CN105142762A - 包含多级净化的渗透驱动膜系统的改进 - Google Patents

包含多级净化的渗透驱动膜系统的改进 Download PDF

Info

Publication number
CN105142762A
CN105142762A CN201480022732.9A CN201480022732A CN105142762A CN 105142762 A CN105142762 A CN 105142762A CN 201480022732 A CN201480022732 A CN 201480022732A CN 105142762 A CN105142762 A CN 105142762A
Authority
CN
China
Prior art keywords
stream
module
low rejection
equipment according
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480022732.9A
Other languages
English (en)
Other versions
CN105142762B (zh
Inventor
C·本登
O·巴卡金
C·伦丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Porifera Inc
Original Assignee
Porifera Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Porifera Inc filed Critical Porifera Inc
Publication of CN105142762A publication Critical patent/CN105142762A/zh
Application granted granted Critical
Publication of CN105142762B publication Critical patent/CN105142762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/029Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2521Recirculation of concentrate to permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2523Recirculation of concentrate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/243Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/246Energy recovery means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/08Use of membrane modules of different kinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/167Use of scale inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Abstract

一种用于净化高浓度原料液的实例水净化系统包含高截留率正渗透模块、一或多个低截留率模块及高截留率反渗透模块。所述低截留率模块可具有不同的截留率水平。所述系统可由一或多个泵加压。所述低截留率模块中的一或多者可包含一或多个纳滤NF膜。汲取液可包含单价盐、多价盐或两者的组合。

Description

包含多级净化的渗透驱动膜系统的改进
交叉引用
本申请案主张2013年3月15日申请的第61/794,537号美国临时申请案的早先申请日期的权益,所述申请案的全文出于任何目的而以引用的方式并入本文中。
技术领域
本文中描述的实例涉及可用于正渗透(FO)或反渗透(RO)或大体上任何分离过程的分离系统、元件及方法。
政府赞助
本发明在由国防部授权的合同号为W911NF-09-C-0079下受政府的支持。政府对本发明具有某些权利。
背景技术
对于渗透预处理,较高汲取液渗透势实质上增加系统的原料浓度操作窗。常规系统通常具有对用于反渗透(RO)的汲取液浓度的限制。
在RO系统中,可处理的最大原料盐度受汲取液的最大盐度限制。汲取液通常受限于80,000ppm的高点,这是由于任何较大浓度将需要将使膜破裂的RO静水压力。最大RO操作静水压力通常在1000与1200psi之间。以下大体上解释此限制。跨越RO膜的通量与活性膜压力成正比。活性膜压力为跨越RO膜的静水压力差(通常为到近大气渗透物的800psi原料)减去跨越RO膜的渗透压力差(通常为500psi到近0psi渗透物的原料)。可通过改变前述值中的任何者调整活性膜压力。虽然原料的渗透压力可在系统中容易地调整,但渗透物的渗透压力通常固定为近零,且为RO膜的抑制的函数(被定义为1减去进入渗透物的盐的分数,典型RO抑制大于99%)。
因此,与膜驱动系统相比,能够处理浓度超过80,000ppm的原料液的净化系统通常使用热变及相变,从而引起大占据面积、高能量需求及高资金系统成本。当原料总溶解溶质(TDS)大于80,000ppm时或当必须将较低TDS原料液处理为具有超过80,000ppm的废料的高回收(例如,零液体排放应用)时使用这些系统。
发明内容
本文中揭示用于净化的设备、系统及方法的实例。举例来说,一种设备可包含:可接收原料流及高浓度汲取流以产生第一流的正渗透模块;可加压于所述第一流的泵;可接收所述经加压第一流以产生所述高浓度汲取流及低浓度汲取流的低抑制膜模块;及可接收所述低浓度流以产生产物流及截留流的反渗透模块。来自所述反渗透流的所述截留流可与所述第一流组合且被提供到所述低抑制模块。所述汲取流可包含多价盐。
一种实例系统可包含:可经配置以接收汲取流及原料流以产生第一流的正渗透级;经配置以接收所述第一流且产生输出流的串联连接的多个低抑制级;及可接收所述输出流以产生截留流及产物流的反渗透级。所述低抑制级可各自产生截留流且将所述截留流提供到前一低抑制级。
又一实例,一种方法可包含:将汲取流提供到正渗透模块;将原料流提供到所述正渗透模块;用所述正渗透模块过滤所述原料流,此可产生第一流;加压于所述第一流;用低抑制模块过滤所述经加压第一流,此可产生稀释流;及用反渗透模块过滤所述稀释流,此可产生产物流。所述方法可进一步包含将阻垢剂或防污剂添加到所述原料流。
附图说明
图1为根据本发明的实施例的净化系统的框图。
图2为根据本发明的另一实施例的净化系统的框图。
图3为根据本发明的又一实施例的净化系统的框图。
具体实施方式
下文陈述某些细节以提供对本发明的实施例的充分理解。然而,所属领域的技术人员应清楚,可在无需这些特定细节的情况下实践本发明的实施例。在一些情况下,尚未详细地展示众所周知的化学结构、化学成分、分子、材料、制造组件、控制系统、电子组件、时序协议及软件操作以避免不必要地混淆本发明所描述的实施例。
在本文中描述的实例中,可使用以两个或两个以上模块的阵列深入地分级的纳滤(NF)及/或反渗透(RO)膜模块且允许上游级中的NF或RO膜的渗透物侧上的盐浓度增加来克服对用于RO及高压RO的汲取液浓度的现有限制。以此方式,跨越每一RO膜的有效浓度差与所需施加的液压压力一起减小。可以若干方式产生RO膜的渗透物侧上增加的盐浓度,所述方式包含利用较少选择性RO膜或具有4个通口(例如,汲取物入口/出口、渗透物入口/出口)的RO膜样式。由于回收的倍增性质而通常不进行RO模块的此分级,此意味着总系统回收率可能非常低。本文中描述的实例的优点及常规系统的任何所描述缺点不希望为限制性的,且经提供以辅助理解。应理解,一些实例可不展现所有或甚至任何所描述优点。此外,一些实例可不解决常规系统的所有或甚至任何所描述缺点。
通过将多个反渗透(RO)器皿与正渗透预处理配对,一些实例中的总系统回收率可与RO系统回收率解耦。在一些实例中,与在未使用FO预处理系统的情况下的回收率相比,正渗透(FO)预处理与多级NF及/或RO的耦合允许总系统水回收率增加。
在图1的框图中说明根据本发明的实施例的实例净化系统10。系统10可能够通过以高于原料100的浓度再产生汲取液105而处理超过80,000ppm浓度的原料液100。虽然在一些实施例中可能需要超过1200psi的静水压力以通过将再浓缩断开成两个或两个以上级(每一级可在低于膜的爆裂压力的静水压力下操作)在一个级中用RO膜的阵列再浓缩此汲取液。高压RO元件通常为额定1800psi,但当可减轻污物形成及污垢形成时可高达3000psi。
在一些实例中,将再浓缩分离成多个级可使用一或多个中压驱动脱盐膜。虽然跨越这些膜的静水压力或渗透压力差相对于常规RO膜的限制可不增加,但还可通过增加渗透物渗透压力增加原料渗透压力,此可使两个流之间的渗透压力差保持恒定。可使用相对于常规RO膜(例如NR膜或松散RO膜)具有减小的盐截留率的膜。
返回到图1,系统10说明可能够将高浓度原料处理成小于120kppm的浓度的两级FO/RO系统。所述系统可使用氯化钠汲取溶质,但可以单一形式或以组合形式而与其它汲取溶质一起被利用。所述系统包含三个膜阵列:FO模块103、低抑制压力驱动脱盐模块110(LR),及RO模块116。FO模块103通常包含并联布置、串联布置或两者的组合的FO膜阵列。通常可使用任何适合的RO膜。FO模块103通常可具有高盐截留率(例如,通常大于95%)。LR模块110通常包含具有小于RO的盐截留率(例如,其通常为99%或更大)的膜阵列。LR模块中的膜阵列可被串联布置、并联布置或其组合。通常,所述模块的盐截留率(例如,氯化钠抑制)可小于90%,在一些实例中小于80%,在一些实例中小于70%,在一些实例中小于60%,在一些实例中小于50%。RO模块116通常包含并联布置、串联布置或两者的组合的RO膜阵列。通常可使用任何适合的RO膜。RO模块可具有高抑制(例如,通常大于99%)。
在实例操作期间,高浓度原料流102进入FO模块103,在FO模块103处,高浓度原料流102被脱水且作为截留流104而离开系统。通常,可将任何流用作原料流,包含但不限于海水或废水。高浓度汲取流105(例如,120kppm)以可为近大气的压力流动(例如,1MGD),进入FO模块103,此吸收质量且变得稀释,从而作为具有减小的浓度(例如,80kppm)的第一流106而离开,且高浓度汲取流105以可为近大气的压力流动(例如,1.5MGD)。此流的浓度可能太高而不能用单级RO进行回收。接着可由泵107(其可能为高压泵)加压(例如,1000psi)于所述流,接着与具有流率(例如,0.5MGD)的邻近反渗透截留(例如,卤水)流117(其可为高压流)组合,从而形成具有流率(例如,2MGD)的流109。所述压力可保持上升(例如,1000psi)。流109可与低截留率压力驱动盐截留模块110(LR)接触,低抑制压力驱动盐截留模块110(LR)可具有(例如)50%的截留率及50%的回收率。在其它实例中,模块110的盐截留率(例如,氯化钠截留率)可小于40%、小于50%、小于60%、小于70%、小于80%,或在一些实例中小于90%。在其它实例中,模块110的回收率可小于90%、小于70%、小于50%、小于30%且大于10%。与其中(例如)50%回收引起约为原料流的浓度两倍的截留流在高TDS处限制回收的RO膜对比,LR膜将由于散装盐跨越所述膜进行转移而具有小于两倍的原料流的浓度,从而允许比典型RO膜高的回收比率。流109的静水压力可克服跨越膜的平均浓度差(例如,40kppm乘300psi),从而产生流动(例如,1MGD)且可具有近大气的压力的低浓度流113(例如,40kppm),及可流动(例如,1MGD)且具有较高压力(例如,1000psi)的高浓度汲取流111(例如,120kppm)。
此流的压力可跨越能量回收装置112(例如,液压电动机)而减低,从而形成可被馈送到FO膜阵列103的低压高浓度汲取流105。接着可由泵114将低浓度流113加压到较高压力(例如,1000psi),从而形成流115。将此流馈送到可具有高截留率(例如,大于99%、大于98%、大于97%、大于95%,或在一些实例中大于90%)的级2RO模块116。静水压力可克服跨越膜的平均浓度差(例如,40kppm乘300psi)且可产生高质量产物流118。
产物流118可具有几乎0kppm(例如,350ppm)的浓度、0.5MGD的流量及近大气的压力。RO模块116还可产生反渗透截留流117,反渗透截留流117可与流108组合且如上文所论述而被再循环。反渗透截留流117可具有80kppm的浓度、0.5MGD的流量及1000psi的压力。
可将纳滤(NF)膜用作模块110中的中间级1压力驱动盐截留膜阵列。与趋向于以比单价盐高的百分比截留多价盐的RO膜不同,NF膜可以比多价盐高的百分比截留单价盐。此可通过具有包含单价盐(例如,氯化钠或氯化锂)及多价盐(例如,氯化镁、氯化钙、硫酸镁或磷酸钠)两者的汲取溶质予以充分利用。举例来说,NF膜可以70%截留单价盐且以30%截留多价盐,但在其它实例中可使用其它截留百分比。当进入模块110时,多价盐可更可能在低浓度流113中离开所述模块,且单价盐可更可能在高浓度汲取流111中离开所述模块。
因此,级2RO模块116可为脱盐流115,脱盐流115的盐主要为多价盐,此可引起较高质量的较低TDS产物流118。在另一实例中,NF膜可比单价盐更好地抑制多价盐,此可引起较高的特定RO通量。在其它实例中,FO模块103可接收汲取液流105,汲取液流105的盐主要为单价盐,此可引起比用多价盐所达到的通量高的特定通量。
表1含有用于图1所说明的系统中的不同点的实例流率、静水压力及溶质浓度。表1中给出的值为示范性的且不应被解释为将本发明的实施例限于所给出的值。在其它实例中,可使用流率、静水压力及溶质浓度的其它值。
表1:用于两级FO/RO系统10的示范性值
图1中的元件编号 流量(MGD) 静水压力(psi) 浓度(ppm)
原料 102 0.63 5.0 35,000
原料废料 104 0.13 0.0 105,000
FO汲取废料 106 1.50 0.5 80,000
经加压FO汲取废料 108 1.50 980 80,000
级1LR汲取原料 109 2.00 980 80,000
级1LR汲取废料 111 1.00 965 120,000
FO汲取原料 105 1.00 3.0 120,000
级1LR渗透物 113 1.00 0.5 40,000
级2RO原料 115 1.00 1000 40,000
级2RO废料 117 0.50 985 80,000
系统渗透物 118 0.50 0.0 350
图2说明根据本发明的实施例的三级系统20的框图。三级FORO系统20可能够将高浓度原料处理为小于160kppm的浓度。所述系统被认为具有氯化钠汲取溶质,但可以单一形式或以与包含氯化钠的其它溶质(例如,多价物)组合的形式而与其它汲取溶质一起被利用。系统20可包含四个膜阵列:具有高抑制(例如,通常大于95%)的FO模块103、具有小于RO的抑制(例如,通常为33%)的中间级1压力驱动脱盐膜阵列(例如,LR模块)125、具有小于RO的抑制(例如,通常为50%)的中间级2压力驱动脱盐膜阵列(例如,LR模块)132,及具有高抑制(例如,通常大于99%)的最终级3RO模块137。
在操作期间,高浓度原料流102可进入FO模块103,在FO模块103处,高浓度原料流102被脱水且作为废料或废物流104而离开系统。高浓度汲取流120(例如,160kppm)以可为近大气的压力流动(例如,1.5MGD),进入FO模块103,此吸收质量且变得稀释,从而作为流121(例如,120kppm)而离开,其中增加流量(例如,2MGD)具有可为近大气的压力。此流的浓度可能太高而不能用单级或双级RO进行回收。接着可由泵122将所述流加压到较高压力(例如,1000psi),接着与邻近高压流133组合,从而形成流124,其具有增加的流量(例如,3MGD),但具有相同的压力(例如,1000psi)。流124可与可具有33%的抑制的LR模块125接触。静水压力(例如,1000psi)可克服跨越膜的平均浓度差(例如,60kppm乘300psi),从而产生具有减小的流量(例如,1.5MGD)且可具有为近大气的压力的低浓度流128(例如,80kppm)。LR模块125还可产生具有减小的流量(例如,1.5MGD)及较高压力(例如,1000psi)的高浓度汲取流126(例如,160kppm)。
流126的压力可跨越液压电动机(能量回收装置)127而减低,从而形成可被馈送到FO膜阵列103的流120。接着可由第二泵129加压(例如,1000psi)于低浓度流128,从而形成流130。接着将此流130与邻近高压流138组合,从而形成具有增加的流量(例如,2MGD)的流131。流131与可具有50%的抑制的LR模块132接触。静水压力(例如,1000psi)可克服跨越膜的平均浓度差(例如,60kppm乘300psi),从而产生具有减小的流量(例如,1GMD)且可具有为近大气的压力的稀释流134(例如,40kppm),及可具有减小的流量(例如,1GMD)及较高压力(例如,1000psi)的高浓度抑制流133(例如,120kppm)。此高浓度抑制流133可与如上文所描述的流123组合且被再循环。可接着由第三泵135加压(例如,1000psi)于稀释流134,从而形成流136。此流136被馈送到可具有大于99%的抑制的级3RO模块137。静水压力(例如,1000psi)可克服跨越膜的平均浓度差(例如,60kppm乘300psi),从而产生可具有几乎0kppm的浓度、0.5MGD的流量及近大气的压力的高质量产物流118。RO模块137还可产生且反渗透截留流138,其可具有80kppm的浓度、0.5MGD的流量及1000psi的压力。此反渗透截留流138可与如上文所描述的流130组合且被再循环。
表2含有用于图2所说明的系统中的不同点的实例流率、静水压力及溶质浓度。表2中给出的值为示范性的且不应被解释为将本发明的实施例限于所给出的值。流率、静水压力及溶质浓度的其它值可为可能的。
表2:用于三级FO/RO系统20的示范性值
虽然图1及2中已分别展示两级系统及三级系统,但在其它实例中可使用任何数目个级。通常,实例系统包含FO模块,FO模块的汲取流输出被提供到具有低抑制压力驱动脱盐膜的一个或一系列LR模块。每一LR模块可产生被提供到所述系列中的下一LR模块或提供到稍后RO模块的低浓度流,及被反馈到最后级(例如,FO模块汲取或到早先LR模块)的较高浓度流。提供后续RO模块,所述RO模块从所述系列中的最后LR模块接收低浓度流,从而提供产物流。
包含于图1及2所说明的系统10及20中的本文中描述的实例的原料及汲取水可具有额外预处理来以高回收率移除增加浓度的污垢或污物。回收率为渗透物流(X)除以原料流(Y)的比率。污垢可包含但不限于:碳酸钙、碳酸钠、硅石、石膏、硫酸钡、硫酸锶及氟化钙。污物可包含但不限于:小型有机分子、颗粒或胶体,或生物膜生长。可用阻垢剂或防污剂处理原料及汲取水以防止FO膜或RO膜的污垢形成或污物形成。阻垢剂可包含浓缩聚磷酸盐、有机磷酸盐及聚电解质。可通过添加亚硫酸氢钠来实现原料水的脱氯。可升高原料水及汲取物的pH以移除硬度及碱度或增加弱电离阴离子的截留,例如硼酸盐、氰化物、氟化物及某些砷或硒化合物。可降低原料水及汲取物的pH以减小污垢形成。原料或汲取物中的任一者可取决于原料水、操作参数(例如,回收率)及所要系统渗透物质量而具有以任何组合及以任何次序的额外阻垢剂、防污剂、pH调整、除气。
可在批次模式中完成汲取流的污垢及污物移除过程(例如pH调整),在批次模式中,当污垢及污物移除过程完成时,汲取回路被排干且用另一汲取液替换。还可在半批次模式中完成污垢及污物移除过程,使得每次针对处理来移除汲取回路的小部分。可独立地调整正渗透膜及反渗透膜的截留以及污垢形成及污物形成倾向。接着可优化所述系统以如针对特定应用所希望而最小化耗材且最大化总效率。
与传统反渗透系统不同,图1及2所展示的FO/RO系统的汲取液复合物可经调谐以优化所述系统的性能。汲取液可为具有来自反渗透膜的高截留率的任何水溶液。汲取溶质可优选地为无机盐,例如氯化钠、氯化镁、硫酸镁、硫酸钠或磷酸钠。汲取溶质可为单价或多价。汲取液可为盐(单价或多价两者)的混合物。低截留率反渗透膜(例如包含于LR模块中的低截留率反渗透膜)可为用于高氯化钠截留率(例如,大于99%)的标准反渗透膜,例如DOWSW30膜。低截留率反渗透膜可为具有适度氯化钠截留率(大于80%)及高多价截留率(例如,大于90%)的纳滤膜,例如DOWNF90。低截留率反渗透膜可为磺化聚砜纳滤膜,例如海德能(Hydranautics)HydraCoRe70。
在图1及2所说明的两个系统中,可包含于LR模块中的低截留率反渗透膜可通过化学地处理标准反渗透膜而调谐。在一些实例中,低截留率反渗透膜可为具有聚酰胺选择性层的薄膜复合膜。可减小聚酰胺层的交联密度,从而增加透盐率(减小选择性)且增加渗水性。举例来说,可将DOWSW30膜暴露到1000ppm次氯酸钠溶液达10分钟到6小时且接着用硫酸氢钠或水进行冲洗。可将所述膜的氯化钠截留率从99%减小到10%。经处理膜可具有高的多价盐截留率。可取决于所述膜对单价盐及多价盐的相对截留率及优选操作参数来选择单价盐及多价盐的汲取溶质复合物及反渗透膜。
图3中说明根据本发明的原理的多通口净化系统30。在此实例中,汲取液300由泵305带到第一RO元件315的第一通口310。来自第一RO元件315的截留流355被减压且由能量回收装置370返回到汲取液作为浓缩流360。渗透物320由泵325加压且被递送到第二RO元件335中的输入通口330。产物作为流340而离开RO元件335。截留流345由能量回收装置365减压且被返回到第一RO元件315中的第二通口350。
在图3所展示的实例实施例中,渗透预处理可与多个RO级及4通口RO元件一起被使用。4通口RO元件可允许盐溶液通过RO1的渗透物通道而循环,此可减低跨越膜RO1的有效渗透压差。器皿RO2可利用标准3通口RO元件。中间汲取液的浓度可在入口汲取液浓度与产物水之间。在两级系统中,此浓度可约为入口汲取液与产物水浓度之间的差的一半。在此实例中,跨越每一RO元件的盐度差可仅约为从入口到产物的总盐度减小的一半。
在无FO预处理的此多级RO系统的水回收单独为RO步骤中的每一者的水回收的产物。对于其中RO步骤中的每一者的水回收为10%的系统,总系统水回收仅为1%。然而,当FO预处理系统耦合到多级RO系统时,整个系统的总回收等于FO回路的水回收且独立于所述系统的RO部分的水回收,因此其可大于1%。
从前述应了解,尽管本文中已出于说明的目的而描述本发明的特定实施例,但在不背离本发明的精神及范围的情况下可做出各种修改。

Claims (30)

1.一种设备,其包括:
经配置以接收原料流及高浓度汲取流的正渗透模块,其中所述正渗透模块进一步经配置以从所述原料流及所述高浓度汲取流产生包括水的第一流;
经配置以加压于所述第一流的泵;
经配置以接收所述经加压第一流且产生所述高浓度汲取流及低浓度流的低截留率膜模块;及
经配置以接收所述低浓度流且产生产物流及反渗透截留流的反渗透模块。
2.根据权利要求1所述的设备,其进一步包括经配置以加压于被提供到所述反渗透模块的所述低浓度流的第二泵。
3.根据权利要求1所述的设备,其中所述第一流被加压到小于3000psi。
4.根据权利要求1所述的设备,其进一步包括经配置以减小由所述低截留率模块产生的所述高浓度汲取流的压力的能量回收装置。
5.根据权利要求4所述的设备,其中所述能量回收装置及所述泵为集成组件。
6.根据权利要求1所述的设备,其进一步包括经配置以将所述原料流提供到所述正渗透模块的进料泵。
7.根据权利要求1所述的设备,其中所述反渗透截留流与被提供到所述低截留率模块的所述第一流组合。
8.根据权利要求1所述的设备,其中所述低截留率模块具有小于90%的回收率。
9.根据权利要求1所述的设备,其中所述低截留率模块包括具有小于90%的盐截留率的膜。
10.根据权利要求1所述的设备,其进一步包括经配置以将溶质提供到所述高浓度汲取流的计量泵。
11.根据权利要求10所述的设备,其中所述溶质包括多价盐。
12.根据权利要求10所述的设备,其中所述溶质包括单价盐。
13.根据权利要求1所述的设备,其中所述低浓度流被提供到经配置以产生稀释流及截留流的第二低截留率模块,且其中所述反渗透模块经配置以接收所述稀释流。
14.根据权利要求13所述的设备,其中所述截留流与被提供到所述低截留率模块的所述第一流组合。
15.根据权利要求13所述的设备,其中所述反渗透截留流与被提供到所述第二低截留率模块的所述低浓度流组合。
16.根据权利要求13所述的设备,其进一步包括经配置以加压于被提供到所述反渗透模块的所述稀释流的第三泵。
17.一种系统,其包括:
经配置以接收原料流及汲取流的正渗透级,其中所述正渗透级进一步经配置以产生第一流;
串联连接的多个低截留率级,其中所述多个低截留率级中的第一低截留率级经配置以接收所述第一流且将输出流提供到所述多个低截留率级中的下一低截留率级;及
经配置以从所述多个低截留率级中的最终低截留率级接收所述输出流的反渗透级,其中所述反渗透级进一步经配置以提供产物流及反渗透截留流。
18.根据权利要求17所述的系统,其中所述多个低截留率级进一步经配置以将截留流提供到串联连接的所述多个低截留率级中的前一低截留率级。
19.根据权利要求17所述的系统,其进一步包括经配置以加压于所述第一流的泵。
20.根据权利要求17所述的系统,其中所述多个低截留率级的回收率是至少部分地基于所述多个低截留率级的数量。
21.根据权利要求17所述的系统,其中所述多个低截留率级中的至少一者具有小于90%的盐截留率。
22.一种方法,其包括:
将汲取流提供到正渗透模块;
将原料流提供到所述正渗透模块;
用所述正渗透模块过滤所述原料流以产生第一流;
加压于所述第一流;
用低截留率模块过滤所述经加压第一流以产生稀释流;及
用反渗透模块过滤所述稀释流以产生产物流。
23.根据权利要求22所述的方法,其进一步包括:
用所述反渗透模块产生截留流;及
组合所述截留流与所述第一流。
24.根据权利要求22所述的方法,其进一步包括将溶质添加到所述汲取流。
25.根据权利要求24所述的方法,其中所述溶质包括单价盐。
26.根据权利要求24所述的方法,其中所述溶质包括多价盐。
27.根据权利要求22所述的方法,其进一步包括:
用第二低截留率模块过滤所述稀释流以产生低浓度流;及
将所述低浓度流提供到所述反渗透模块。
28.根据权利要求22所述的方法,其进一步包括将阻垢剂添加到所述原料流。
29.根据权利要求22所述的方法,其进一步包括将防污剂添加到所述原料流。
30.根据权利要求22所述的方法,其进一步包括移除污垢。
CN201480022732.9A 2013-03-15 2014-03-14 包含多级净化的渗透驱动膜系统的改进 Active CN105142762B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361794537P 2013-03-15 2013-03-15
US61/794,537 2013-03-15
PCT/US2014/029332 WO2014144778A1 (en) 2013-03-15 2014-03-14 Advancements in osmotically driven membrane systems including multi-stage purification

Publications (2)

Publication Number Publication Date
CN105142762A true CN105142762A (zh) 2015-12-09
CN105142762B CN105142762B (zh) 2019-05-31

Family

ID=51537764

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480022732.9A Active CN105142762B (zh) 2013-03-15 2014-03-14 包含多级净化的渗透驱动膜系统的改进
CN201480025277.8A Active CN105188889B (zh) 2013-03-15 2014-03-14 包含低压控制的渗透驱动隔膜系统的发展

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201480025277.8A Active CN105188889B (zh) 2013-03-15 2014-03-14 包含低压控制的渗透驱动隔膜系统的发展

Country Status (5)

Country Link
US (3) US10500544B2 (zh)
EP (1) EP2969145A4 (zh)
CN (2) CN105142762B (zh)
AU (1) AU2014228787B2 (zh)
WO (2) WO2014144704A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105800851A (zh) * 2016-05-23 2016-07-27 海博伦(苏州)环境科技股份有限公司 正渗透汲取液及其循环再生方法和应用
CN106422780A (zh) * 2016-11-02 2017-02-22 中国石油大学(华东) 一种可连续操作的循环式正渗透高盐有机废水处理系统
CN107698084A (zh) * 2017-10-17 2018-02-16 广州雅津水处理设备有限公司 一种降低废水浓盐量的过滤系统
CN110290854A (zh) * 2016-12-23 2019-09-27 波里费拉公司 通过正向渗透除去醇溶液的组分和相关系统
CN111994999A (zh) * 2019-05-27 2020-11-27 国家能源投资集团有限责任公司 一种正渗透耦合反渗透的浓缩系统及其使用方法
CN112456687A (zh) * 2020-12-16 2021-03-09 北京城市排水集团有限责任公司 一种垃圾渗滤液浓缩液减量化方法及系统
US11571660B2 (en) 2015-06-24 2023-02-07 Porifera, Inc. Methods of dewatering of alcoholic solutions via forward osmosis and related systems
US11759751B2 (en) 2012-12-21 2023-09-19 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506867A (ja) 2013-02-08 2016-03-07 オアシス ウォーター,インコーポレーテッド 浸透分離システム及び方法
WO2014144704A1 (en) 2013-03-15 2014-09-18 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
WO2015021062A1 (en) 2013-08-05 2015-02-12 Gradiant Corporation Water treatment systems and associated methods
CN105683095B (zh) 2013-09-23 2019-09-17 格雷迪安特公司 脱盐系统及相关方法
WO2016057764A1 (en) * 2014-10-10 2016-04-14 Oasys Water, Inc. Osmotic separation systems and methods
US10384169B2 (en) 2014-10-31 2019-08-20 Porifera, Inc. Supported carbon nanotube membranes and their preparation methods
GB201501684D0 (en) 2015-02-02 2015-03-18 Surrey Aquatechnology Ltd Brine Concentration
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
GB201503728D0 (en) * 2015-03-05 2015-04-22 Surrey Aquatechnology Ltd Purification of highly saline feeds
AU2016298326B2 (en) * 2015-07-29 2022-08-04 Gradiant Corporation Osmotic desalination methods and associated systems
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
WO2017030932A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Selective retention of multivalent ions
KR101838211B1 (ko) * 2015-10-16 2018-03-13 광주과학기술원 가압형 정삼투 및 역삼투 혼합형 해수 담수화 장치
ES2619113B1 (es) * 2015-12-22 2018-05-08 Acciona Agua, S.A. Procedimiento de control de sistema combinado de ósmosis directa y nanofiltración u ósmosis inversa
WO2017147113A1 (en) 2016-02-22 2017-08-31 Gradiant Corporation Hybrid desalination systems and associated methods
CN109071275B (zh) * 2016-03-09 2023-10-20 恩吉斯有限公司 用于处理废水和发电的工艺和系统
CN106082397B (zh) * 2016-06-12 2021-04-20 东华大学 一种同步污水再生和海水淡化的系统及方法
CN109562322A (zh) * 2016-08-04 2019-04-02 欧赛斯水务有限公司 用于改善正向渗透系统的性能的系统和方法
IL247687B (en) * 2016-09-07 2018-06-28 Israel Aerospace Ind Ltd Method and system for liquid treatment
WO2018136077A1 (en) * 2017-01-20 2018-07-26 Trevi Systems Inc. Osmotic pressure assisted reverse osmosis membrane and module
US11174877B2 (en) 2017-02-09 2021-11-16 Natural Ocean Well Co. Submerged reverse osmosis system
CN107311353A (zh) * 2017-08-17 2017-11-03 苏州富特尼水务工程有限公司 一种高盐水零排放处理系统
US10882765B2 (en) * 2017-09-25 2021-01-05 Fluid Equipment Development Company, Llc Method and system for operating a high recovery separation process
US11655547B2 (en) * 2018-04-19 2023-05-23 Sanza T. Kazadi Method for generating clean water, hydrogen, and oxygen from contaminated effluent
US11878270B2 (en) 2018-07-20 2024-01-23 Porifera, Inc. Osmosis modules having recirculation loops
CA3109230A1 (en) 2018-08-22 2020-02-27 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
CN111346512B (zh) * 2018-12-20 2023-03-31 国家能源投资集团有限责任公司 含盐水的反渗透处理方法和反渗透系统
CN111233101A (zh) * 2020-02-27 2020-06-05 广东溢达纺织有限公司 一种印染废水的处理方法及处理装置
WO2022108891A1 (en) 2020-11-17 2022-05-27 Gradiant Corporaton Osmotic methods and systems involving energy recovery
CN112723638A (zh) * 2020-12-29 2021-04-30 东莞市格美节能设备有限公司 一种高盐废水零排放处理的方法
US11534719B1 (en) 2021-07-02 2022-12-27 Gradiant Corporation Membranes with controlled porosity for serial filtration
WO2023147379A1 (en) * 2022-01-25 2023-08-03 Porifera, Inc. Alcohol removal by dilution and concentration of alcoholic solutions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110017666A1 (en) * 2004-12-06 2011-01-27 Cath Tzahi Y Systems and methods for purification of liquids
CA2785807A1 (en) * 2009-12-30 2011-07-28 Chevron U.S.A. Inc. Method and system using hybrid forward osmosis-nanofiltration (h-fonf) employing polyvalent ions in a draw solution for treating produced water
WO2012102677A1 (en) * 2011-01-24 2012-08-02 Nano-Mem Pte. Ltd. Method and apparatus for recovering water from a source water

Family Cites Families (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1128181A (en) 1965-01-20 1968-09-25 Goran Heden An apparatus for dialysis, heat exchange or gas exchange
US3721621A (en) 1969-12-02 1973-03-20 W Hough Forward-osmosis solvent extraction
FR2189091A1 (en) 1972-06-16 1974-01-25 Srti Soc Rech Tech Ind Compact exchange device for elements - contained in one of two fluids
DE2851105A1 (de) 1978-11-25 1980-05-29 Knut Stache Osmotisches meerwasserentsalzungsgeraet fuer seenotfaelle
JPS5588767A (en) 1978-12-27 1980-07-04 Tokyo Eizai Lab Composition for thermal plastic fixing bandage that can be manufactured in solventless shape and preparation of fixing bandage
US4900443A (en) 1980-03-14 1990-02-13 Memtec North America Corporation Porous aramid membranes and emulsions useful for the casting thereof
US4428720A (en) 1980-04-22 1984-01-31 Signode Corporation Apparatus for producing polypropylene sheet
US4454176A (en) 1981-10-21 1984-06-12 E. I. Du Pont De Nemours And Company Supported reverse osmosis membranes
JPS5959213A (ja) 1982-09-28 1984-04-05 Teijin Ltd 多孔質支持膜及びそれを用いた複合膜
GB8303611D0 (en) 1983-02-09 1983-03-16 Ag Patents Ltd Concentration of alcoholic beverages
US4618533A (en) 1984-11-30 1986-10-21 Millipore Corporation Porous membrane having hydrophilic surface and process
JPS62140620A (ja) 1985-12-16 1987-06-24 Toray Ind Inc 薄膜の製造方法
US4756835A (en) 1986-08-29 1988-07-12 Advanced Polymer Technology, Inc. Permeable membranes having high flux-density and low fouling-propensity
DK641887D0 (da) 1987-12-07 1987-12-07 Danske Sukkerfab Apparat til fraktionering af en vaeske i to fraktioner ved membranfiltrering
US5100556A (en) 1989-07-21 1992-03-31 The Standard Oil Company Transverse sheet membrane separation module, components thereof and related methods
US5192434A (en) 1990-06-07 1993-03-09 Dow Danmark A/S Membrane filtration apparatus and method of making a membrane filtration unit
US5238574A (en) * 1990-06-25 1993-08-24 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus having reverse osmosis membrane for concentrating solution
CA2124200A1 (en) 1991-11-25 1993-06-10 Damoder Reddy Spirally wound membrane device having three separate channels
KR960014337B1 (ko) 1993-12-20 1996-10-15 제일합섬 주식회사 복합반투막의 제조방법
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6264044B1 (en) 1997-04-11 2001-07-24 Cuno, Inc. Reinforced, three zone microporous membrane
US6413070B1 (en) 1997-04-11 2002-07-02 Cuno Incorporated System for manufacturing reinforced three-zone microporous membrane
US6536605B2 (en) 1997-06-06 2003-03-25 Koch Membrane Systems, Inc. High performance composite membrane
US6132804A (en) 1997-06-06 2000-10-17 Koch Membrane Systems, Inc. High performance composite membrane
US6037808A (en) 1997-12-24 2000-03-14 Texas Instruments Incorporated Differential SOI amplifiers having tied floating body connections
ES2258335T3 (es) 1998-06-29 2006-08-16 Microban Products Company Membranas semipermeables antimicrobianas.
ES2229664T3 (es) 1999-01-14 2005-04-16 Toray Industries, Inc. Membrana semipermeable composite, procedimiento de produccion de esta, y procedimiento de purificacion de agua con la misma.
US6755970B1 (en) 1999-06-22 2004-06-29 Trisep Corporation Back-flushable spiral wound filter and methods of making and using same
US6790425B1 (en) 1999-10-27 2004-09-14 Wiliam Marsh Rice University Macroscopic ordered assembly of carbon nanotubes
DE10022259A1 (de) 2000-05-08 2001-11-15 Sartorius Gmbh Crossflow-Filterkassetten in Form von verbesserten Weitspaltmodulen
NO314575B1 (no) 2000-08-04 2003-04-14 Statkraft Sf Semipermeabel membran og fremgangsmate for tilveiebringelse av elektrisk kraft samt en anordning
US20020148769A1 (en) 2001-04-13 2002-10-17 Andreas Deuschle Spacer for membrane stacks
US6849184B1 (en) 2001-12-12 2005-02-01 Hydration Technologies Inc. Forward osmosis pressurized device and process for generating potable water
AU2002357825A1 (en) 2001-12-12 2003-07-09 Hydration Technologies, Inc. Direct osmotic hydration devices
US6811696B2 (en) 2002-04-12 2004-11-02 Pall Corporation Hydrophobic membrane materials for filter venting applications
US7177978B2 (en) 2002-08-10 2007-02-13 Cisco Technology, Inc. Generating and merging lookup results to apply multiple features
US20040071951A1 (en) 2002-09-30 2004-04-15 Sungho Jin Ultra-high-density information storage media and methods for making the same
GB0317839D0 (en) 2003-07-30 2003-09-03 Univ Surrey Solvent removal process
US6992051B2 (en) 2003-08-28 2006-01-31 Anderson Leslie C Combination cleaning and waxing composition and method
JP4450602B2 (ja) 2003-11-06 2010-04-14 財団法人ファインセラミックスセンター カーボンナノチューブを用いたガス分離材及びその製造方法
WO2005097304A1 (en) 2004-04-08 2005-10-20 Mcmaster University Membrane stacks
US7611628B1 (en) 2004-05-13 2009-11-03 University Of Kentucky Research Foundation Aligned nanotubule membranes
US7627938B2 (en) 2004-10-15 2009-12-08 Board Of Regents, The Univeristy Of Texas System Tapered hollow metallic microneedle array assembly and method of making and using the same
EP1802384A1 (en) 2004-10-15 2007-07-04 Pall Corporation Spacer for filter modules
US9169579B2 (en) 2005-03-11 2015-10-27 New Jersey Institute Of Technology Carbon nanotube mediated membrane extraction
US7445712B2 (en) 2005-04-07 2008-11-04 Hydration Technologies Inc. Asymmetric forward osmosis membranes
US7989349B2 (en) 2005-04-15 2011-08-02 Micron Technology, Inc. Methods of manufacturing nanotubes having controlled characteristics
JP2008540070A (ja) 2005-04-29 2008-11-20 ユニバーシティー オブ ロチェスター 超薄多孔質ナノスケール膜、その製造方法および使用
KR20070017740A (ko) 2005-08-08 2007-02-13 주식회사 코오롱 방향족 폴리아미드 복합막의 제조방법
WO2007025104A2 (en) 2005-08-24 2007-03-01 The Regents Of The University Of California Membranes for nanometer-scale mass fast transport
JP4374456B2 (ja) 2006-01-05 2009-12-02 国立大学法人 東京大学 カーボンナノチューブ自立膜及びその製造方法、並びにカーボンナノチューブ膜を有する構成体及びその製造方法
US8318020B2 (en) 2006-03-16 2012-11-27 Metawater Co., Ltd. Washing method and apparatus of separation membrane
CN101489937B (zh) 2006-06-08 2016-08-10 耶鲁大学 用于渗透性溶质回收的多级塔蒸馏(mscd)方法
US8029671B2 (en) 2006-06-13 2011-10-04 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Combined membrane-distillation-forward-osmosis systems and methods of use
US7931838B2 (en) 2006-08-31 2011-04-26 Virginia Tech Intellectual Properties, Inc. Method for making oriented single-walled carbon nanotube/polymer nano-composite membranes
US8220530B2 (en) 2006-10-17 2012-07-17 Purdue Research Foundation Electrothermal interface material enhancer
GB0621247D0 (en) * 2006-10-25 2006-12-06 Univ Surrey Separation process
WO2008057842A2 (en) 2006-10-27 2008-05-15 The Regents Of The University Of California Micro-and nanocomposite support structures for reverse osmosis thin film membranes
WO2008118228A2 (en) 2006-12-05 2008-10-02 Stonybrook Water Purification Articles comprising a fibrous support
WO2008137082A1 (en) 2007-05-02 2008-11-13 Yale University Method for designing membranes for osmotically driven membrane processes
US9010547B2 (en) 2007-05-26 2015-04-21 The Research Foundation Of State University Of New York High flux fluid separation membranes comprising a cellulose or cellulose derivative layer
US8236178B2 (en) 2007-08-20 2012-08-07 Earth Renaissance Technologies, Llc Reverse osmosis water recover method
WO2009035415A1 (en) 2007-09-10 2009-03-19 National University Of Singapore Polymeric membranes incorporating nanotubes
WO2009037515A2 (en) * 2007-09-20 2009-03-26 Abdulsalam Al-Mayahi Process and systems
JP2010540215A (ja) 2007-09-21 2010-12-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ナノ複合膜ならびにその作製および使用方法
US8021549B2 (en) 2007-10-02 2011-09-20 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for producing potable water from seawater using forward osmosis
US20090098359A1 (en) 2007-10-11 2009-04-16 Waller Jr Clinton P Hydrophilic porous substrates
KR20100125227A (ko) 2007-12-17 2010-11-30 벤-구리온 유니버시티 오브 더 네게브 리서치 앤드 디벨럽먼트 어쏘러티 탈이온화 기기 및 시스템
US7799221B1 (en) 2008-01-15 2010-09-21 Macharg John P Combined axial piston liquid pump and energy recovery pressure exchanger
EP2259864A4 (en) 2008-03-20 2012-11-07 Univ Yale SPIRAL WOUND MEMBRANE MODULE FOR OSMOTIC PROMOTION
KR101575385B1 (ko) 2008-04-15 2015-12-08 나노에이치투오, 인코포레이티드. 하이브리드 나노 입자 tfc 멤브레인
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
US7901578B2 (en) 2008-04-17 2011-03-08 Chevron U.S.A. Inc. Method and system for treating an aqueous stream in the production of hydrocarbon
WO2009148959A2 (en) 2008-05-29 2009-12-10 Lawrence Livermore National Security, Llc Membranes with functionalized carbon nanotube pores for selective transport
US8216473B2 (en) 2008-06-13 2012-07-10 Solution Dynamics, Llc Apparatus and methods for solution processing using reverse osmosis
KR100877384B1 (ko) * 2008-06-30 2009-01-07 바이오원 (주) 필터링 기술을 이용한 조 글리세린의 정제방법
US20090321355A1 (en) 2008-06-30 2009-12-31 NANOASIS TECHNOLOGIES, INC., a corporation of the state of Delaware Membranes with embedded nanotubes for selective permeability
US7993524B2 (en) 2008-06-30 2011-08-09 Nanoasis Technologies, Inc. Membranes with embedded nanotubes for selective permeability
MX2011000218A (es) 2008-07-10 2011-07-29 Univ Texas Membranas de purificacion de agua con resistencia al ensuciamiento mejorada.
US8889201B2 (en) 2008-08-21 2014-11-18 Pat's Backcountry Beverages, Inc. Method of making alcohol concentrate
JP2010094641A (ja) 2008-10-20 2010-04-30 Toray Ind Inc 複合半透膜の処理方法
US20100140162A1 (en) 2008-10-24 2010-06-10 Juzer Jangbarwala Osmosis membrane with improved flux rate and uses thereof
KR20110089254A (ko) 2008-10-31 2011-08-05 도레이 카부시키가이샤 복합 반투막 및 그의 제조 방법
US8252350B1 (en) 2008-11-24 2012-08-28 Cadwalader Robert E Ethanol recovery from fermentation broth
GB0822359D0 (en) 2008-12-08 2009-01-14 Univ Surrey Solvent separation
GB0822362D0 (en) 2008-12-08 2009-01-14 Surrey Aquatechnology Ltd Improved solvent removal
US8021553B2 (en) 2008-12-18 2011-09-20 Nrgtek, Inc. Systems and methods for forward osmosis fluid purification using cloud point extraction
US20100155333A1 (en) 2008-12-18 2010-06-24 Chevron U.S.A., Inc. Process for dewatering an aqueous organic solution
US20120160753A1 (en) * 2008-12-30 2012-06-28 Nishith Vora Water desalination plant and system for the production of pure water and salt
ES2877072T3 (es) 2009-01-13 2021-11-16 Ams Tech Int 2012 Ltd Membranas estables en disolventes y en ácidos y métodos de fabricación de las mismas
US20100224561A1 (en) 2009-02-10 2010-09-09 Marcin Mark A Process for minimizing produced water brines using forward osmosis
WO2010095139A1 (en) 2009-02-19 2010-08-26 Ben-Gurion University Of The Negev Research And Development Authority Chemically resistant membranes, coatings and films and methods for their preparation
US20100212319A1 (en) 2009-02-24 2010-08-26 Mark Donovan Method and apparatus for generating power utilizing forward osmosis
US8354026B2 (en) 2009-03-09 2013-01-15 Hydration Systems, Llc Center tube configuration for a multiple spiral wound forward osmosis element
WO2010144057A1 (en) 2009-06-10 2010-12-16 National University Of Singapore Double selective-layer membranes
US8286803B2 (en) 2009-06-18 2012-10-16 The Boeing Company Methods and systems for incorporating carbon nanotubes into thin film composite reverse osmosis membranes
JP5745512B2 (ja) 2009-06-29 2015-07-08 ナノエイチツーオー・インコーポレーテッド 窒素添加剤を含む改良された混成tfcro膜
WO2011004303A1 (en) * 2009-07-09 2011-01-13 I.D.E. Technologies Ltd. A desalination system
BR112012004100A2 (pt) 2009-08-24 2016-03-08 Oasys Water Inc membrana de osmose direta
JP2011061026A (ja) 2009-09-10 2011-03-24 Toshiba Corp カーボンナノチューブ配線及びその製造方法
ES2401689T3 (es) * 2009-09-18 2013-04-23 Tmci Padovan S.P.A. Aparato y método para filtrar líquidos, en particular líquidos orgánicos
KR101144316B1 (ko) 2009-10-28 2012-05-11 한국건설기술연구원 정삼투와 역삼투 조합형 막분리 하폐수 고도처리장치와, 상기 하폐수 고도처리를 위한 막분리공정 제어장치 및 제어방법
CN104056551B (zh) 2009-10-30 2017-04-12 Oasys水有限公司 渗透分离系统和方法
KR101684852B1 (ko) * 2009-12-07 2016-12-09 플루이드 이큅먼트 디벨롭먼트 컴패니, 엘엘씨 삼투발전을 위한 장치와 방법
US8196756B2 (en) 2010-04-02 2012-06-12 NanOasis Asymmetric nanotube containing membranes
WO2011136465A2 (ko) 2010-04-30 2011-11-03 웅진케미칼 주식회사 해수담수용 정삼투막 및 그 제조방법
JP6031660B2 (ja) 2010-05-21 2016-11-24 ゼットナノ エルエルシーzNano LLC 自己集合界面活性剤構造
US20130264285A1 (en) * 2010-08-13 2013-10-10 Hatch Ltd. Process and facility to treat contaminated process water
SG188619A1 (en) 2010-09-30 2013-04-30 Porifera Inc Thin film composite membranes for forward osmosis, and their preparation methods
US20120080381A1 (en) 2010-09-30 2012-04-05 General Electric Company Thin film composite membranes incorporating carbon nanotubes
US20120103892A1 (en) 2010-10-28 2012-05-03 General Electric Company Separation module
KR101272868B1 (ko) 2010-11-11 2013-06-11 한국과학기술원 정삼투압을 이용한 저농도 발효액의 농축 방법
AU2011326019B2 (en) 2010-11-12 2016-02-25 Evoqua Water Technologies Pte. Ltd. Flow distributors for electrochemical separation
WO2012084960A1 (en) 2010-12-21 2012-06-28 Statkraft Development As Membrane system for pressure retarded osmosis (pro)
EP2663388B1 (en) 2011-01-13 2019-10-23 Carlsberg A/S An electro-membrane separation system
US20120231535A1 (en) 2011-02-18 2012-09-13 Hydration Systems Llc Organic Forward Osmosis System
JP5575015B2 (ja) * 2011-03-07 2014-08-20 株式会社日立製作所 淡水製造システム
US9022227B2 (en) 2011-03-21 2015-05-05 International Business Machines Corporation Composite membranes and methods of preparation thereof
US9216391B2 (en) 2011-03-25 2015-12-22 Porifera, Inc. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation
FR2973397B1 (fr) 2011-03-29 2015-04-24 Commissariat Energie Atomique Reseau de nanotubes metalliques
US9663734B2 (en) 2011-04-02 2017-05-30 Bcr Science Pllc Solutions of allotropes of carbon and methods of making and using the same
US20120261321A1 (en) 2011-04-18 2012-10-18 Samsung Electronics Co., Ltd. Separation membrane, method for manufacturing the same, and forward osmosis device including the same
WO2013003607A2 (en) 2011-06-28 2013-01-03 King Abdullah University Of Science And Technology Apparatus, system, and method for forward osmosis in water reuse
AU2012294503B2 (en) 2011-08-10 2017-02-02 Oasys Water, Inc. Plate and frame and spiral wound membrane modules for heat and mass transfer
FR2980982B1 (fr) 2011-10-07 2014-10-24 Commissariat Energie Atomique Dispositif comprenant un materiau composite presentant des nanotubes soumis a un champ electrique et ses utilisations
US9227360B2 (en) 2011-10-17 2016-01-05 Porifera, Inc. Preparation of aligned nanotube membranes for water and gas separation applications
US20130105383A1 (en) 2011-10-27 2013-05-02 Nanyang Technological University Nanofiltration-type thin film composite forward osmosis membrane and a method of synthesizing the same
WO2013065293A1 (ja) 2011-10-31 2013-05-10 Jfeエンジニアリング株式会社 淡水製造方法および装置
US9524483B2 (en) * 2011-11-23 2016-12-20 Advanced Aqua Group Water conversion system
US20130220581A1 (en) 2012-02-23 2013-08-29 Hydration Systems, Llc Forward osmosis with an organic osmolyte for cooling towers
KR101229482B1 (ko) * 2012-07-12 2013-02-04 한국기계연구원 하이브리드형 해수 담수화 장치 및 방법
WO2014071238A1 (en) 2012-11-02 2014-05-08 Porifera, Inc. Systems and methods for fabrication of forward osmosis membranes using roll-to-roll processing
EP2934727A4 (en) 2012-12-21 2016-08-24 Porifera Inc SEPARATION SYSTEMS, ELEMENTS AND METHODS OF SEPARATION USING MEMBRANES AND STACKED SPACING DEVICES
WO2014144704A1 (en) 2013-03-15 2014-09-18 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
US20150014248A1 (en) * 2013-07-15 2015-01-15 Hydration Systems, Llc Method and system for generating strong brines
WO2016081418A1 (en) 2014-11-17 2016-05-26 Massachusetts Institute Of Technology Minor component ratio balancing in filtration systems, and associated methods
WO2016081409A1 (en) 2014-11-17 2016-05-26 Massachussetts Institute Of Technology Flow control in multi-step filtration, and associated systems
CN106999851A (zh) 2014-11-17 2017-08-01 麻省理工学院 过滤系统中的浓度控制及相关方法
US10273439B2 (en) 2015-02-11 2019-04-30 Bedford Systems Llc Alcoholic beverage concentrate process
ES2796605T3 (es) 2015-06-24 2020-11-27 Porifera Inc Métodos de desecación de soluciones alcohólicas mediante ósmosis directa y sistemas relacionados

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110017666A1 (en) * 2004-12-06 2011-01-27 Cath Tzahi Y Systems and methods for purification of liquids
CA2785807A1 (en) * 2009-12-30 2011-07-28 Chevron U.S.A. Inc. Method and system using hybrid forward osmosis-nanofiltration (h-fonf) employing polyvalent ions in a draw solution for treating produced water
WO2012102677A1 (en) * 2011-01-24 2012-08-02 Nano-Mem Pte. Ltd. Method and apparatus for recovering water from a source water

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11759751B2 (en) 2012-12-21 2023-09-19 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US11571660B2 (en) 2015-06-24 2023-02-07 Porifera, Inc. Methods of dewatering of alcoholic solutions via forward osmosis and related systems
CN105800851A (zh) * 2016-05-23 2016-07-27 海博伦(苏州)环境科技股份有限公司 正渗透汲取液及其循环再生方法和应用
CN106422780A (zh) * 2016-11-02 2017-02-22 中国石油大学(华东) 一种可连续操作的循环式正渗透高盐有机废水处理系统
CN106422780B (zh) * 2016-11-02 2022-08-30 中国石油大学(华东) 一种可连续操作的循环式正渗透高盐有机废水处理系统
CN110290854A (zh) * 2016-12-23 2019-09-27 波里费拉公司 通过正向渗透除去醇溶液的组分和相关系统
US11541352B2 (en) 2016-12-23 2023-01-03 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems
CN107698084A (zh) * 2017-10-17 2018-02-16 广州雅津水处理设备有限公司 一种降低废水浓盐量的过滤系统
CN107698084B (zh) * 2017-10-17 2021-06-04 广州雅津水处理设备有限公司 一种降低废水浓盐量的过滤系统
CN111994999A (zh) * 2019-05-27 2020-11-27 国家能源投资集团有限责任公司 一种正渗透耦合反渗透的浓缩系统及其使用方法
CN112456687A (zh) * 2020-12-16 2021-03-09 北京城市排水集团有限责任公司 一种垃圾渗滤液浓缩液减量化方法及系统
CN112456687B (zh) * 2020-12-16 2024-03-12 北京城市排水集团有限责任公司 一种垃圾渗滤液浓缩液减量化方法及系统

Also Published As

Publication number Publication date
AU2014228787B2 (en) 2018-05-10
US9861937B2 (en) 2018-01-09
US20200086274A1 (en) 2020-03-19
WO2014144704A1 (en) 2014-09-18
CN105142762B (zh) 2019-05-31
EP2969145A4 (en) 2017-01-25
CN105188889A (zh) 2015-12-23
EP2969145A1 (en) 2016-01-20
AU2014228787A1 (en) 2015-10-08
US10500544B2 (en) 2019-12-10
US20160038880A1 (en) 2016-02-11
WO2014144778A1 (en) 2014-09-18
CN105188889B (zh) 2018-01-19
US20160002074A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
CN105142762A (zh) 包含多级净化的渗透驱动膜系统的改进
US20220315469A1 (en) Cross current staged reverse osmosis
CN108778469B (zh) 渗透压辅助的反渗透法及其使用方法
US9981226B2 (en) Method of solvent recovery from a dilute solution
US10758869B2 (en) Fluid purification by forward osmosis, ion exchange and re-concentration
TWI393678B (zh) Desalination system
US20130233797A1 (en) Methods for osmotic concentration of hyper saline streams
JP2018001111A (ja) 塩水の淡水化処理方法、および、塩水の淡水化処理システム
US20170232392A1 (en) Systems and methods for offshore desalination and/or oil recovery
KR102423788B1 (ko) 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
US20180186663A1 (en) Water treatment apparatus using reverse osmosis
Mo et al. Semi-closed reverse osmosis (SCRO): A concise, flexible, and energy-efficient desalination process
US20170001883A1 (en) Water treatment system and water treatment method
WO2020041542A1 (en) Liquid solution concentration system comprising isolated subsystem and related methods
KR101402346B1 (ko) 역삼투 해수담수화 방법
KR20170069614A (ko) 염수 담수화 시스템
US20220177340A1 (en) Pure-water production device and pure-water production method
CN112108001B (zh) 一种反渗透系统及其浓缩含锂盐水的方法
KR101030192B1 (ko) 결정화 공정을 채용한 해수 내 보론의 제거방법
CN111346512A (zh) 含盐水的反渗透处理方法和反渗透系统
US20200289986A1 (en) Concurrent desalination and boron removal (cdbr) process
KR20140128496A (ko) 초고염도수의 삼투 에너지 회수가 가능한 담수화 시스템 및 방법
Altaee et al. Effect of the Draw Solution on the Efficiency of Two-Stage FO-RO/BWRO for Seawater and Brackish Water Desalination
WO2023028281A1 (en) Harnessing metal ions from brines
WO2023069020A2 (en) Apparatus and method of semi-closed reverse osmosis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant