CN105160147A - 一种基于状态空间模型和模糊理论的刀具更换时间方法 - Google Patents

一种基于状态空间模型和模糊理论的刀具更换时间方法 Download PDF

Info

Publication number
CN105160147A
CN105160147A CN201510394775.6A CN201510394775A CN105160147A CN 105160147 A CN105160147 A CN 105160147A CN 201510394775 A CN201510394775 A CN 201510394775A CN 105160147 A CN105160147 A CN 105160147A
Authority
CN
China
Prior art keywords
state
cutter
tool
time
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510394775.6A
Other languages
English (en)
Other versions
CN105160147B (zh
Inventor
高斯博
刘淑杰
胡娅维
刘驰
张洪潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201510394775.6A priority Critical patent/CN105160147B/zh
Publication of CN105160147A publication Critical patent/CN105160147A/zh
Application granted granted Critical
Publication of CN105160147B publication Critical patent/CN105160147B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明属机械装备再制造领域,一种基于状态空间模型和模糊理论的刀具更换时间决策方法。刀具作为机床设备的重要组成,其稳定性影响整个加工制造的效率和设备的稳定性。为有效地确定最优换刀时间,研究了状态空间模型在刀具可靠性评估中的应用,提出模糊阈值的概念来解决评估阈值不易确定这一问题。使用代替特征变量将系统的状态模糊化,将系统所处状态看做模糊集。在实施例中测取了铣刀加工过程中的声发射信号,利用小波包分解声发射信号并提取小波包能量用于建立状态空间方程。刀具的状态作为一个连续退化的随机动态过程,其归一化能量趋势可由建立的状态空间模型预测,再由模糊阈值求出系统的模糊可靠度,根据决策模型决策刀具的最优换刀时间。

Description

一种基于状态空间模型和模糊理论的刀具更换时间方法
技术领域
本发明属机械装备再制造领域,具体涉及机械装备系统的预防性维修方法。
背景技术
刀具作为加工设备的重要组成部分,其状态在加工制造过程中会逐步退化。刀具的稳定性影响着整个加工制造的效率和设备的稳定性。刀具的故障会导致非计划停产并带来巨大的经济损失。对刀具状态的准确评估,及时更换刀具可在一定程度上保证零件表面质量,能有效减少废品数量,提高生产力,保证生产安全并降低维护成本。
视情维修是预防性维护的一种,通过监测监控手段掌握系统状态,及时发现问题,使有些故障在发生之前得到有效预防,有些严重的故障可以在出现征兆时得到控制并被排除,从而遏制严重故障的发生,降低故障率,节约维修成本,减少维修工作量。本发明从经济的角度出发,根据刀具的状态退化过程计算刀具不同时刻的可靠度,评估不同时间的期望费用进行换刀时间的判断。
传统的可靠性评估方法是通过对某一时刻的失效时间的条件分布进行评估,这样的分布是由同批设备的失效特征决定的。由于同一型号的一批刀具的退化过程各不相同,对于单个刀具,通常需要对单一刀具的退化过程分析。一般刀具退化可通过切削力,扭矩,温度,声发射和振动等进行状态评估,当刀具观测量超过设定的临界阈值时认为刀具失效。状态空间模型包括状态和量测两个方程,状态方程描述动态的状态从前一时刻到当前时刻的变化规律,而量测方程描述观测值和状态之间的关系。离散状态空间模型普通形式如下:
xk=f(xk-1k-1kk-1)
yk=h(xkkkk)
其中,x是状态向量,μ是输入向量,θ是参数向量,y是观测向量,ω和ν是状态和观测噪声,E[ωk]=0,E[νk]=0,依据建立状态空间模型可识别刀具的状态,进行可靠性评估。
由于刀具从一种状态到另一种状态是一个逐渐过渡的过程,处于何种状态是随机的,处于“完好”和“故障”的中介状态,称为状态的模糊性。本发明将模糊阈值引入到刀具可靠性评估中。具体的:对于在线测量的刀具声发射信号,利用小波包分解方法从声发射信号中提取的频带能量作为观测量,对其时间序列建立状态空间模型评估刀具状态及观测量趋势,根据设定的模糊阈值得到刀具模糊可靠度,并根据期望费用计算模型对刀具的最优更换时间进行了分析。
发明内容
本发明属机械装备再制造领域,有效解决机械装备系统的预防性维修计算问题,该方法简单可靠,便于工程实践中使用。
本发明的技术方案是:
一种基于状态空间模型和模糊理论的刀具更换时间计算方法,根据在线监测的信号实时估计刀具可靠度,并将模糊概念引入可靠度计算中。根据最小经济原则选择最佳换刀时间,包括以下步骤:
步骤一:在待测刀具加工工件上安装声发射(AE)传感器,实时采集AE信号数据,存储。利用小波包分析方法对加工过程中的AE信号进行特征提取,选择随时间具有退化趋势的特征量作为观测量,根据综合的随机游走模型建立状态空间模型,采用固定区间平滑方法预测刀具退化状态及观测量随时间变化趋势。
步骤二:根据步骤一预测刀具的观测值结果,将预测的观测值的概率密度函数与隶属函数结合,按照模糊事件概率定义求出概率值即为刀具可靠度;根据每一时间间隔得到的模糊可靠度,计算未来时刻的条件可靠度。
步骤三:在加工过程中,成本是需要重点考虑的问题。在可靠度保证的前提下,需要选择最经济的更换刀具的时间。根据单位时间费用计算模型,选择单位时间费用最低时所对应的时间即为刀具更换时间。
本发明的有益效果是:该方法不仅有利于预防性维修计算的制定和提高系统的安全评估质量,而且对环境的保护和能源的可持续性上具有重大的科学意义。
附图说明
图1声发射信号归一化频带能量的滑动平均数据。
图2t=35min,t=70min,t=120min和t=160min时刻作为预测起始点的预测结果。
图3模糊条件可靠度曲线。
图4预期单位时间费用。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
步骤一:在刀具加工工件上安装声发射(AE)传感器,并用数据采集软件进行AE信号数据采集,存储。利用小波包分析方法对加工过程中的AE信号进行特征提取,选择随时间具有退化趋势的特征量作为观测量,根据综合的随机游走模型建立状态空间模型,采用固定区间平滑方法预测刀具退化状态及观测量随时间变化趋势。
具体实例如下:在立式三轴铣床上进行刀具声发射监测试验,为了减少其他因素的影响,选取相同的切削参数条件,试验中主轴转速1000r/min,切削深度0.4mm,进给速度400mm/min。每间隔10秒采集一次AE信号,采样频率为2048kHz。由于AE信号的频率较高,对其进行6层小波包分解,这样原AE信号被分解成64个频带,分别计算出这64个频带的归一化小波包能量谱。经分析,由于刀具磨损量增加导致刀具和工件之间接触面积增加造成归一化小波包能量谱随着铣削的进行而发生变化,信号能量主要集中在低频部分且最大值在第二个频带。第二频带的归一化小波能量谱具有随时间递增的趋势,但是存在较大波动,为了减小数据波动,利用滑动移动平均对第二频带的归一化小波能量谱进行处理后得到的时序数据(如图1)作为观测量。采用综合的随机游走模型(integratedrandomwalk,IRW)建立如下状态空间模型:
x(t+1)=Fx(t)+Gη(t)
y(t+1)=Hx(t+1)
其中x(t)是反应刀具退化状态的状态向量,表示为x(t)=[u(t)β(t)]T,水平分量u(t)反映退化水平,斜率分量β(t)反映退化率。y(t)表示刀具的观测量,η(t)是白噪声向量,F是状态转移矩阵,G是输入矩阵,H是观测系数矩阵,且
F = 1 1 0 1 , G = 1 0 0 1 , H = 1 0
采样固定区间平滑算法预测刀具的状态趋势,该方法的计算方法如下:
x ^ ( t + 1 ) P ( t + 1 | t ) H T [ 1 + H P ( t + 1 | t ) H T ] - 1 e ( t + 1 ) + x ( t + 1 | t )
e ( t + 1 ) = y ( t + 1 ) - H x ^ ( t + 1 | t )
P(t+1)=P(t+1|t)-P(t+1)HT[1+HP(t+1|t)HT]-1HP(t+1|t)
x ^ ( t | N ) = F - 1 [ x ^ ( t + 1 | N ) + GQ r G T L ( t - 1 ) ]
L ( t ) = [ I - P ( t + 1 ) H T H ] T { F T L ( t + 1 ) - H T [ y ( t + 1 ) - H F x ^ ( t ) ] }
P(t|N)=P(t)+P(t)FT[P(t+1|t)]-1{P(t+1|N)-P(t+1|t)}[P(t+1|t)]-1FP(t)
其中,P是预测误差协方差阵,L是后向增益,N是测量值数目,Qr是噪声协方差阵。通过上述计算方法,可以根据实时观测的数据对刀具的退化状态进行滤波,根据状态方程预测刀具未来的状态,进而预测出观测值随时间的变化。刀具未来时刻的测量值Y(t+l)是一个随机变量,其中l代表预测步长。将其看作t+l时刻测量值的平均值,则f(y(t+l|t))是测量值的概率密度函数,假设为正态分布,均值和方差公式如下:
x ^ ( t + l | t ) = φ l x ^ ( t | t ) , l = 1 , 2 , 3 , ... , n
y ^ ( t + l | t ) = H x ^ ( t + l | t )
P ( t + l | t ) = φ l - 1 P ( t + 1 | t ) φ ( l - 1 ) T + Σ j = 2 l φ l - j Qφ ( l - j ) T
V a r ( y ^ ( t + l | t ) ) = σ 2 [ 1 + H P ( t + l | t ) H T ]
根据上述公式,预测刀具的观测量的趋势。图2(a)~(d)是在t=35min,t=70min,t=120min和t=160min时的预测结果,其中图2中竖线表示为开始预测的时刻,虚线为各时刻预测的平均值,同时给出95%的置信区间,将预测结果与真实的观测量(细实线)进行比较,表明预测的有效性。
步骤二:根据预测的刀具的观测值结果,将预测的观测值的概率密度函数与隶属函数相结合,按照模糊事件概率定义求出概率值即为刀具可靠度。根据每一时间间隔得到的模糊可靠度,可以计算未来时刻的条件可靠度。
在进行可靠度评估时,对于给定的隶属函数u G (y),按照模糊事件概率定义求出的可靠度,t+l时刻的可靠度R(t+l|t)和失效概率F(t+l|t)分别为:
R ‾ ( t + l | t ) = P ( G ‾ ) = ∫ U u G ‾ ( y ) f ( y ( t + l | t ) ) d y ; F ‾ ( t + l | t ) = 1 - P ( G ‾ ) = 1 - ∫ U u G ‾ ( y ) f ( y ( t + l | t ) ) d y
在固定时间间隔l后,根据退化过程预测测量值y(t+l)和uG(y)可求得的每一个时间间隔的可靠性,那么,在t+l时刻的条件可靠性为:
R ( t + l | t ) = Π i = 1 l R ‾ ( i | t )
实例中选择降半正态分布的隶属函数,取降半正态分布隶属度函数参数为a=0.32,k=50,计算刀具的条件可靠度曲线如图3所示。
步骤三:在加工过程中,成本是需要重点考虑的问题。在可靠度保证的前提下,需要选择最经济的更换刀具的时间。根据单位时间费用计算模型,选择单位时间费用最低时所对应的时间即为刀具更换时间。
根据所求得的可靠度,建立如下计算模型决定是否对刀具进行更换。
其中期望费用=cp(1-P(t+l))+cfP(t+l),
P ( t + l ) = p ( t + 1 ) + ( 1 - p ( t + 1 ) ) p ( t + 2 ) + ... = p ( t + 1 ) l = 1 p ( t + 1 ) + Σ i = 2 l Π j = 1 i - 1 ( 1 - p ( t + j ) ) p ( t + i ) l ≥ 2
所以
其中,cp表示预防更换费用,cf表示刀具失效费用。p(t+i)表示在时间间隔(t+i-1,t+i)(i≥1)内模糊失效概率。P(t+l)表示在时间间隔(t,t+l)内的模糊失效概率。实例中对t=70min时之后时刻的观测值进行预测。在t=70min时刻,取cf=55000,cp=35000,预期单位时间费用变化如图4所示,曲线最低点处为理论最优更换时刻。

Claims (1)

1.一种基于状态空间模型和模糊理论的刀具更换时间方法,其特征在于,包括以下步骤:
步骤一:在待测刀具加工工件上安装声发射传感器,实时采集AE信号数据,存储;利用小波包分析方法对待测刀具加工过程中的AE信号进行特征提取,选择随时间具有退化趋势的特征量作为观测量,根据综合的随机游走模型建立状态空间模型,采用固定区间平滑方法预测刀具退化状态及观测量随时间变化趋势;
采用综合的随机游走模型建立如下状态空间模型:
x(t+1)=Fx(t)+Gη(t)
y(t+1)=Hx(t+1)(1)
其中,x(t)是反应刀具退化状态的状态向量,表示为x(t)=[u(t)β(t)]T,水平分量u(t)反映退化水平,斜率分量β(t)反映退化率;y(t)表示刀具的观测量,η(t)是白噪声向量,F是状态转移矩阵,G是输入矩阵,H是观测系数矩阵,且
F = 1 1 0 1 , G = 1 0 0 1 , H = [ 1 0 ] ;
采样固定区间平滑算法预测刀具的状态趋势,计算方法如下:
x ^ ( t + 1 ) = P ( t + 1 | t ) H T [ 1 + H P ( t + 1 | t ) H T ] - 1 e ( t + 1 ) + x ( t + 1 | t )
e ( t + 1 ) = y ( t + 1 ) - H x ^ ( t + 1 | t )
P(t+1)=P(t+1|t)-P(t+1)HT[1+HP(t+1|t)HT]-1HP(t+1|t)(2)
x ^ ( t | N ) = F - 1 [ x ^ ( t + 1 | N ) + GQ r G T L ( t - 1 ) ]
L ( t ) = [ I - P ( t + 1 ) H T H ] T { F T L ( t + 1 ) - H T [ y ( t + 1 ) - H F x ^ ( t ) ] }
P(t|N)=P(t)+P(t)FT[P(t+1|t)]-1{P(t+1|N)-P(t+1|t)}[P(t+1|t)]-1FP(t)
其中,P是预测误差协方差阵,L是后向增益,N是测量值数目,Qr是噪声协方差阵;通过上述方法,根据实时观测的数据对刀具的退化状态进行滤波,根据状态方程预测刀具未来的状态,进而预测出观测量随时间的变化;刀具未来时刻的测量值Y(t+l)是一个随机变量,其中l代表预测步长;将其看作t+l时刻测量值的平均值,则f(y(t+l|t))是测量值的概率密度函数,假设为正态分布,均值和方差公式如下:
x ^ ( t + l | t ) = φ l x ^ ( t | t ) , l = 1 , 2 , 3 , ... , n
y ^ ( t + l | t ) = H x ^ ( t + l | t )
P ( t + l | t ) = φ l - 1 P ( t + 1 | t ) φ ( l - 1 ) T + Σ j = 2 l φ l - j Qφ ( l - j ) T - - - ( 3 )
V a r ( y ^ ( t + l | t ) ) = σ 2 [ 1 + H P ( t + l | t ) H T ] ;
步骤二:根据步骤一预测刀具的观测值结果,将预测的观测值的概率密度函数与隶属函数结合,按照模糊事件概率定义求出概率值即为刀具可靠度;根据每一时间间隔得到的模糊可靠度,计算未来时刻的条件可靠度;
在进行可靠度评估时,对于给定的隶属函数u G (y),按照模糊事件概率定义求出的可靠度,t+l时刻的可靠度R(t+l|t)和失效概率F(t+l|t)分别为:
R ‾ ( t + l | t ) = P ( G ‾ ) = ∫ U u G ‾ ( y ) f ( y ( t + l | t ) ) d y ; F ‾ ( t + l | t ) = 1 - P ( G ‾ ) = 1 - ∫ U u G ‾ ( y ) f ( y ( t + l | t ) ) d y 在固定时间间隔l后,根据退化过程预测测量值y(t+l)和求得的每一个时间间隔的可靠性,在t+l时刻的条件可靠性为:
R ( t + l | t ) = Π i = 1 l R ‾ ( i | t ) - - - ( 4 )
步骤三:根据单位时间费用计算模型,选择单位时间费用最低时所对应的时间即为刀具更换时间;根据所求得的可靠度,建立如下计算模型决定是否对刀具进行更换;
其中,期望费用=cp(1-P(t+l))+cfP(t+l),
P ( t + l ) = p ( t + 1 ) + ( 1 - p ( t + 1 ) ) p ( t + 2 ) + ... = p ( t + 1 ) l = 1 p ( t + 1 ) + Σ i = 2 l Π j = 1 i - 1 ( 1 - p ( t + j ) ) p ( t + i ) l ≥ 2
其中,cp表示预防更换费用,cf表示刀具失效费用;p(t+i)表示在时间间隔(t+i-1,t+i),i≥1,内模糊失效概率;P(t+l)表示在时间间隔(t,t+l)内的模糊失效概率。
CN201510394775.6A 2015-07-07 2015-07-07 一种基于状态空间模型和模糊理论的刀具更换时间决策方法 Expired - Fee Related CN105160147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510394775.6A CN105160147B (zh) 2015-07-07 2015-07-07 一种基于状态空间模型和模糊理论的刀具更换时间决策方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510394775.6A CN105160147B (zh) 2015-07-07 2015-07-07 一种基于状态空间模型和模糊理论的刀具更换时间决策方法

Publications (2)

Publication Number Publication Date
CN105160147A true CN105160147A (zh) 2015-12-16
CN105160147B CN105160147B (zh) 2017-11-10

Family

ID=54801003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510394775.6A Expired - Fee Related CN105160147B (zh) 2015-07-07 2015-07-07 一种基于状态空间模型和模糊理论的刀具更换时间决策方法

Country Status (1)

Country Link
CN (1) CN105160147B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647273A (zh) * 2016-12-26 2017-05-10 北京天源科创风电技术有限责任公司 预测部件的预防性更换时间的方法和设备
CN106705999A (zh) * 2016-12-21 2017-05-24 南京航空航天大学 一种无人机陀螺仪故障的诊断方法
JP2019128911A (ja) * 2018-01-26 2019-08-01 ファナック株式会社 加工時間予測装置
WO2020223965A1 (zh) * 2019-05-09 2020-11-12 西门子股份公司 基于刀具更换记录的切削刀具寿命的设置方法、装置和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068958A (en) * 1990-09-18 1991-12-03 Dynamotion Corporation Method and apparatus for changing tools in an automated machine tool
KR20070070520A (ko) * 2005-12-29 2007-07-04 두산인프라코어 주식회사 머시닝 센타 atc장치의 툴 포트 이탈장치
JP3954416B2 (ja) * 2002-03-22 2007-08-08 オークマ株式会社 工具ポット及びその製造方法
CN101893873A (zh) * 2009-04-06 2010-11-24 Dmg电子有限公司 产生用于控制机床上的刀具的控制数据的方法和装置
CN102176217A (zh) * 2010-12-20 2011-09-07 西安瑞特快速制造工程研究有限公司 一种基于Logistic模型的数控机床刀具可靠性评估方法
CN103264317A (zh) * 2013-05-16 2013-08-28 湖南科技大学 一种铣削加工刀具运行可靠性的评估方法
CN104503361A (zh) * 2014-12-30 2015-04-08 重庆大学 基于多模式融合的齿轮加工过程换刀决策方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068958A (en) * 1990-09-18 1991-12-03 Dynamotion Corporation Method and apparatus for changing tools in an automated machine tool
JP3954416B2 (ja) * 2002-03-22 2007-08-08 オークマ株式会社 工具ポット及びその製造方法
KR20070070520A (ko) * 2005-12-29 2007-07-04 두산인프라코어 주식회사 머시닝 센타 atc장치의 툴 포트 이탈장치
CN101893873A (zh) * 2009-04-06 2010-11-24 Dmg电子有限公司 产生用于控制机床上的刀具的控制数据的方法和装置
CN102176217A (zh) * 2010-12-20 2011-09-07 西安瑞特快速制造工程研究有限公司 一种基于Logistic模型的数控机床刀具可靠性评估方法
CN103264317A (zh) * 2013-05-16 2013-08-28 湖南科技大学 一种铣削加工刀具运行可靠性的评估方法
CN104503361A (zh) * 2014-12-30 2015-04-08 重庆大学 基于多模式融合的齿轮加工过程换刀决策方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHUJIE LIU ET AL ;: "《Machinery Condition Prediction Based on》", 《2013 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING》 *
曹乐 等;: "《一种面向自动生产线的刀具更换决策方法》", 《机械工程学报》 *
朱晓锋: "《集成切削速度的刀具预防性更换决策方法研究》", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑 》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106705999A (zh) * 2016-12-21 2017-05-24 南京航空航天大学 一种无人机陀螺仪故障的诊断方法
CN106647273A (zh) * 2016-12-26 2017-05-10 北京天源科创风电技术有限责任公司 预测部件的预防性更换时间的方法和设备
JP2019128911A (ja) * 2018-01-26 2019-08-01 ファナック株式会社 加工時間予測装置
CN110076626A (zh) * 2018-01-26 2019-08-02 发那科株式会社 加工时间预测装置
CN110076626B (zh) * 2018-01-26 2021-04-02 发那科株式会社 加工时间预测装置
WO2020223965A1 (zh) * 2019-05-09 2020-11-12 西门子股份公司 基于刀具更换记录的切削刀具寿命的设置方法、装置和系统
CN113272746A (zh) * 2019-05-09 2021-08-17 西门子股份公司 基于刀具更换记录的切削刀具寿命的设置方法、装置和系统
CN113272746B (zh) * 2019-05-09 2024-04-09 西门子股份公司 基于刀具更换记录的切削刀具寿命的设置方法、装置和系统

Also Published As

Publication number Publication date
CN105160147B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
KozłowsKi et al. Assessment model of cutting tool condition for real-time supervision system
Perry et al. Estimating the change point of a Poisson rate parameter with a linear trend disturbance
CN104932488B (zh) 一种模型预测控制性能评估与诊断方法
CN105160147A (zh) 一种基于状态空间模型和模糊理论的刀具更换时间方法
CN110298455A (zh) 一种基于多变量估计预测的机械设备故障智能预警方法
CN112613646A (zh) 一种基于多维数据融合的设备状态预测方法及系统
CN102152172B (zh) 基于协整建模的刀具磨损监测方法
US8407027B2 (en) Online diagnostic method and online diagnostic system for geothermal generation facility
CN104699050A (zh) 数据驱动的卷烟制丝过程制叶丝段在线监测和故障诊断方法
CN101403923A (zh) 基于非高斯成分提取和支持向量描述的过程监控方法
CN106112697A (zh) 一种基于3σ准则的铣削颤振自动报警阈值设定方法
CN104792529A (zh) 基于状态空间模型的滚动轴承寿命预测方法
CN104850736A (zh) 一种基于状态空间模型的高速数控铣床刀具寿命预测方法
CN104714537A (zh) 一种基于联合相对变化分析和自回归模型的故障预测方法
CN103439933A (zh) 一种应用ocsvm的生产过程自适应监控系统及方法
CN102176217A (zh) 一种基于Logistic模型的数控机床刀具可靠性评估方法
CN103679280A (zh) 一种性能缓变退化的设备最优维护方法
Yao et al. Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm
CN104794535A (zh) 一种基于主导行业的电力需求预测及预警的方法
Jain et al. Predicting remaining useful life of high speed milling cutters based on artificial neural network
CN112207631B (zh) 刀具检测模型的生成方法、检测方法、系统、设备及介质
CN116187725B (zh) 一种用于锻造自动线的锻造设备管理系统
CN115629575A (zh) 液压支架自动化后人工调控策略推荐方法
CN101833330A (zh) 基于无激励闭环辨识的控制性能测试方法
Giannoulidis et al. Investigating thresholding techniques in a real predictive maintenance scenario

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171110

Termination date: 20200707