CN105126629A - 一种中空纤维膜贯通孔隙率的测试方法和装置 - Google Patents

一种中空纤维膜贯通孔隙率的测试方法和装置 Download PDF

Info

Publication number
CN105126629A
CN105126629A CN201510569827.9A CN201510569827A CN105126629A CN 105126629 A CN105126629 A CN 105126629A CN 201510569827 A CN201510569827 A CN 201510569827A CN 105126629 A CN105126629 A CN 105126629A
Authority
CN
China
Prior art keywords
membrane
gas
membrane module
closed container
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510569827.9A
Other languages
English (en)
Other versions
CN105126629B (zh
Inventor
李晓明
吕经烈
张慧峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Seawater Desalination and Multipurpose Utilization SOA
Original Assignee
Tianjin Institute of Seawater Desalination and Multipurpose Utilization SOA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Seawater Desalination and Multipurpose Utilization SOA filed Critical Tianjin Institute of Seawater Desalination and Multipurpose Utilization SOA
Priority to CN201510569827.9A priority Critical patent/CN105126629B/zh
Publication of CN105126629A publication Critical patent/CN105126629A/zh
Application granted granted Critical
Publication of CN105126629B publication Critical patent/CN105126629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种中空纤维膜贯通孔隙率的测试方法和装置,其方法是先称量浸润液充满膜无效孔和贯通孔后膜组件的质量m1;再称量膜达到泡点压力前,即湿曲线确定膜最大孔径前,随着压力升高从膜中渗出和残留在膜表面的浸润液的质量m2;最后称量膜贯通孔中的浸润液被高压气体完全排出后膜组件的质量m3。通过m1、m2和m3的差值能够得出膜贯通孔中浸润液的质量,除以浸润液的密度ρ得到膜贯通孔中浸润液的体积,再除以中空纤维膜的体积V,就能得到膜贯通孔隙率。本发明通过泡点测量步骤,不仅明确了中空纤维膜贯通孔的测量起点,还有效地去除膜表面的残留浸润液,其测量数据准确性高,方法简单,实用性较强。

Description

一种中空纤维膜贯通孔隙率的测试方法和装置
技术领域
本发明涉及多孔膜结构测量与表征技术领域,特别是涉及一种中空纤维膜贯通孔隙率的测试方法和装置。
背景技术
孔隙率是多孔膜性能的重要指标,直接影响膜应用性能。孔隙率一般定义为膜孔总体积占膜总体积的百分数,其中,膜孔既包括作为有效孔的贯通孔,也包括回转孔、盲孔和死孔、球泡等无效孔结构。
对于多孔膜,只有贯通孔才能决定膜分离效果,因此孔径的严格定义应该是贯通于膜两侧的孔道中的孔喉直径。由于无效孔结构的存在,按照一般定义计算的孔隙率与膜实际有效孔隙率普遍存在偏差,因此,采用有效孔隙率的概念:即膜贯通孔总体积占膜总体积的百分数,对于膜分离过程的设计和预测更为准确。
膜孔隙率测试方法包括直接和间接两种。直接法主要是质量法和电镜法,质量法有两种计算方法,对于不采用添加剂的制膜工艺,根据膜表观密度(单位体积膜的质量)和膜材料的密度计算,即密度法;对于采用添加剂的制膜工艺,先将膜用溶液浸润,再根据膜浸润前后的质量差计算,即浸润称重法。电镜法在电镜图像的基础上,采用图像分析软件对孔径进行统计得到孔隙率。间接法是利用与孔径有关的物理现象如毛细管力(压汞法)和毛细凝聚(氮气吸附法),通过测试相关参数,再根据公式计算孔隙率。
根据上述方法的测量原理,质量法、电镜法、压汞法和氮气吸附法无法区别贯通孔和无效孔,孔隙率结果误差较大。
发明内容
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种中空纤维膜贯通孔隙率的测试方法和装置,依此测量的膜孔隙率具有结果准确、数据重现性高等特点。
为实现本发明的目的所采用的技术方案是:一种中空纤维膜贯通孔隙率的测试方法,包括以下步骤:
(1)膜组件制备:把疏水性中空纤维膜制备成膜组件,或者将亲水性中空纤维膜进行除杂、干燥处理后制备成膜组件;计算中空纤维膜体积V;
(2)运行干曲线:将步骤(1)制备的膜组件与气压系统密闭连接,将膜组件放入密闭容器中并通入气体;缓慢提高通入气体的压力,记录透过膜组件的气体流量和气体压力,得到干曲线;
(3)膜组件浸润:将所述膜组件浸泡在浸润液中;浸润完全后,取出膜组件,称量其质量m1
(4)泡点测量:将步骤(3)的膜组件与气压系统密闭连接,并将膜组件放入密闭容器中,密闭容器中盛放有与步骤(3)相同的所述浸润液;缓慢提高气压系统输入的气体压力,观察密闭容器中有无连续气泡溢出;当中空纤维膜表面有连续气泡出现时,记录气体压力值,即为泡点压力;
(5)运行湿曲线:重新将步骤(4)的膜组件放入所述浸润液中;浸润完全后,把膜组件与气压系统密闭连接,将膜组件悬空于密闭容器内部;缓慢提高气压系统通入的气体压力;随着压力升高,浸润液不断从膜表面渗出,落入密闭容器中;当气体压力达到步骤(4)中所述泡点压力时,称量、计算密闭容器增加的重量m2,即为膜组件渗出的浸润液质量;继续提高气体压力,通过气体流量计记录透过膜组件的气体流量,记录透过膜组件的气体流量和气体压力,得到湿曲线;当气体流量与压力呈线性增大趋势,并且湿曲线与步骤(2)中所述的干曲线重合时,称量膜组件的质量m3,测量结束;
(6)孔隙率计算:按照以下公式计算中空纤维膜贯通孔隙率:
其中,m1——充分浸润的膜组件的质量,g;
m2——压力升至泡点压力时,从膜样品中渗出浸润液的质量,g;
m3——湿曲线与干曲线重合时膜组件的质量,g;
ρ——浸润液密度,g/cm3
V——中空纤维膜体积,cm3
优选的,步骤(1)中所述中空纤维膜有效长度为50mm~100mm,膜外径为483um~1722um,膜壁厚为:58um~443um,膜平均孔径为0.05um~0.40um。
优选地,步骤(3)、(4)、(5)中使用的所述浸润液为水、乙二醇、正/异丙醇、全氟聚醚或碳氟表面活性剂。
优选地,步骤(2)、(4)、(5)中通入的气体为氮气。
优选地,所述氮气压力为0bar~10bar。
优选地,步骤(3)、(5)中对所述中空纤维膜进行超声浸润,超声频率为50kHz~100kHz,浸润时间5min~20min。
本发明还提供了一种中空纤维膜贯通孔隙率的测试装置,包括气压系统、干曲线测试单元、泡点压力测试单元和湿曲线测试单元;所述气压系统包括气体钢瓶、减压阀和气体管路;所述气体钢瓶的出气口安装有减压阀;所述干曲线测试单元、泡点压力测试单元和湿曲线测试单元分别通过所述气体管路与所述气体钢瓶并联。
所述干曲线测试单元包括密闭容器一,所述密闭容器一的进气端与所述气体管路连通;所述密闭容器一进气端的管路上还安装有气体压力表、进气控制阀;所述密闭容器一出气端的管路上安装有气体流量计。
所述泡点压力测试单元包括密闭容器二,所述密闭容器二的进气端与所述气体管路连通;所述密闭容器二进气端的管路上还安装有气体压力表和进气控制阀。
所述湿曲线测试单元包括密闭容器三,所述密闭容器三的进气端与所述气体管路连通;所述密闭容器三进气端的管路上还安装有气体压力表、进气控制阀;所述密闭容器三出气端的管路上安装有气体流量计;所述密闭容器三的下方设置有精密天平。
本发明的工作原理是基于三个质量值m1、m2、m3的差值,计算中空纤维膜贯通孔隙率;其中,m1是称量浸润液充满膜无效孔和贯通孔后膜组件的质量;m2是称量膜达到泡点压力前,即湿曲线确定膜最大孔径前,随着压力升高从膜中渗出和残留在膜表面的浸润液的质量;m3是称量膜贯通孔中的浸润液被高压气体完全排出后膜组件的质量。通过m1、m2和m3的差值能够得出膜贯通孔中浸润液的质量,除以浸润液的密度ρ得到膜贯通孔中浸润液的体积,该体积也是膜贯通孔的体积,再除以中空纤维膜的体积V,就能得到膜贯通孔隙率。由此带来的有益效果是:现有技术的中空纤维膜孔隙率测量方法与本发明相同,也是采用了传统质量法进行测量;传统质量法的计算公式有两种:
1、密度法,计算公式为其中
2、浸润称重法,计算公式为
尽管浸润称重法也采用膜润湿前后的质量来进行计算,但是上述两种传统质量法的计算公式中,并没有明确膜贯通孔的测量起点,而且传统质量法不能区分无效孔和贯通孔,因此导致孔隙率的测量结果误差较大;本发明通过泡点测量步骤,不仅明确了中空纤维膜贯通孔的测量起点,还有效地去除膜表面的残留浸润液,其测量数据准确性高,方法简单,实用性较强。
附图说明
图1所示为中空纤维膜贯通孔隙率的测试装置的结构示意图;
图2所示为聚偏氟乙烯膜干曲线图;
图3所示为聚偏氟乙烯膜湿曲线与干曲线对照图;
图4所示为聚丙烯膜干曲线图;
图5所示为聚丙烯膜湿曲线与干曲线对照图;
图6所示为聚四氟乙烯膜干曲线图;
图7所示为聚四氟乙烯膜湿曲线与干曲线对照图。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种中空纤维膜贯通孔隙率的测试方法,其特征在于,包括以下步骤:
(1)膜组件制备:把疏水性中空纤维膜制备成膜组件,膜组件的制备步骤为取中空纤维膜若干根,用聚酯或聚醚型软管作为浇铸封头,用聚氨酯或环氧树脂作为密封胶,将膜丝浇铸成U型膜组件。或者将亲水性中空纤维膜进行除杂、干燥处理后制备成膜组件;除杂、干燥的步骤为先用无水乙醇溶液浸泡膜组件,再用正己烷溶液浸泡膜组件,浸泡结束后,取出膜组件常温真空干燥至恒重。计算中空纤维膜体积V;
(2)运行干曲线:将步骤(1)制备的膜组件与气压系统密闭连接,将膜组件放入密闭容器中并通入气体;缓慢提高通入气体的压力,记录透过膜组件的气体流量和气体压力,得到干曲线;
(3)膜组件浸润:将所述膜组件浸泡在浸润液中;浸润完全后,取出膜组件,称量其质量m1
(4)泡点测量:将步骤(3)的膜组件与气压系统密闭连接,并将膜组件放入密闭容器中,密闭容器中盛放有与步骤(3)相同的所述浸润液;缓慢提高气压系统输入的气体压力,观察密闭容器中有无连续气泡溢出;当中空纤维膜表面有连续气泡出现时,记录气体压力值,即为泡点压力;
(5)运行湿曲线:重新将步骤(4)的膜组件放入浸润液中;浸润完全后,把膜组件与气压系统密闭连接,将膜组件悬空于密闭容器内部;缓慢提高气压系统通入的气体压力;随着压力升高,浸润液不断从膜表面渗出,落入密闭容器中;当气体压力达到步骤(4)中所述泡点压力时,称量、计算密闭容器增加的重量m2,即为膜组件渗出的浸润液质量;继续提高气体压力,通过气体流量计记录透过膜组件的气体流量,记录透过膜组件的气体流量和气体压力,得到湿曲线;当气体流量与压力呈线性增大趋势,并且湿曲线与步骤(2)中所述的干曲线重合时,称量膜组件的质量m3,测量结束;
(6)孔隙率计算:按照以下公式计算中空纤维膜贯通孔隙率:
其中,m1——充分浸润的膜组件的质量,g;
m2——压力升至泡点压力时,从膜样品中渗出浸润液的质量,g;
m3——湿曲线与干曲线重合时膜组件的质量,g;
ρ——浸润液密度,g/cm3
V——中空纤维膜体积,cm3
优选的,步骤(1)中所述中空纤维膜有效长度为50mm~100mm,膜外径为483um~1722um,膜壁厚为58um~443um,膜平均孔径为0.05um~0.40um。
优选地,步骤(3)、(4)、(5)中使用的所述浸润液为水、乙二醇、正/异丙醇、全氟聚醚或碳氟表面活性剂。
优选地,步骤(2)、(4)、(5)中通入的气体为氮气。
优选地,所述氮气压力为0bar~10bar。
优选地,步骤(3)、(5)中对所述中空纤维膜进行超声浸润,超声频率为50kHz~100kHz,浸润时间5min~20min。
如图1所示,本发明提供了一种中空纤维膜贯通孔隙率的测试装置;它包括气压系统、干曲线测试单元、泡点压力测试单元和湿曲线测试单元;所述气压系统包括气体钢瓶11、减压阀12和气体管路13;所述气体钢瓶11的出气口安装有减压阀12;所述干曲线测试单元、泡点压力测试单元和湿曲线测试单元分别通过所述气体管路13与所述气体钢瓶11并联。
所述干曲线测试单元包括密闭容器一21,所述密闭容器一21的进气端与所述气体管路13连通;所述密闭容器一21进气端的管路上还安装有气体压力表22、进气控制阀23;所述密闭容器一21出气端的管路上安装有气体流量计24。
所述泡点压力测试单元包括密闭容器二31,所述密闭容器二31的进气端与所述气体管路13连通;所述密闭容器二31进气端的管路上还安装有气体压力表32和进气控制阀33。
所述湿曲线测试单元包括密闭容器三41,所述密闭容器三41的进气端与所述气体管路13连通;所述密闭容器三41进气端的管路上还安装有气体压力表42、进气控制阀43;所述密闭容器三41出气端的管路上安装有气体流量计44;所述密闭容器三41的下方设置有精密天平45,精密天平45优选为万分之一精度的分析天平。
实施例1
取国产某品牌聚偏氟乙烯中空纤维膜。选择4根中空纤维膜,制备膜组件,计算膜体积V。制备5个膜组件,编号分别为PVDE-1、PVDE-2、PVDE-3、PVDE-4、PVDE-5,膜组件基本参数如表1。
表1聚偏氟乙烯膜及其组件基本参数
编号 PVDF-1 PVDF-2 PVDF-3 PVDF-4 PVDF-5
膜外径/um 1150 1159 1156 1163 1170
膜壁厚/um 175 200 204 185 195
单根膜有效长度/cm 7.5 7.5 7.5 7.5 7.5
膜体积/cm3 0.1607 0.1807 0.1829 0.1704 0.1791
将膜组件与干曲线测试单元的组件夹具相连,组件夹具采用不锈钢材质制成。关闭泡点压力测试单元和湿曲线测试单元的进气控制阀,打开干曲线测试单元的进气控制阀。采用进气控制阀和气体压力表控制氮气压力范围在0bar~4.0bar,通过气体流量计记录透过膜组件的氮气通量,聚偏氟乙烯膜干曲线如图2。
取下膜组件,将其浸泡在浸润液碳氟表面活性剂溶液中,浸润液密度为1.8528g/cm3。超声频率为100kHz,浸润时间为10min。浸润结束后,取出膜组件,用精密天平称其质量m1
将浸润后膜组件与泡点测试单元的夹具相连,将其浸泡在装有碳氟表面活性剂溶液的烧杯中。关闭干曲线测试和湿曲线测试单元的进气控制阀,打开泡点测试单元进气控制阀。缓慢提高氮气压力,当中空纤维膜表面有连续气泡出现时,记录氮气压力值,即为膜泡点压力。
取下膜组件重新用碳氟表面活性剂溶液超声浸润,再将其与湿曲线测试单元的夹具相连。关闭干曲线测试和泡点压力测试单元的进气控制阀,打开湿曲线测试单元进气控制阀。提高氮气压力至泡点压力时,用精密天平称量从膜表面渗出的浸润液质量m2。继续提高氮气压力,通过气体流量计记录透过膜样品的氮气流量。当氮气流量与压力呈线性增大趋势,并与干曲线重合时,孔隙率测试实验结束,用精密天平称量膜组件质量m3,聚偏氟乙烯膜干曲线与湿曲线的对比图如图3所示,其中空心曲线为干曲线,黑色实心曲线为湿曲线。
根据公式:
计算膜贯通孔隙率,5个膜组件质量m1、m2和m3及膜孔隙率计算结果如表2。
表2聚偏氟乙烯膜孔隙率计算结果
编号 PVDF-1 PVDF-2 PVDF-3 PVDF-4 PVDF-5
m1/g 4.7495 5.0250 5.4044 4.6907 4.9708
m2/g 0.3877 0.3638 0.7763 0.3456 0.3904
m3/g 4.1011 4.3675 4.3168 4.0429 4.2872
膜孔隙率/% 87.54 87.74 91.84 95.70 88.36
实验对比了传统质量法的浸润称重法与本发明测试方法的测量结果,通过孔隙率相对标准偏差分析测试方法对结果准确性和重现性影响,结果如表3。
表3浸润称重法和本发明测试方法的测量结果对比
实施例2
取国产某品牌聚丙烯中空纤维膜。选择12~28根中空纤维膜,制备膜组件,计算膜体积V。制备5个膜组件,编号分别为PP-1、PP-2、PP-3、PP-4、PP-5,膜组件基本参数如表4。
表4聚丙烯膜及其组件基本参数
编号 PP-1 PP-2 PP-3 PP-4 PP-5
膜外径/um 488 517 486 494 483
膜壁厚/um 60 67 58 58 59
单根膜有效长度/cm 10 10 10 10 10
膜丝根数 26 12 20 14 28
膜体积/cm3 0.2097 0.1136 0.1559 0.1112 0.2199
将膜组件与干曲线测试单元的夹具相连,关闭泡点压力测试单元和湿曲线测试单元的进气控制阀,打开干曲线测试单元的进气控制阀。采用进气控制阀和气体压力表控制氮气压力范围在0bar~8.0bar,通过气体流量计记录透过膜组件的氮气通量,聚丙烯膜干曲线如图4。
取下膜组件,将其浸泡在浸润液碳氟表面活性剂溶液中,浸润液密度为1.8528g/cm3。超声频率为100kHz,浸润时间为20min。浸润结束后,取出膜组件,用精密天平称其质量m1
将浸润后膜组件与泡点测试单元的夹具相连,将其浸泡在装有碳氟表面活性剂溶液的烧杯中。关闭干曲线测试和湿曲线测试单元的进气控制阀,打开泡点测试单元进气控制阀。缓慢提高氮气压力,当中空纤维膜表面有连续气泡出现时,记录氮气压力值,即为膜泡点压力。
取下膜组件重新用碳氟表面活性剂溶液超声浸润后,与湿曲线测试单元的组件夹具相连。关闭干曲线测试和泡点压力测试单元的进气控制阀,打开湿曲线测试单元进气控制阀。提高氮气压力至泡点压力时,用精密天平称量从膜表面渗出的浸润液质量m2。继续提高氮气压力,通过气体流量计记录透过膜样品的氮气流量。当氮气流量与压力呈线性增大趋势,并与干曲线重合时,孔隙率测试实验结束,用精密天平称量膜组件质量m3,聚丙烯膜干曲线与湿曲线的对比图如图5所示,其中空心曲线为干曲线,黑色实心曲线为湿曲线。
根据公式:
计算膜贯通孔隙率,5个膜组件质量m1、m2和m3及膜孔隙率计算结果如表5。
表5聚丙烯膜孔隙率计算结果
编号 PP-1 PP-2 PP-3 PP-4 PP-5
m1/g 5.1732 5.1226 5.0577 5.2663 5.6811
m2/g 1.2429 1.1110 1.2708 1.3029 1.5056
m3/g 3.7095 3.8876 3.5988 3.8427 3.9111
膜孔隙率/% 56.84 58.91 65.12 58.60 64.88
实验对比了传统质量法的密度法与本发明测试方法的测量结果,通过孔隙率相对标准偏差分析测试方法对结果准确性和重现性的影响,结果如表6。
表6密度法和本发明测试方法的测量结果对比
实施例3
取国产某品牌聚四氟乙烯中空纤维膜。选择2根中空纤维膜,制备膜组件,计算膜体积V。制备5个膜组件,编号分别为PTFE-1、PTFE-2、PTFE-3、PTFE-4、PTFE-5,膜组件基本参数如表7。
表7聚四氟乙烯膜及其组件基本参数
编号 PTFE-1 PTFE-2 PTFE-3 PTFE-4 PTFE-5
膜外径/um 1697 1722 1706 1691 1711
膜壁厚/um 431 424 428 443 421
单根膜有效长度/cm 10 10 10 10 10
膜体积/cm3 0.3427 0.3456 0.3435 0.3472 0.3411
将膜组件与干曲线测试单元的夹具相连,关闭泡点压力测试单元和湿曲线测试单元的进气控制阀,打开干曲线测试单元的进气控制阀。采用进气控制阀和气体压力表控制氮气压力范围在0bar~3.5bar,通过气体流量计记录透过膜组件的氮气通量,聚四氟乙烯膜干曲线如图6。
取下膜组件,将其浸泡在浸润液碳氟表面活性剂溶液中,浸润液密度为1.8528g/cm3。超声频率为100kHz,浸润时间为5min。浸润结束后,取出膜组件,用精密天平称其质量m1
将浸润后膜组件与泡点测试单元的夹具相连,将其浸泡在装有碳氟表面活性剂溶液的烧杯中。关闭干曲线测试和湿曲线测试单元的进气控制阀,打开泡点测试单元进气控制阀。缓慢提高氮气压力,当中空纤维膜表面有连续气泡出现时,记录氮气压力值,即为膜泡点压力。
取下膜组件重新用碳氟表面活性剂溶液超声浸润后,与湿曲线测试单元的组件夹具相连。关闭干曲线测试和泡点压力测试单元的进气控制阀,打开湿曲线测试单元进气控制阀。提高氮气压力至泡点压力时,用精密天平称量从膜表面渗出的浸润液质量m2。继续提高氮气压力,通过气体流量计记录透过膜样品的氮气流量。当氮气流量与压力呈线性增大趋势,并与干曲线重合时,孔隙率测试实验结束,用精密天平称量膜组件质量m3,聚四氟乙烯膜干曲线与湿曲线的对比图如图7所示,其中空心曲线为干曲线,黑色实心曲线为湿曲线。
根据公式:
计算膜贯通孔隙率,5个膜组件质量m1、m2和m3及膜孔隙率计算结果如表8。
表8聚四氟乙烯膜孔隙率计算结果
编号 PTFE-1 PTFE-2 PTFE-3 PTFE-4 PTFE-5
m1/g 3.9811 3.9927 4.2334 3.9252 4.1385
m2/g 0.1833 0.1564 0.3613 0.1492 0.1765
m3/g 3.4268 3.4688 3.5099 3.4024 3.5968
膜孔隙率/% 58.44 57.39 56.91 58.08 57.79
实验对比了传统质量法的浸润称重法与本发明测试方法的测量结果,通过孔隙率相对标准偏差分析测试方法对结果准确性和重现性的影响,结果如表9。
表9润湿质量差法和本发明测试方法的测量结果对比
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种中空纤维膜贯通孔隙率的测试方法,其特征在于,包括以下步骤:
(1)膜组件制备:把疏水性中空纤维膜制备成膜组件,或者将亲水性中空纤维膜进行除杂、干燥处理后制备成膜组件;计算中空纤维膜体积V;(2)运行干曲线:将步骤(1)制备的膜组件与气压系统密闭连接,将膜组件放入密闭容器中并通入气体;缓慢提高通入气体的压力,记录透过膜组件的气体流量和气体压力,得到干曲线;
(3)膜组件浸润:将所述膜组件浸泡在浸润液中;浸润完全后,取出膜组件,称量其质量m1
(4)泡点测量:将步骤(3)的膜组件与气压系统密闭连接,并将膜组件放入密闭容器中,密闭容器中盛放有与步骤(3)相同的所述浸润液;缓慢提高气压系统输入的气体压力,观察密闭容器中有无连续气泡溢出;当中空纤维膜表面有连续气泡出现时,记录气体压力值,即为泡点压力;
(5)运行湿曲线:重新将步骤(4)的膜组件放入所述浸润液中;浸润完全后,把膜组件与气压系统密闭连接,将膜组件悬空于密闭容器内部;缓慢提高气压系统通入的气体压力;随着压力升高,浸润液不断从膜表面渗出,落入密闭容器中;当气体压力达到步骤(4)中所述泡点压力时,称量、计算密闭容器增加的重量m2,即为膜组件渗出的浸润液质量;继续提高气体压力,通过气体流量计记录透过膜组件的气体流量,记录透过膜组件的气体流量和气体压力,得到湿曲线;当气体流量与压力呈线性增大趋势,并且湿曲线与步骤(2)中所述的干曲线重合时,称量膜组件的质量m3,测量结束;
(6)孔隙率计算:按照以下公式计算中空纤维膜贯通孔隙率:
其中,m1——充分浸润的膜组件的质量,g;
m2——压力升至泡点压力时,从膜样品中渗出浸润液的质量,g;
m3——湿曲线与干曲线重合时膜组件的质量,g;
ρ——浸润液密度,g/cm3
V——中空纤维膜体积,cm3
2.根据权利要求1所述的一种中空纤维膜贯通孔隙率的测试方法,其特征在于步骤(1)中所述中空纤维膜有效长度为50mm~100mm,膜外径为483um~1722um,膜壁厚为58um~443um,膜平均孔径为0.05um~0.40um。
3.根据权利要求1所述的一种中空纤维膜贯通孔隙率的测试方法,其特征在于步骤(3)、(4)、(5)中使用的所述浸润液为水、乙二醇、正/异丙醇、全氟聚醚或碳氟表面活性剂。
4.根据权利要求1所述的一种中空纤维膜贯通孔隙率的测试方法,其特征在于步骤(2)、(4)、(5)中通入的气体为氮气。
5.根据权利要求4所述的一种中空纤维膜贯通孔隙率的测试方法,其特征在于所述氮气压力为0bar~10bar。
6.根据权利要求1所述的一种中空纤维膜贯通孔隙率的测试方法,其特征在于步骤(3)、(5)中对所述中空纤维膜进行超声浸润,超声频率为50kHz~100kHz,浸润时间5min~20min。
7.一种中空纤维膜贯通孔隙率的测试装置,其特征在于包括气压系统、干曲线测试单元、泡点压力测试单元和湿曲线测试单元;所述气压系统包括气体钢瓶、减压阀和气体管路;所述气体钢瓶的出气口安装有减压阀;所述干曲线测试单元、泡点压力测试单元和湿曲线测试单元分别通过所述气体管路与所述气体钢瓶并联。
8.根据权利要求7所述的一种中空纤维膜贯通孔隙率的测试装置,其特征在于所述干曲线测试单元包括密闭容器一,所述密闭容器一的进气端与所述气体管路连通;所述密闭容器一进气端的管路上还安装有气体压力表、进气控制阀;所述密闭容器一出气端的管路上安装有气体流量计。
9.根据权利要求7所述的一种中空纤维膜贯通孔隙率的测试装置,其特征在于所述泡点压力测试单元包括密闭容器二,所述密闭容器二的进气端与所述气体管路连通;所述密闭容器二进气端的管路上还安装有气体压力表和进气控制阀。
10.根据权利要求7所述的一种中空纤维膜贯通孔隙率的测试装置,其特征在于所述湿曲线测试单元包括密闭容器三,所述密闭容器三的进气端与所述气体管路连通;所述密闭容器三进气端的管路上还安装有气体压力表、进气控制阀;所述密闭容器三出气端的管路上安装有气体流量计;所述密闭容器三的下方设置有精密天平。
CN201510569827.9A 2015-09-08 2015-09-08 一种中空纤维膜贯通孔隙率的测试方法和装置 Active CN105126629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510569827.9A CN105126629B (zh) 2015-09-08 2015-09-08 一种中空纤维膜贯通孔隙率的测试方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510569827.9A CN105126629B (zh) 2015-09-08 2015-09-08 一种中空纤维膜贯通孔隙率的测试方法和装置

Publications (2)

Publication Number Publication Date
CN105126629A true CN105126629A (zh) 2015-12-09
CN105126629B CN105126629B (zh) 2017-06-16

Family

ID=54712404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510569827.9A Active CN105126629B (zh) 2015-09-08 2015-09-08 一种中空纤维膜贯通孔隙率的测试方法和装置

Country Status (1)

Country Link
CN (1) CN105126629B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414421A (zh) * 2018-02-22 2018-08-17 国家海洋局天津海水淡化与综合利用研究所 一种超滤膜贯通孔径及孔径分布的测试方法及对应的测试装置
CN113916726A (zh) * 2021-10-12 2022-01-11 自然资源部天津海水淡化与综合利用研究所 一种亲水性多孔膜接触角的测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020147551A1 (en) * 2001-01-31 2002-10-10 Gupta Krishna M. Pore structure analysis of individual layers of multi-layered composite porous materials
CN1510411A (zh) * 2002-12-26 2004-07-07 北京化工大学 一种微孔板式膜孔隙率的测定方法
CN102809531A (zh) * 2012-08-27 2012-12-05 天津工业大学 一种测定聚合物多孔板式膜材料孔隙率的方法
CN103134743A (zh) * 2011-12-02 2013-06-05 天津市捷威动力工业有限公司 一种测试孔隙率的方法
CN103357274A (zh) * 2013-07-15 2013-10-23 浙江斯科能科技股份有限公司 一种用于中空纤维超滤膜丝孔径测定的方法及其装置
US20140039415A1 (en) * 2011-04-13 2014-02-06 Frank Schneider Macroporous filtration membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020147551A1 (en) * 2001-01-31 2002-10-10 Gupta Krishna M. Pore structure analysis of individual layers of multi-layered composite porous materials
CN1510411A (zh) * 2002-12-26 2004-07-07 北京化工大学 一种微孔板式膜孔隙率的测定方法
US20140039415A1 (en) * 2011-04-13 2014-02-06 Frank Schneider Macroporous filtration membrane
CN103134743A (zh) * 2011-12-02 2013-06-05 天津市捷威动力工业有限公司 一种测试孔隙率的方法
CN102809531A (zh) * 2012-08-27 2012-12-05 天津工业大学 一种测定聚合物多孔板式膜材料孔隙率的方法
CN103357274A (zh) * 2013-07-15 2013-10-23 浙江斯科能科技股份有限公司 一种用于中空纤维超滤膜丝孔径测定的方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱长乐: "《膜科学技术 第二版》", 30 June 2004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414421A (zh) * 2018-02-22 2018-08-17 国家海洋局天津海水淡化与综合利用研究所 一种超滤膜贯通孔径及孔径分布的测试方法及对应的测试装置
CN113916726A (zh) * 2021-10-12 2022-01-11 自然资源部天津海水淡化与综合利用研究所 一种亲水性多孔膜接触角的测试方法

Also Published As

Publication number Publication date
CN105126629B (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
CN201732048U (zh) 多孔混凝土透水性能测定仪
CN102169113B (zh) 六氟化硫在线湿度仪校验装置及其校验方法
CN102944571B (zh) 一种测量煤中不同状态水分含量的方法
CN105588796A (zh) 一种精确快速测定土壤渗透系数的装置
CN101281984A (zh) 锂离子电池内部压力检测方法及装置
CN205067153U (zh) 水环境检测装置
CN103149140A (zh) 一种多孔介质透气性评估装置
CN103837662A (zh) 增/脱湿路径下非饱和土体水力特性参数测量装置及方法
CN105866007A (zh) 持续荷载作用下混凝土毛细吸水测试装置及其测试方法
CN107063968B (zh) 混凝土气体渗透性测试装置及方法
CN105126629A (zh) 一种中空纤维膜贯通孔隙率的测试方法和装置
CN203216821U (zh) 土壤渗气系数测试装置
CN105319145B (zh) 一种高速中温负压空气湿度的连续测量方法
JP5486896B2 (ja) 透気性中詰め材の透気性確認試験方法及び透気性確認試験装置
CN203241324U (zh) 一种页岩气体渗透率测定仪
CN105136644A (zh) 黏土颗粒间孔隙等效孔径的方法
CN203572739U (zh) 一种最大气泡法测定液体表面张力试验的装置
CN101876617B (zh) 一种提高等容法储氢性能测量精度的方法
CN102494970B (zh) 一种液面强制蒸发传质系数测试方法及装置
CN203786003U (zh) 一种静态容量法自动吸附测量装置
CN206710263U (zh) 一种研究土的渗透性的试验仪
CN105964149B (zh) 一种测定离子交换膜孔径及孔径分布的装置
CN202033344U (zh) 六氟化硫在线湿度仪校验装置
CN116297081A (zh) 非饱和土水气运动联合测定压缩仪及测定方法
CN105466834B (zh) 压缩率可调型多孔介质平面渗透率的测量装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Xiaoming

Inventor after: Zhang Huifeng

Inventor after: Lv Jinglie

Inventor after: Liu Zheng

Inventor after: Guo Chungang

Inventor after: Li Hao

Inventor after: Zhang Yushan

Inventor before: Li Xiaoming

Inventor before: Lv Jinglie

Inventor before: Zhang Huifeng

GR01 Patent grant