) * 2001-12-21 2006-04-26 株式会社デンソー 可変遅延器,電圧制御発振器,pll回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463570B1 (en) * 2000-07-26 2002-10-08 Advanced Micro Devices Apparatus and method for verifying process integrity
CN101088015A (zh) * 2004-12-23 2007-12-12 皇家飞利浦电子股份有限公司 硅上互连电容提取
KR20080001923A (ko) * 2006-06-30 2008-01-04 주식회사 하이닉스반도체 반도체 소자의 링 발진기
JP2013007691A (ja) * 2011-06-27 2013-01-10 Renesas Electronics Corp 容量測定回路、半導体装置および容量測定方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899320A (zh) * 2018-07-20 2018-11-27 上海华力微电子有限公司 一种mosfet栅氧化层电容校准结构
CN110416104A (zh) * 2019-07-25 2019-11-05 华东师范大学 一种源漏抬升fdsoi器件的栅围寄生互连电容提取方法
CN110416104B (zh) * 2019-07-25 2021-03-26 华东师范大学 一种源漏抬升fdsoi器件的栅围寄生互连电容提取方法
CN110674612A (zh) * 2019-09-25 2020-01-10 华东师范大学 超大规模集成电路工艺的后道互连寄生电容电阻的建模方法
CN110674612B (zh) * 2019-09-25 2023-03-24 华东师范大学 集成电路工艺后道互连寄生电容电阻的建模方法
CN111800129A (zh) * 2020-06-22 2020-10-20 华中科技大学 一种支持环境感知的puf单元、puf和混合puf
CN112834911A (zh) * 2021-01-06 2021-05-25 上海燧原智能科技有限公司 一种电迁移测试方法、装置、设备及存储介质
CN112834911B (zh) * 2021-01-06 2022-05-03 上海燧原智能科技有限公司 一种电迁移测试方法、装置、设备及存储介质
WO2024077892A1 (zh) * 2022-10-11 2024-04-18 深圳市中兴微电子技术有限公司 模型设计方法、装置、设备及计算机可读存储介质
CN116825170A (zh) * 2023-08-31 2023-09-29 芯砺智能科技(上海)有限公司 晶粒到晶粒互连的自动校准架构和芯片
CN116825170B (zh) * 2023-08-31 2023-11-07 芯砺智能科技(上海)有限公司 晶粒到晶粒互连的自动校准架构和芯片

Also Published As

Publication number Publication date
US9954001B2 (en) 2018-04-24
CN105161487B (zh) 2018-10-16
US20170053936A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
CN105161487A (zh) 一种互连寄生电阻电容校准结构
US8685810B2 (en) Power layout for integrated circuits
CN112507648B (zh) 版图设计的方法和集成电路、运算芯片和计算设备
US7589361B2 (en) Standard cells, LSI with the standard cells and layout design method for the standard cells
US7230435B2 (en) Capacitance measurement circuit
CN107463724B (zh) 用于设计和制造半导体器件的方法以及相应的半导体器件
CN110674612A (zh) 超大规模集成电路工艺的后道互连寄生电容电阻的建模方法
US20100122230A1 (en) Method to Automatically Add Power Line in Channel Between Macros
Saadi et al. MOM capacitance characterization in G-Band using on-wafer 3D-TRL calibration
US20190107565A1 (en) Discrete input determining circuit and method
US9390812B2 (en) E-fuse test device and semiconductor device including the same
US11288431B2 (en) Method and system for establishing metal interconnection layer capacitance prediction model
JP2011065465A (ja) 回路シミュレーション方法
CN203631540U (zh) 测试结构
CN203895445U (zh) 应力迁移测试结构
CN105653805B (zh) 校正后道寄生互连线模型的方法
CN105654992B (zh) Sram的ip地址建立时间的测量电路和方法
TWI701799B (zh) 集成電路靜電放電總線結構和相關方法
CN101807571B (zh) 电容元件、其设计方法及包括该电容元件的集成电路装置
CN104091800A (zh) Sram检测结构版图的形成方法
JP3962384B2 (ja) 半導体装置及び回路シミュレーション方法
CN117238891A (zh) 金属互连线电容参数的测试结构和测试方法
Kim et al. Statistical estimation of characteristic impedance distribution caused by PCB manufacturing process variation in high-speed mobile channels
CN211955654U (zh) 一种链式电阻测试结构及测试系统
WO2023283991A1 (zh) 一种接触插塞电阻值的测量方法及测试结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant