CN105130488B - 可设计增强厚度和密度的多孔隔热材料及其制备方法 - Google Patents

可设计增强厚度和密度的多孔隔热材料及其制备方法 Download PDF

Info

Publication number
CN105130488B
CN105130488B CN201510496167.6A CN201510496167A CN105130488B CN 105130488 B CN105130488 B CN 105130488B CN 201510496167 A CN201510496167 A CN 201510496167A CN 105130488 B CN105130488 B CN 105130488B
Authority
CN
China
Prior art keywords
heat insulation
porous heat
insulation material
matrix
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510496167.6A
Other languages
English (en)
Other versions
CN105130488A (zh
Inventor
王晓艳
胡子君
孙陈诚
李俊宁
张宏波
杨海龙
吴文军
徐云辉
王晓婷
陈育阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
China Academy of Launch Vehicle Technology CALT
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Aerospace Research Institute of Materials and Processing Technology filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201510496167.6A priority Critical patent/CN105130488B/zh
Publication of CN105130488A publication Critical patent/CN105130488A/zh
Application granted granted Critical
Publication of CN105130488B publication Critical patent/CN105130488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种可设计增强厚度和密度的多孔隔热材料及其制备方法,该多孔隔热材料包括石英纤维、莫来石纤维、淀粉、氮化硼和酚醛树脂粉。方法包括步骤:(1)制备并加工多孔隔热材料作为基体;(2)对基体材料四周进行预先封装处理;(3)确定酚醛树脂浸渍液的质量;(4)将步骤(2)所得多孔隔热材料加入到步骤(3)所得酚醛树脂浸渍液中进行常压浸渍,然后晾置;(5)对步骤(4)所得材料加压固化,得到多孔隔热材料。本发明使得材料增强厚度可调,内外增强厚度一致,达到了制备工艺稳定、可靠的效果;避免了由于浸渍区域与未浸渍区域受热后收缩率不同,易造成材料变形和裂纹的问题,得到平整,无分层的增强隔热材料。

Description

可设计增强厚度和密度的多孔隔热材料及其制备方法
技术领域
本发明属于隔热材料及制备技术领域,具体涉及一种可设计增强厚度和密度的多孔隔热材料及其制备方法。
背景技术
航天飞行器在再入过程中会经历严酷的气动加热,为保证飞行器主体结构及内部仪器仪表的安全,飞行器外部必须使用高效隔热材料来阻止外部热流向内部传递。
刚性陶瓷隔热瓦以其良好的隔热性能和力学性能,早在19世纪80年代就被美国成功用作航天飞机的热防护材料而备受瞩目。另外,前苏联“暴风雪号”航天飞机的大面积也采用了隔热瓦,法国戴斯马科斯公司也曾为hermes航天飞机计划研制隔热瓦等。经过几代的研制和改进,陶瓷瓦无论在力学性能方面,还是隔热性能方面都有了较大提高,目前仍是高超声速飞行器热防护的重要材料方案。但是,隔热瓦在经历尖锐物碰撞后容易形成划痕、裂纹、凹坑和缺角等缺陷。2013年美国“哥伦比亚号”航天飞机失事的主要原因是其左翼前缘的隔热瓦受到发射过程中从燃料储箱上脱落的泡沫隔热板的撞击而破坏,使得航天飞机在再入大气层时,高温气体进入飞行器内部而引起灾难性后果。提高隔热材料的表面/基体强度,对于高超声速飞行器的发展意义重大。
采用树脂浸渍处理可有效提高多孔隔热材料基体的强度。美国专利NO.56723989中涉及到一种低密度树脂浸渍陶瓷材料。该材料基体采用可重复使用隔热材料,通过真空浸渍树脂,可制备全部浸渍陶瓷材料。另外,通过真空浸渍树脂,并通过多余溶剂脱除,可制备梯度陶瓷材料。以AETB-20基体为例,全部浸渍酚醛树脂后,其密度由基体的0.14g/cm3,增加到0.23g/cm3,压缩强度也由基体的0.77MPa,增加到1.45MPa,拉伸强度也由基体的0.43MPa,增加到1.22MPa。美国加利福尼亚大学和NASA埃姆斯研究中心的研究者们,以多孔纤维类陶瓷材料作为基体,采用真空浸渍硅树脂的方法,进行了基体增强。还有研究者,也以不同种类的多孔纤维类陶瓷材料作为基体,以酚醛树脂作为填充物,采用真空浸渍的方法制备增强材料。
以上几个实例在制备工艺中浸渍方法基本采用真空浸渍。多孔基体材料经过树脂浸渍后,密度有所上升,强度增大。
发明内容
本发明克服传统隔热材料抗冲击能力差,在安装和使用的过程中容易受损的问题,采用酚醛树脂浸渍固化的方法,通过封装、常压浸渍,制备可设计增强厚度和密度的多孔隔热材料。
实现本发明目的的技术方案:一种可设计增强厚度和密度的多孔隔热材料,该多孔隔热材料包括石英纤维、莫来石纤维、淀粉、氮化硼和酚醛树脂粉;其中,石英纤维含量为5~38wt%,莫来石纤维含量为3~35wt%,氮化硼含量为0.5~10wt%,淀粉含量为1~10wt%,酚醛树脂粉含量为8~70wt%。
本发明所述的一种可设计增强厚度和密度的多孔隔热材料的制备方法,其包括如下步骤:
(1)制备并加工多孔隔热材料作为基体;
所述的多孔隔热材料包括石英纤维、莫来石纤维、淀粉、氮化硼;其中,石英纤维含量为10~80wt%;莫来石纤维含量为10~70wt%;氮化硼含量为2~20wt%;淀粉含量为2~20wt%;
将上述混合物加入40~100倍质量的去离子水中搅拌均匀、真空抽滤,得到湿坯,然后经60~150℃干燥0.5~48小时,得到干坯,在1200~1500℃空气或者氮气气氛中常压烧结2~12小时,得到多孔隔热材料,最后经过机械加工成立方体形状作为待浸渍的基体,此多孔隔热材料基体的密度为0.3~0.45g/cm3,材料厚度为5~25mm;
(2)对步骤(1)所得的基体材料四周进行预先封装处理;
(3)确定酚醛树脂浸渍液的质量,即通过预设的材料密度与基体密度之差,得到酚醛树脂粉的质量;将酚醛树脂粉加入到无水乙醇中搅拌均匀,其中酚醛树脂与无水乙醇的质量比为(5~110):100;
(4)将步骤(2)所得多孔隔热材料加入到步骤(3)所得酚醛树脂浸渍液中进行常压浸渍,然后晾置;
(5)对步骤(4)所得材料加压固化,得到多孔隔热材料。
如上所述的一种可设计增强厚度和密度的多孔隔热材料的制备方法,其步骤(2)所述的对基体材料四周进行预先封装处理,具体做法是:留取待浸渍面,将垂直于待浸渍面的四面密封,使其能够充分隔离浸渍液体,这样,材料在常压浸渍过程中就必须通过浸渍面的毛细管力进行浸渍吸收,保证了材料周围与中间浸渍厚度的一致性。
如上所述的一种可设计增强厚度和密度的多孔隔热材料的制备方法,其步骤(4)所述的将多孔隔热材料加入到酚醛树脂浸渍液中进行常压浸渍,具体做法是:将步骤(2)中封装好的材料的待浸渍面垂直缓慢放入模具中,间隔2~20s后取出,并重复继续垂直缓慢放入,间隔2~20s后取出,直至酚醛树脂完全被吸收后,将材料取出,并保持浸渍面朝下,晾置,待用。
如上所述的一种可设计增强厚度和密度的多孔隔热材料的制备方法,其步骤(5)所述的加压固化,得到多孔隔热材料,具体做法是:将步骤(4)所得材料的浸渍面朝下,放在双面加热的压机固化,压力选择0.1~1MPa,固化温度135~220℃,固化时间5~10h,得到多孔隔热材料。
本发明的效果在于:本发明由于采用了常压浸渍且四周密封措施,使得材料增强厚度可调,内外增强厚度一致,达到了制备工艺稳定、可靠的效果。本发明由于采用了树脂浸渍、固化,在多孔材料表面形成有效增强层,增强层部分压缩强度为20.23MPa,拉伸强度为5.32MPa,弯曲强度为26.83MPa,分别是基体隔热材料的19倍、14倍和4倍。含3mm表面增强层的隔热材料经1.5焦耳冲击力后无明显破坏痕迹,材料表面抗冲击性能明显提高。本发明由于采用了双面加热压机固化处理,避免了由于浸渍区域与未浸渍区域受热后收缩率不同,易造成材料变形和裂纹的问题,得到平整,无分层的增强隔热材料。
附图说明
图1为基体隔热材料和含表面增强层隔热材料经历1.5J冲击力后的照片;
图2为含表面增强层材料周围部分与中间部分浸渍情况对比照片。
具体实施方式
下面结合附图和具体实施例对本发明所述的一种可设计增强厚度和密度的多孔隔热材料及其制备方法作进一步描述。
实施例1
本发明所述可设计增强厚度和密度的多孔隔热材料,基体材料选用多孔纤维类隔热材料,具体成分包含:石英纤维240g、莫来石纤维900g、氮化硼粉60g、淀粉80g。将上述混合物加入90倍质量的去离子水中搅拌均匀、真空抽滤,得到湿坯,然后经过100℃干燥24小时,得到干坯,在1450℃空气气氛中常压烧结8小时,得到多孔隔热材料基体。
基体的基本性能为:密度0.4g/cm3,室温热导率0.07W/(m·k),压缩强度1.04MPa,拉伸强度0.37MPa,弯曲强度6.0MPa。
基体材料经加工、封装后,放入含2016g酚醛树脂粉的2300g无水乙醇溶液浸渍,晾置和固化后(固化温度165℃、固化压力0.3MPa、固化时间5h),获得增强隔热材料,增强厚度为总厚度的~9/10,此时材料的密度为1.03g/cm3,室温热导率为0.13W/m·k,压缩强度为19.12MPa,拉伸强度为3.89MPa,弯曲强度为25.63MPa,材料经1.5J冲击力后无明显破坏情况。
实施例2
本发明所述的可设计增强厚度和密度的多孔隔热材料,基体材料选用多孔纤维类隔热材料,具体成分包含:石英纤维711g、莫来石纤维230g、氮化硼粉35g、淀粉80g。将上述混合物加入40倍质量的去离子水中搅拌均匀、真空抽滤,得到湿坯,然后经过60℃干燥48小时,得到干坯,在1250℃空气气氛中常压烧结4小时,得到多孔隔热材料基体。
基体的基本性能:密度0.33g/cm3,室温热导率0.051W/(m·k),压缩强度1.76MPa,拉伸强度0.78MPa,弯曲强度9.55MPa。
基体材料经加工、封装后,放入含1920g酚醛树脂粉的2100g无水乙醇溶液浸渍,晾置和固化后(固化温度135℃、固化压力0.4MPa、固化时间10h),获得表面增强隔热材料,增强厚度为总厚度的~4/5,此时材料的密度为0.93g/cm3,室温热导率为0.11W/(m·k),压缩强度为9.33MPa,拉伸强度为5.32MPa,弯曲强度为26.83MPa,经1.5J冲击力后无明显破坏情况。
实施例3
本发明所述的可设计增强厚度和密度的多孔隔热材料,基体材料选用多孔纤维类隔热材料,具体成分包含:石英纤维670g、莫来石纤维271g、氮化硼粉35g、淀粉80g。将上述混合物加入50倍质量的去离子水中搅拌均匀、真空抽滤,得到湿坯,然后经过150℃干燥0.5小时,得到干坯,在1300℃空气气氛中常压烧结6小时,得到多孔隔热材料基体。
基体的其基本性能:密度为0.33g/cm3,室温热导率为0.051W/(m·k),压缩强度为1.76MPa,拉伸强度为0.78MPa,弯曲强度为9.55MPa。
基体材料经加工、封装后,放入含736g酚醛树脂粉的900g无水乙醇溶液浸渍,晾置和固化后(固化温度150℃、固化压力0.3MPa、固化时间6h),获得表面增强隔热材料,增强厚度为总样件厚度的~7/20此时材料的密度为0.56g/cm3,室温热导率为0.053W/(m·k),压缩强度为2.19MPa,拉伸强度为0.84MPa,弯曲强度为10.35MPa,经1.5J冲击力后无明显破坏情况。
实施例4
本发明所述的可设计增强厚度和密度的多孔隔热材料,基体材料选用多孔纤维类隔热材料,具体成分包含:石英纤维495g、莫来石纤维660g、氮化硼粉45g、淀粉80g。将上述混合物加入80倍质量的去离子水中搅拌均匀、真空抽滤,得到湿坯,然后经过80℃干燥36小时,得到干坯,在1350℃空气气氛中常压烧结7小时,得到多孔隔热材料基体。
基体的基本性能为:密度为0.4g/cm3,室温热导率为0.07W/(m·k),压缩强度为1.14MPa,拉伸强度为0.39MPa,弯曲强度为6.3MPa。
基体材料经加工、封装后,放入含640g酚醛树脂粉的600g无水乙醇溶液浸渍,晾置和固化后(固化温度170℃、固化压力0.1MPa、固化时间4h),获得增强隔热材料,增强厚度为总厚度的~1/5,此时材料的密度为0.6g/cm3,室温热导率为0.083W/(m·k),压缩强度为1.44MPa,拉伸强度为0.42MPa,弯曲强度为7.23MPa,经1.5J冲击力后无明显破坏情况。
实施例5
本发明所述的一种可设计增强厚度和密度的多孔隔热材料的制备方法,其包括如下步骤:
(1)制备并加工多孔隔热材料作为基体;
所述的多孔隔热材料包括石英纤维、莫来石纤维、淀粉、氮化硼;其中,石英纤维含量为50wt%;莫来石纤维含量为20wt%;氮化硼含量为10wt%;淀粉含量为20wt%;
将上述混合物加入100倍质量的去离子水中搅拌均匀、真空抽滤,得到湿坯,然后经120℃干燥10小时,得到干坯,在1200℃空气或者氮气气氛中常压烧结12小时,得到多孔隔热材料,最后经过机械加工成立方体形状作为待浸渍的基体,此多孔隔热材料基体的密度为0.3g/cm3,材料厚度为5mm;
(2)对步骤(1)所得的基体材料四周进行预先封装处理;具体做法是:留取待浸渍面,将垂直于待浸渍面的四面密封,使其能够充分隔离浸渍液体,这样,材料在常压浸渍过程中就必须通过浸渍面的毛细管力进行浸渍吸收,保证了材料周围与中间浸渍厚度的一致性。
(3)确定酚醛树脂浸渍液的质量,即通过预设的材料密度与基体密度之差,得到酚醛树脂粉的质量;将酚醛树脂粉加入到无水乙醇中搅拌均匀,其中酚醛树脂与无水乙醇的质量比为110:100;
(4)将步骤(2)所得多孔隔热材料加入到步骤(3)所得酚醛树脂浸渍液中进行常压浸渍,然后晾置;将步骤(2)中封装好的材料的待浸渍面垂直缓慢放入模具中,间隔3s后取出,并重复继续垂直缓慢放入,间隔3s后取出,直至酚醛树脂完全被吸收后,将材料取出,并保持浸渍面朝下,晾置,待用。
(5)对步骤(4)所得材料加压固化,得到多孔隔热材料。具体做法是:将步骤(4)所得材料的浸渍面朝下,放在双面加热的压机固化,压力选择1MPa,固化温度220℃,固化时间5h,得到多孔隔热材料。
实施例6
本发明所述的一种可设计增强厚度和密度的多孔隔热材料的制备方法,其包括如下步骤:
(1)制备并加工多孔隔热材料作为基体;
所述的多孔隔热材料包括石英纤维、莫来石纤维、淀粉、氮化硼;其中,石英纤维含量为30wt%;莫来石纤维含量为50wt%;氮化硼含量为15wt%;淀粉含量为5wt%;
将上述混合物加入40倍质量的去离子水中搅拌均匀、真空抽滤,得到湿坯,然后经120℃干燥10小时,得到干坯,在1500℃空气或者氮气气氛中常压烧结2小时,得到多孔隔热材料,最后经过机械加工成立方体形状作为待浸渍的基体,此多孔隔热材料基体的密度为0.45g/cm3,材料厚度为25mm;
(2)对步骤(1)所得的基体材料四周进行预先封装处理;具体做法是:留取待浸渍面,将垂直于待浸渍面的四面密封,使其能够充分隔离浸渍液体,这样,材料在常压浸渍过程中就必须通过浸渍面的毛细管力进行浸渍吸收,保证了材料周围与中间浸渍厚度的一致性。
(3)确定酚醛树脂浸渍液的质量,即通过预设的材料密度与基体密度之差,得到酚醛树脂粉的质量;将酚醛树脂粉加入到无水乙醇中搅拌均匀,其中酚醛树脂与无水乙醇的质量比为5:100;
(4)将步骤(2)所得多孔隔热材料加入到步骤(3)所得酚醛树脂浸渍液中进行常压浸渍,然后晾置;将步骤(2)中封装好的材料的待浸渍面垂直缓慢放入模具中,间隔20s后取出,并重复继续垂直缓慢放入,间隔20s后取出,直至酚醛树脂完全被吸收后,将材料取出,并保持浸渍面朝下,晾置,待用。
(5)对步骤(4)所得材料加压固化,得到多孔隔热材料。具体做法是:将步骤(4)所得材料的浸渍面朝下,放在双面加热的压机固化,压力选择0.1MPa,固化温度135℃,固化时间10h,得到多孔隔热材料。
图1为基体隔热材料和含增强层隔热材料经历1.5J冲击力后的照片。照片表明:基体隔热材料显示出明显小球撞击痕迹,含表面增强层材料无明显痕迹,说明材料进行表面增强后抗冲击能力好。
图2为含增强层材料周围部分与中间切开部分浸渍情况对比的照片。照片表明周围部分与中间部分浸渍厚度比较一致,说明此浸渍效果好、工艺可控。
本发明通过增强的方法,解决了隔热材料表面抗冲击强度低、易损坏的问题。本发明的隔热材料基体是以多孔纤维类陶瓷隔热材料为基体,以酚醛树脂为增强体。本发明制备工艺简单、可靠,可实现隔热材料不同厚度和密度的增强,对多孔隔热材料增强效果明显,增强层部分的压缩强度为20.23MPa,拉伸强度为5.32MPa,弯曲强度为26.83MPa,分别是基体隔热材料的19倍、14倍和4倍,且材料表面抗冲击性能明显提高,带有3mm表面增强层材料,经1.5焦耳冲击力后无明显破坏痕迹,可用作临近空间飞行器的热防护。

Claims (4)

1.一种可设计增强厚度和密度的多孔隔热材料的制备方法,其特征在于:该方法包括如下步骤:
(1)制备并加工多孔隔热材料作为基体;
所述的多孔隔热材料包括石英纤维、莫来石纤维、淀粉、氮化硼;其中,石英纤维含量为10~80wt%;莫来石纤维含量为10~70wt%;氮化硼含量为2~20wt%;淀粉含量为2~20wt%;
将上述混合物加入40~100倍质量的去离子水中搅拌均匀、真空抽滤,得到湿坯,然后经60~150℃干燥0.5~48小时,得到干坯,在1200~1500℃空气或者氮气气氛中常压烧结2~12小时,得到多孔隔热材料,最后经过机械加工成立方体形状作为待浸渍的基体,此多孔隔热材料基体的密度为0.3~0.45g/cm3,材料厚度为5~25mm;
(2)对步骤(1)所得的基体材料四周进行预先封装处理;
(3)确定酚醛树脂浸渍液的质量,即通过预设的材料密度与基体密度之差,得到酚醛树脂粉的质量;将酚醛树脂粉加入到无水乙醇中搅拌均匀,其中酚醛树脂与无水乙醇的质量比为(5~110):100;
(4)将步骤(2)所得多孔隔热材料加入到步骤(3)所得酚醛树脂浸渍液中进行常压浸渍,然后晾置;具体做法是:将步骤(2)中封装好的材料的待浸渍面垂直缓慢放入模具中,间隔2~20s后取出,并重复继续垂直缓慢放入,间隔2~20s后取出,直至酚醛树脂完全被吸收后,将材料取出,并保持浸渍面朝下,晾置,待用;
(5)对步骤(4)所得材料加压固化,得到多孔隔热材料。
2.根据权利要求1所述的一种可设计增强厚度和密度的多孔隔热材料的制备方法,其特征在于:步骤(2)所述的对基体材料四周进行预先封装处理,具体做法是:留取待浸渍面,将垂直于待浸渍面的四面密封,使其能够充分隔离浸渍液体,这样,材料在常压浸渍过程中就必须通过浸渍面的毛细管力进行浸渍吸收,保证了材料周围与中间浸渍厚度的一致性。
3.根据权利要求1所述的一种可设计增强厚度和密度的多孔隔热材料的制备方法,其特征在于:步骤(5)所述的加压固化,得到多孔隔热材料,具体做法是:将步骤(4)所得材料的浸渍面朝下,放在双面加热的压机固化,压力选择0.1~1MPa,固化温度135~220℃,固化时间5~10h,得到多孔隔热材料。
4.根据权利要求1至3所述的任意一种制备方法得到的可设计增强厚度和密度的多孔隔热材料,其特征在于:该多孔隔热材料包括石英纤维、莫来石纤维、淀粉、氮化硼和酚醛树脂粉;其中,
石英纤维含量为5~38wt%,
莫来石纤维含量为3~35wt%,
氮化硼含量为0.5~10wt%,
淀粉含量为1~10wt%,
酚醛树脂粉含量为8~70wt%。
CN201510496167.6A 2015-08-13 2015-08-13 可设计增强厚度和密度的多孔隔热材料及其制备方法 Active CN105130488B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510496167.6A CN105130488B (zh) 2015-08-13 2015-08-13 可设计增强厚度和密度的多孔隔热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510496167.6A CN105130488B (zh) 2015-08-13 2015-08-13 可设计增强厚度和密度的多孔隔热材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105130488A CN105130488A (zh) 2015-12-09
CN105130488B true CN105130488B (zh) 2017-11-24

Family

ID=54716133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510496167.6A Active CN105130488B (zh) 2015-08-13 2015-08-13 可设计增强厚度和密度的多孔隔热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105130488B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848200A (zh) * 2020-08-13 2020-10-30 中钢南京环境工程技术研究院有限公司 一种含有纳米微孔结构的氧化铝纤维制品的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101259766B (zh) * 2008-04-18 2010-06-09 哈尔滨工业大学 聚合物/多孔陶瓷结构功能一体化梯度复合材料及其制备方法
CN102199042A (zh) * 2011-03-28 2011-09-28 航天材料及工艺研究所 一种轻质刚性陶瓷隔热瓦及其制备方法

Also Published As

Publication number Publication date
CN105130488A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN107189354B (zh) 一种石墨烯纳米片增强碳纤维复合材料的制备方法
CN109638445A (zh) 一种耐高温泡沫a夹层复合材料天线罩及其制备方法
US8088237B2 (en) Method for forming or curing polymer composites
CN108517102A (zh) 一种轻质防隔热复合材料及其制备方法
CN103737988A (zh) 基于碳纤维纸的蜂窝芯及其制备方法
CN106129615B (zh) 宽频透波双层复合陶瓷天线罩罩体及其制备方法
CN109454894A (zh) 一种高效隔热复合型耐烧蚀防热层及其制备方法
CN108995254A (zh) 一种纳米孔防热复合材料与承载结构共固化成型方法
CN109638447A (zh) 一种水密隔热天线罩及其制备方法
CN104552727A (zh) 一种碳纤维制品的制备方法
CN109251340A (zh) 一种防隔热一体化复合材料及其制备方法
CN108705829A (zh) 一种轻质环氧泡沫基夹芯板及其制备方法
CN105034407B (zh) 一种双连续树脂基空心微珠复合泡沫材料的制备方法
CN105130488B (zh) 可设计增强厚度和密度的多孔隔热材料及其制备方法
CN105601854A (zh) 一种刚性结构增强酚醛气凝胶热屏蔽材料的制备方法
ITTO20110656A1 (it) Composizione per la fabbricazione di un materiale espanso a base di tannini, materiale espanso da essa ottenibile, e relativo procedimento di fabbricazione.
CN108117370A (zh) 一种二氧化硅气凝胶隔热板的常压制备方法
CN110408167B (zh) 气凝胶及其制备方法和应用、高温隔热材料或轻质防/隔热材料
CN112920449A (zh) 一种具有极低收缩率的低密高强酚醛树脂气凝胶常压干燥制备方法
CN103724030A (zh) 一种碳纤维增强多孔复合材料及其制备方法
RU2223988C2 (ru) Полимерное связующее, композиционный материал на его основе и способ его изготовления
CN113637287A (zh) 一种航天烧蚀防热短切纤维/酚醛高密度预混料、手工预混制备方法及其复合材料
CN105061981B (zh) 一种酚醛浸渍陶瓷纤维骨架复合材料及其制备方法
CN102011713A (zh) 一种风力发电机叶片的芯材设计
CN103231522A (zh) 一种复合材料成型的真空导入工艺及复合材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant