CN105056975A - 采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法 - Google Patents

采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法 Download PDF

Info

Publication number
CN105056975A
CN105056975A CN201510496877.9A CN201510496877A CN105056975A CN 105056975 A CN105056975 A CN 105056975A CN 201510496877 A CN201510496877 A CN 201510496877A CN 105056975 A CN105056975 A CN 105056975A
Authority
CN
China
Prior art keywords
solution
nano
microwave
photocatalyst material
hydrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510496877.9A
Other languages
English (en)
Other versions
CN105056975B (zh
Inventor
殷立雄
柴思敏
马建中
黄剑锋
王菲菲
张�浩
张东东
孔新刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201510496877.9A priority Critical patent/CN105056975B/zh
Publication of CN105056975A publication Critical patent/CN105056975A/zh
Application granted granted Critical
Publication of CN105056975B publication Critical patent/CN105056975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法,包括:1)配置Sn源溶液A,加入锌源搅拌至充分溶解得到溶液B,同时调节B溶液的pH为1~9,配制成浓度为0.1~2.4mol/L的NaS·9H2O溶液C;2)将B、C两种溶液按照比例混合得到溶液D,稳定后得到溶液E;3)将E溶液放入微波水热反应釜中,密封水热釜,微波水热反应得到前驱体;4)待反应釜自然冷至室温后,取出前驱体,经离心洗涤分离,然后干燥得到最终产物Sn1-xZnxS2纳米光催化材料,其应用于有机染料降解具有优异的光催化降解性能。

Description

采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法
【技术领域】
本发明涉及纳米光催化材料技术领域,特别涉及一种纳米光催化材料的制备方法。
【背景技术】
二硫化锡(SnS2)属于Ⅳ:Ⅵ族二元化合物,具有CdI2型的层状结构。硫化锡不溶于水,但是溶于热的浓盐酸和浓硝酸,在热的浓盐酸中溶解生成SnCl2。这意味着硫化锡具有弱酸性物质的性质。
硫化锡的晶体结构的空间群属于Pnma族。晶格参数分别为:a=1.1200nm,b=0.3987nm,c=0.4334nm,硫化锡结构是由两层沿着轴相互叠加在一起而形成,两层六方密堆积的硫离子中间加入锡离子的三明治结构(S-Sn-S)组成的,每个锡离子周围有六个硫离子形成正八面体配位,即硫离子采取ABAB六方密堆积,而金属锡离子置于两层的硫离子之间,层内为共价键结合,层与层之间存在弱的范德华力。每个硫原子在同一层中通过三个强键(0.2627~0.2665nm)和两个弱键(0.3290nm)与相邻的原子连接。还有一个与邻近一层的原子连接(0.3494nm),从而构成一个高度扭曲的八面体结构。
离子掺杂提高SnS2的电导率主要是靠电荷补偿来完成的。在掺杂过程中,Sn4+半径为0.069nm,熔点231.9℃,如果杂质的线度小于基质晶体的晶格常数,无论是施主或受主杂质都可能会呈间隙式起到施主的作用。若杂质的线度与基质原子接近进入晶格后可能以替位式存在。一般若掺入小于替位Sn4+时可形成负电中心,使导电类型呈P型;掺入大于4价的杂质离子时会形成正电中心,导电类型会变成N型。
由于颗粒形貌对样品的光催化性能也可能会造成一定的影响,颗粒越小、比表面积越大,则材料与有机染料的接触越好,离子迁移距离也会变短,这样更有利于材料性能的提升。另外,一维纳米材料如纳米棒、纳米管、纳米线等这些特殊的结构在光催化性能等方面会产生一些新颖的特点。
目前所报道的通过掺杂制备纳米SnS材料的方法主要为化学沉积法[ChakrabortyR,BuonassisiT,SinsermsuksakulP,etal.Antimony-DopedTin(II)SulfideThinFilms[J].CreativeCommonsAttribution-Noncommercial-ShareAlike3.0,2012.]、喷雾热解法[ReddyNK,ReddyKTR.SnSfilmsforphotovoltaicapplications:PhysicalinvestigationsonsprayedSnxSyfilms[J].PhysicaBCondensedMatter,2005,368(368):25–31.],其中化学沉积法所需的原材料容易获得,但是沉积的速率不能太高,反应后的余气易燃、易爆或有毒;喷雾热解法具有制备周期短,制备薄膜质量较好,但是设备昂贵。
【发明内容】
本发明的目的在于提供一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS的方法,其制备成本低、操作简单、制备周期短,获得的Sn1-xZnxS纳米颗粒对有机染料具有优异光催化降解性能。
为了实现上述目的,本发明采用如下技术方案:
一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS的方法,包括以下步骤:
1)将Sn源溶于去离子水中,配制成浓度为0.5~1.2mol/L的溶液A,按nSn:nZn=16:1~20:1将锌源加入溶液A中,搅拌至充分溶解得到溶液B,同时调节B溶液的pH为1~9,将NaS·9H2O溶于去离子水中,配制成浓度为0.1~2.4mol/L的溶液C;
2)将B、C两种溶液按照元素摩尔比nSn:nS=(1.0~2.5):(1.0~4.3)的比例混合得到溶液D,搅拌均匀形成均匀稳定的混合溶液E;
3)将E溶液放入微波水热反应釜中,密封水热釜,微波水热反应得到前驱体;
4)待反应釜自然冷却至室温后,取出前驱体,经离心洗涤分离,然后干燥得到最终产物Sn1-xZnxS2纳米光催化材料。
本发明进一步的改进在于:步骤1)中Sn源为SnCl4·5H2O。
本发明进一步的改进在于:步骤1)中锌源为葡萄糖酸锌。
本发明进一步的改进在于:步骤1)中采用1mol/L的HCl或NH4·H2O调节B溶液的pH值。
本发明进一步的改进在于:步骤2)中搅拌均匀具体为在26℃下磁力搅拌5~30min。
本发明进一步的改进在于:步骤3)微波水热反应中控制体积填充比为50%~60%,反应温度控制在120~200℃,反应时间控制在15~90min。
本发明进一步的改进在于:步骤4)中所述洗涤为用去离子水洗涤2~3次,再用无水乙醇洗涤2~3次分别得到黄褐色前驱体产物;步骤4)中所述干燥具体为60~80℃下干燥1~3h
相对于现有技术,本发明具有以下有益效果:
本发明采用微波水热技术有效地结合了水热法和微波技术的优点,可以在短的时间内制备出产物纯度高、结晶性良好的Zn2+掺杂SnS粉体,同时,该微波水热法制备工艺流程简单,条件适中,不需要特殊的工艺设备,易于工业化生产。
本发明制备Zn2+掺杂SnS纳米颗粒光催化材料的方法,具有制备成本低、操作简单、制备周期短的特点,所制备的Sn1-xZnxS纳米颗粒光催化材料颗粒尺寸约为几到几十纳米、纯度高、结晶性强、形貌均匀,将其应用于有机染料降解具有优异的光催化降解性能,在汞灯照射下降解有机染料,5min内光降解效率达到98.7%,工艺设备简单、可行性强,具有很好的工业前景。
【附图说明】
图1是本发明实施例2按nSn:nZn=18:1所制备Zn2+掺杂SnS2纳米光催化材料的SEM图;从图中可以看出样品的表面是由纳米颗粒组成的,颗粒的尺寸大约为几到几十纳米;
图2是本发明实施例2按nSn:nZn=18:1所制备Zn2+掺杂SnS2纳米光催化材料的光催化性能图;从图中可以看出,汞灯照射10min,所制备Zn2+掺杂SnS2材料对有机染料的降解率达到98.9%。
【具体实施方式】
实施例1
1)将SnCl4·5H2O溶于去离子水中,配制成浓度为0.5mol/L的溶液A,按nSn:nZn=16:1将一定量葡萄糖酸锌加入溶液A中,搅拌至充分溶解得到溶液B,同时用1mol/L的HCl或NH4·H2O调节B溶液的pH为1,将NaS·9H2O溶于去离子水中,配制成浓度为0.1mol/L的溶液C。
2)将B、C两种溶液按照元素摩尔比nSn:nS=1.0:1.0的比例混合得到溶液D,在26℃下磁力搅拌5min,形成均匀稳定的混合溶液E。
3)将E溶液分别放入微波水热反应釜中,密封水热釜,控制体积填充比为50%,反应温度控制在120℃,反应时间控制在15min,反应得到前驱体。
4)待反应釜自然冷却至室温后,取出前驱体,经离心洗涤分离,用去离子水洗涤3次,再用无水乙醇洗涤3次分别得到黄褐色前驱体产物,在60℃下干燥1.5h即得到最终产物Sn1-xZnxS2纳米光催化材料。
实施例2
1)将SnCl4·5H2O溶于去离子水中,配制成浓度为0.8mol/L的溶液A,按nSn:nZn=18:1将一定量葡萄糖酸锌加入溶液A中,搅拌至充分溶解得到溶液B,同时用1mol/L的HCl或NH4·H2O调节B溶液的pH为7,将NaS·9H2O溶于去离子水中,配制成浓度为1.5mol/L的溶液C。
2)将B、C两种溶液按照元素摩尔比nSn:nS=1.5:2的比例混合得到溶液D,在26℃下磁力搅拌10min,形成均匀稳定的混合溶液E。
3)将E溶液放入微波水热反应釜中,密封水热釜,控制体积填充比为60%,反应温度控制在160℃,反应时间控制在30min,反应得到前驱体。
4)待反应釜自然冷却至室温后,取出前驱体,经离心洗涤分离,用去离子水洗涤2次,再用无水乙醇洗涤3次分别得到黄褐色前驱体产物,在70℃下干燥1~3h即得到最终产物Sn1-xZnxS2纳米光催化材料。
实施例3
1)将SnCl4·5H2O溶于去离子水中,配制成浓度为1.2mol/L的溶液A,按nSn:nZn=20:1将一定量葡萄糖酸锌加入溶液A中,搅拌至充分溶解得到溶液B,同时用1mol/L的HCl或NH4·H2O调节B溶液的pH为9,将NaS·9H2O溶于去离子水中,配制成浓度为2.4mol/L的溶液C。
2)将B、C两种溶液按照元素摩尔比nSn:nS=2.5:4.3的比例混合得到溶液D,在26℃下磁力搅拌30min,形成均匀稳定的混合溶液。
3)将E溶液放入微波水热反应釜中,密封水热釜,控制体积填充比为60%,反应温度控制在200℃,反应时间控制在90min,反应得到前驱体。
4)待反应釜自然冷却至室温后,取出前驱体,经离心洗涤分离,用去离子水洗涤3次,再用无水乙醇洗涤3次分别得到黄褐色前驱体产物,在80℃下干燥3h即得到最终产物Sn1-xZnxS2纳米光催化材料。
请参阅图1及图2所示,本发明制备的Zn2+掺杂SnS2产物为纳米颗粒结构粉体,其制备成本低、反应周期短、节约能源、光催化性能优异,在汞灯照射下降解有机染料,5min内光降解效率达到98.7%,工艺设备简单、可行性强,具有很好的工业前景。

Claims (7)

1.一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法,其特征在于,包括以下步骤:
1)将Sn源溶于去离子水中,配制成浓度为0.5~1.2mol/L的溶液A,按nSn:nZn=16:1~20:1将锌源加入溶液A中,搅拌至充分溶解得到溶液B,同时调节B溶液的pH为1~9,将NaS·9H2O溶于去离子水中,配制成浓度为0.1~2.4mol/L的溶液C;
2)将B、C两种溶液按照元素摩尔比nSn:nS=(1.0~2.5):(1.0~4.3)的比例混合得到溶液D,搅拌均匀形成均匀稳定的混合溶液E;
3)将E溶液放入微波水热反应釜中,密封水热釜,微波水热反应得到前驱体;
4)待反应釜自然冷却至室温后,取出前驱体,经离心洗涤分离,然后干燥得到最终产物Sn1-xZnxS2纳米光催化材料。
2.根据权利要求1所述的一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法,其特征在于,步骤1)中Sn源为SnCl4·5H2O。
3.根据权利要求1所述的一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法,其特征在于,步骤1)中锌源为葡萄糖酸锌。
4.根据权利要求1所述的一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法,其特征在于,步骤1)中采用1mol/L的HCl或NH4·H2O调节B溶液的pH值。
5.根据权利要求1所述的一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法,其特征在于,步骤2)中搅拌均匀具体为在26℃下磁力搅拌5~30min。
6.根据权利要求1所述的一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法,其特征在于,步骤3)微波水热反应中控制体积填充比为50%~60%,反应温度控制在120~200℃,反应时间控制在15~90min。
7.根据权利要求1所述的一种采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1-xZnxS2的方法,其特征在于,步骤4)中所述洗涤为用去离子水洗涤2~3次,再用无水乙醇洗涤2~3次分别得到黄褐色前驱体产物;步骤4)中所述干燥具体为60~80℃下干燥1~3h。
CN201510496877.9A 2015-08-13 2015-08-13 采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1‑xZnxS2的方法 Active CN105056975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510496877.9A CN105056975B (zh) 2015-08-13 2015-08-13 采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1‑xZnxS2的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510496877.9A CN105056975B (zh) 2015-08-13 2015-08-13 采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1‑xZnxS2的方法

Publications (2)

Publication Number Publication Date
CN105056975A true CN105056975A (zh) 2015-11-18
CN105056975B CN105056975B (zh) 2017-08-08

Family

ID=54486614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510496877.9A Active CN105056975B (zh) 2015-08-13 2015-08-13 采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1‑xZnxS2的方法

Country Status (1)

Country Link
CN (1) CN105056975B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609766A (zh) * 2016-01-25 2016-05-25 陕西科技大学 一种Ni掺杂SnS2钠离子电池负极材料及其制备方法
CN106564934A (zh) * 2016-11-02 2017-04-19 陕西科技大学 一种颗粒组装球状SnS2钠离子电池负极材料的制备方法
CN109647536A (zh) * 2019-01-14 2019-04-19 中国科学技术大学 一种钴镍双掺杂的硫化锡纳米片、其制备方法和应用
CN110586072A (zh) * 2019-04-26 2019-12-20 福建工程学院 一种新型结构的wo3微纳米光催化材料
CN113753942A (zh) * 2021-08-25 2021-12-07 天津大学 过渡金属掺杂的二硫化锡纳米花及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103373742A (zh) * 2013-07-05 2013-10-30 上海交通大学 水热合成SnS2纳米材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103373742A (zh) * 2013-07-05 2013-10-30 上海交通大学 水热合成SnS2纳米材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUNGMOOK PARK ET AL.: "Facile microwave-assisted synthesis of SnS2 nanoparticles for visible-light responsive photocatalyst", 《JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY》 *
XIAOHUA LIU ET AL.: "Hydrothermal synthesis of visible light active zinc-doped tin disulfide photocatalyst for the reduction of aqueous Cr(VI)", 《POWDER TECHNOLOGY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609766A (zh) * 2016-01-25 2016-05-25 陕西科技大学 一种Ni掺杂SnS2钠离子电池负极材料及其制备方法
CN105609766B (zh) * 2016-01-25 2019-01-25 陕西科技大学 一种Ni掺杂SnS2钠离子电池负极材料及其制备方法
CN106564934A (zh) * 2016-11-02 2017-04-19 陕西科技大学 一种颗粒组装球状SnS2钠离子电池负极材料的制备方法
CN106564934B (zh) * 2016-11-02 2018-03-27 陕西科技大学 一种颗粒组装球状SnS2钠离子电池负极材料的制备方法
CN109647536A (zh) * 2019-01-14 2019-04-19 中国科学技术大学 一种钴镍双掺杂的硫化锡纳米片、其制备方法和应用
CN110586072A (zh) * 2019-04-26 2019-12-20 福建工程学院 一种新型结构的wo3微纳米光催化材料
CN113753942A (zh) * 2021-08-25 2021-12-07 天津大学 过渡金属掺杂的二硫化锡纳米花及其制备方法

Also Published As

Publication number Publication date
CN105056975B (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
Tian et al. Recent progress in design, synthesis, and applications of one-dimensional TiO 2 nanostructured surface heterostructures: a review
CN105056975B (zh) 采用微波水热法制备Zn2+掺杂SnS2纳米光催化材料Sn1‑xZnxS2的方法
Lv et al. Fabrication of hierarchical copper sulfide/bismuth tungstate pn heterojunction with two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of glyphosate
Han et al. AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting
Wang et al. Synergy of Ti-O-based heterojunction and hierarchical 1D nanobelt/3D microflower heteroarchitectures for enhanced photocatalytic tetracycline degradation and photoelectrochemical water splitting
CN101723315B (zh) 一种核壳结构Sn/C纳米复合材料的制备方法
CN106098943B (zh) 一种高稳定混合维钙钛矿材料及应用
CN109225277B (zh) 一种硒化钒掺杂硒材料的制备方法
CN105502286B (zh) 一种多孔纳米NiFe2O4的制备方法
CN103877966B (zh) 一种异质结构光催化剂的制备方法
CN104078653B (zh) 一种具有微孔结构的碳包覆过渡金属氧化物或过渡金属纳米粒子复合电极材料及其制备方法
CN103934471B (zh) 一种石墨烯负载锡镍纳米合金粒子复合材料的制备方法
CN105098181A (zh) 一种倍率性能良好的纳米片状SnS2钠离子电池负极材料的制备方法
de Carvalho et al. Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods
CN103560228A (zh) 一种用水热法复合氧化铁与石墨烯的方法
CN107362792B (zh) 一种钛酸锶/铌酸锡复合纳米材料的制备方法
CN104108707B (zh) 一种硫掺杂石墨烯及其制备方法
CN106542569A (zh) 一种花球状二氧化锡的制备方法
Yu et al. V2O5-based Photocatalysts for Environmental Improvement: Key Challenges and Advancements
CN105206816B (zh) 一种硫化镍‑石墨烯纳米复合材料的制备方法
Wu et al. Room-temperature preparation of crystalline TiO2 thin films and their applications in polymer/TiO2 hybrid optoelectronic devices
CN106629830A (zh) 一种钛酸锌纳米线材料及其在钙钛矿太阳能电池中的应用
CN104402065A (zh) 一种类球形二硫化钴纳米粉体的制备方法
CN103395839A (zh) 一种制备钒酸盐化合物的方法
CN109317167A (zh) 金属硫族配合物包覆的纳米粒子及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant