CN105026605B - 呈现提高的热稳定性的ti‑al‑ta基涂层 - Google Patents

呈现提高的热稳定性的ti‑al‑ta基涂层 Download PDF

Info

Publication number
CN105026605B
CN105026605B CN201380058544.7A CN201380058544A CN105026605B CN 105026605 B CN105026605 B CN 105026605B CN 201380058544 A CN201380058544 A CN 201380058544A CN 105026605 B CN105026605 B CN 105026605B
Authority
CN
China
Prior art keywords
layers
layer
multilayer film
coat system
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380058544.7A
Other languages
English (en)
Other versions
CN105026605A (zh
Inventor
R.拉奇鲍尔
R.霍勒维格
C.M.科勒
P.H.马尔霍弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ou Ruikang Surface Solutions Inc
Original Assignee
Ou Ruikang Surface Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ou Ruikang Surface Solutions Inc filed Critical Ou Ruikang Surface Solutions Inc
Publication of CN105026605A publication Critical patent/CN105026605A/zh
Application granted granted Critical
Publication of CN105026605B publication Critical patent/CN105026605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]

Abstract

本发明涉及一种耐磨涂层系统,该涂层系统包括含钽多层膜,所述多层膜由彼此交替沉积的n个A层和m个B层组成,其中n和m为大于1的整数,所述多层膜呈现晶体立方结构,其特征在于B层包含钽和A层呈现比B层更高的缺陷密度。

Description

呈现提高的热稳定性的TI-AL-TA基涂层
本发明涉及耐磨涂层系统20,所述涂层系统20具有权利要求1-4中任一项所述的特征,并特别用于物体(如用于摩擦学系统中的工具和组件)的摩损防护。特别地,该涂层系统应当结合升温暴露后良好的硬度和良好的抗氧化性。此外,本发明涉及涂布体1,其呈现权利要求5-8中任一项所述的特征,和制造涂布体1的方法,其包括权利要求9-14中任一项所述的特征。
现有技术工艺水平
氮化钛铝(TiAlN)涂层是用于工具和组件的磨损防护的沿用已久的涂层。通常,使用物理气相沉积(PVD)技术将TiAlN涂层沉积在基材上。由于其非常良好的耐磨性质和热稳定性的组合,已对TiAlN涂层系统作出良好研究。已特别关注Al含量对这类涂层的热稳定性的影响。
此外,很好地研究了TiAlN基涂层的许多变体,所述涂层基本上掺杂有其它元素。所有这些掺杂的TiAlN涂层应对确定的应用具有一些优点。
在许多专利文献中报道了关于通过将TiAlN涂层掺杂钽可获得的益处。例如,在US7521132B2中公开了经涂布的工具,其涂层包含至少一个具有(TiaAlbTac)N组成的涂布层,其中a+b+c=l;0.3≤b≤0.75;0.001≤c≤0.30,和至少一个具有(TidAleTafMg)N组成的涂布层,其中d+e+f+g=1;0.50≤e≤0.70;0≤f≤0.25,且M是一种或多种选自Si、V、B的元素,对于Si:0.0005≤g≤0.10;对于V:0.001≤g≤0.25和对于B:0.00005≤g≤0.01。此外在同一专利文献中公开了用于涂布工具的溅射靶,所述靶由Al(30-75原子%),Ta(0.1-30原子%)以及剩余的Ti组成。此外,公开了一种用于涂布工具的溅射靶,所述靶由Al,Ta,Ti以及至少Si、V或B组成。
类似的,在WO2009003206、WO2009105024、EP2096811、EP1722009、EP1378304、EP1400609、EP1452621、EP1378304、JP7331410、JP7026386、JP6330347和JP2007015071中描述了包括Ti-Al-Ta-N的单层和多层涂层系统。
然而,虽然已有这些开发和研究,仍有对改进的需求。
特别是对于增强切割工具的防护和切割性能,对获得足够良好的韧性与热稳定性的结合(其能符合当前需求)仍存在挑战。
发明目的
本发明的主要目的是提供一种涂层系统,该涂层系统同时结合了非常良好的韧性和热稳定性。优选地,该涂层系统应该结合升温暴露后良好的硬度和良好的抗氧化性。本发明的另外一个目的是提供其生产方法。
发明描述
本发明的主要目的通过提供如图1示意性绘制的耐磨涂层系统20达到,其包括含钽多层膜10,该多层膜10由彼此交替沉积的A层4,Al, A2, A3, ... An和B层8,Bl, B2,B3, ... Bm组成。多层膜10呈现晶体立方结构且A层呈现比B层更高的缺陷密度。
当B层包含钽时,获得特别良好的结果。
本发明人分析了不同的多层涂层的组合并将它们与单层涂层相比较。
对于实验(图2到8提供了关于实验的详细信息),将氮化钛铝和氮化钛铝钽单层涂层(在本发明的上下文中也称为整块涂层)通过电弧离子电镀技术从合金靶中沉积。对于实验,使用化学组成为Ti0.5Al0.5、Ti0.45Al0.45Ta0.1和Ti0.3Al0.6Ta0.1的合金靶。
此外,沉积包含A层和B层的多层涂层系统。对于实验,将A层从化学组成为Ti0.5A10.5的钛铝复合靶沉积,同时将B层从化学组成为Ta0.75Α10.25的钽铝复合靶沉积。
为了改变缺陷密度,使用了两种不同的PVD技术:电弧离子电镀和磁控管溅射离子电镀。图2显示了所使用的涂布参数。
其它可用于获得层A和层B中不同的缺陷密度但仅使用电弧离子电镀沉积技术的方法是例如通过调节每种情况的线圈电流。
可使用高分辨率投射电镜(HRTEM)技术测量层A和层B的缺陷密度。
优选地,A层和B层的化学组成通过系数以原子百分数计的下式给出:
对于A层:Me1 1-xAlxNzX1-z,且对于B层:Me2 1-x-yAlxTayNzX1-z,其中:
Me1是选自:Ti、Cr、V、Ta、Nb、Zr、Hf、Mo、Si和W的一种或多种元素,以及
Me2是选自:Ti、Cr、V、Nb、Zr、Hf、Mo、Si和W的一种或多种元素,以及
X是选自:O、C和B的一种或多种元素,并且
0.2≤x≤0.7,0.7≤z≤1,0.02≤y≤0.80。
当B层的厚度比A层的厚度小时:Al>B1,A2>B2,A3>B3...An>Bm,观察到更好的热稳定性。
优选地,使用PVD技术沉积根据本发明的涂布体1。
在本发明的一个优选的实施方案中,使用电弧离子电镀技术沉积涂层系统20。
在本发明的另一个优选的实施方案中,使用电弧离子电镀技术沉积涂层系统20的A层4,和使用溅射技术沉积B层8。
此外,本发明涉及制造涂有根据本发明的涂层系统20的物体1的方法。
在本发明的一个实施方案中,涂布体1通过物理气相沉积技术涂布。
在根据本发明方法的一个优选的实施方案中,所使用的物理气相沉积技术为电弧离子电镀沉积技术,特别是反应性电弧离子电镀沉积技术。
在根据本发明方法的另一个优选的实施方案中,为了调节层A和层B中所期望的缺陷密度,相应地调节线圈电流。
在根据本发明方法的更进一步优选的一个实施方案中,所使用的物理气相沉积技术是溅射或高电离磁控管溅射技术如高能脉冲磁控管溅射(HIPIMS),特别是反应性磁控管溅射沉积(rsd)技术。
优选地,至少在一些情况中,根据本发明的方法涉及使用至少一个靶(源材料)用于沉积层A和/或层B,所述靶通过粉末冶金技术制造。
在本发明的另一个实施方案中,涂层系统20包括除了多层膜10之外的至少更多一个层,例如一个或多个粘性改进层2,和/或一个或多个沉积在多层膜10上面的层12。该至少一个层12可以是例如具有降低摩擦性质和/或尤其是彩色性质的顶层。
在本发明的一个优选的实施方案中,每个A层与B层的厚度优选为3nm-300nm之间,更优选3nm-100nm之间。优选将氮和/或至少一种组成X(若给出)的元素从反应性气体结合到多层膜10中。
图3至图5显示为了表征和分析单层涂层(整块生长的涂层)的性质而实现的实验测试的结果,而图6至8显示为了表征和分析具有多层结构的涂层的性质而实现的实验测试的结果。
图5和图8中在扫描电子显微照片中观察到的CrN层(同样也由旨在研究氧化性能的经过表征的涂层的元素组成分析检测到)在氧化过程之后沉积以制备用于分析的样品。
在每个退火过程之后在室温下测量图4和7中所示的硬度和X-射线衍射(XRD)谱以分析涂层的热稳定性。
在沉积之后分析整块生长的Ti0.54Al0.46N和Ti0.45Al0.36Ta0.19N涂层的XRD谱,观察到它们显示立方结构,而Ti0.31Al0.50Ta0.19N涂层呈现已经混合的立方/六方(c/w)相结构。然而,所有沉积的具有多层结构TiAlN/TaAlN的涂层在沉积之后都呈现立方结构(根据XRD谱),包括使用电弧汽化技术(TiAlNarc/TaAlNarc)沉积的那些和使用混合电弧/溅射技术(TiAlNarc/TaAlNrsd)沉积的那些。对于这些实验,不沉积TiAlNarc/TaAlNarc涂层以得到多层涂层,所述多层涂层的TaAlN层具有相较于TaAlN层更高的缺陷密度。但是对于TiAlNarc/TaAlNrsd的情况,则意在生产相较于TiAlN层具有更低缺陷密度的TaAlN层。
与热稳定性相关,考虑到退火过程之后所测量的硬度(如图7中下左下侧所示),多层Ti0.5Al0.5arc/Ta0.75Al0.25arc涂层就老化变硬性能而言显示了最好的热稳定性,但就抗氧化性却显示了差的热稳定性(如图8中左侧所示)。这些涂层在850℃下在20小时后彻底氧化。另外,整块生长的Ti0.45Al0.36Ta0.19N涂层和混合沉积的Ti0.5Al0.5arc/Ta0.75Al0.25rsd多层涂层显示相似的良好热稳定性。就退火过程之后所测量的硬度而言,这两种涂层类型都显示了相对较好的老化变硬性能(如图4和图7右下侧所示)和就抗氧化性而言非常良好的热稳定性(如图5和图8右侧所示)。
晶体PVD-沉积层实际上是包含多于一种(通常为数种)晶粒的多晶层。晶粒的生长方式导致了确定的层形态。不同的形态由包含不同数量的缺陷表征。
本发明上下文中的术语“缺陷密度”特别指:和A-或B-层内的晶界相的确定面积或体积中所包含的缺陷相对应的面积或体积。
本发明上下文中的缺陷密度必然与源自错位晶界相的个别相部分的微观点-、线-和面-缺陷(例如空穴、空隙、位错、堆垛层错)相关。根据本发明的层A和层B的缺陷密度可通过使用例如X射线衍射(XRD)和/或透射电子显微镜(TEM)估算。举例来说,通过使用X射线技术,检查约1微米厚的由TiAlN构成并呈现细晶粒结构的A层、约1微米厚的由TiAlTaN构成并呈现柱状晶粒结构的B层和约1微米厚的包含多个上述类型的A-和B-层的多层膜。获得的X射线谱示于图9。
检查的层A的X射线谱的特征在于宽XRD信号52<2θ<60°。一般,根据本发明的单层A应呈现(002)主导方向。与此相反,检查的层B的X射线谱的特征在于在相同2θ范围内缺失XRD信号,这是相较于层A更低量的晶界相的指征,因此是本发明上下文中更低的缺陷密度的指征。
根据实现的X-射线检查,所检查的层A的结构包含纳米大小的晶粒(晶粒大小<15nm)并因此呈现出缺陷富集的晶界相部分。
同样如图9所示,来自根据本发明的多层膜(包括彼此交替沉积的层A和层B)的典型的XRD图可呈现(002)主导方向和此外一些量的晶界信号。
每个A层和B层的厚度不限于上述优选实施方案并对一些应用可为例如3nm-3000nm之间或3nm-500nm之间。
用于一些应用的每个A层的厚度优选为比每个相应的B层(与A层交替沉积(形成多层结构))的厚度至少大15%,即:A1-层厚度≥1.15B1层厚度,A2层厚度≥1.15B2层厚度,...,An层厚度≥1.15Bm层厚度。
在本发明的另一个优选的实施方案中,每个A层的厚度比相应的每个B层(与A层交替沉积)的厚度至少大25%。
在本发明的一个更优选的实施方案中,每个A层的厚度比相应的每个B层(与A层交替沉积)的厚度大30%-50%之间。
总之,根据本发明的耐磨涂层系统(20)包含含钽多层膜(10),所述含钽多层膜(10)由彼此交替沉积的n个A层(4)和m个B层(8)所构成,其中n和m是大于1的整数,所述多层膜(10)呈现晶体立方结构,其特征在于B层包含钽和A层呈现比B层更高的缺陷密度。
涂层系统中的A和B层的化学组成优选通过系数以原子百分数计的以下公式给出:
对于A层:Me1 1-xAlxNzX1-z和对于B层:Me2 1-x-yAlxTayNzX1-z,其中:
Me1是选自:Ti、Cr、V、Ta、Nb、Zr、Hf、Mo、Si和W的一种或多种元素,以及
Me2是选自:Ti、Cr、V、Nb、Zr、Hf、Mo、Si和W的一种或多种元素,以及
X是选自:O、C和B的一种或多种元素,并且
0.2≤x≤0.7,0.7≤z≤1,0.02≤y≤0.80。
B层的厚度优选比A层的厚度小:Al>B1,A2>B2,A3>B3...An>Bm。
优选地,A层的厚度比B层的厚度大至少15%:Al≥1.15Bl,A2≥1.15B2,A3≥1.15B3... An≥1.15Bm。
本发明还公开涂布体,其包括主体(1)和可沉积在所述主体(1)至少一部分表面上的本发明的涂层系统(20)。
优选使用PVD技术沉积根据本发明的涂布体所包含的涂层系统(20)的多层膜(10)。
可使用磁控管溅射离子电镀技术或高电离磁控管溅射技术沉积多层膜(10)的B层。
可使用电弧离子电镀技术沉积A层。
用于制造根据本发明的涂布体的优选的方法涉及使用PVD技术在基材上沉积A层和/或B层。
优选地,使用反应性物理气相沉积技术沉积A层和/或B层。
优选地,氮部分和/或涂层系统的X组分中包括的至少一种元素由反应性气体或由反应性气体混合物分别结合到A和/或B层中。
该多层膜(10)(即A-和B-层两者)可使用电弧离子电镀技术沉积。
在这种情况下,层A和B中所期望的缺陷密度可通过相应地调节线圈电流而调节。
优选地,用作用于沉积A和/或B层的源材料的至少一个靶通过粉末冶金技术制造。

Claims (14)

1.含钽的耐磨涂层系统(20),所述涂层系统(20)含有多层膜(10),所述多层膜(10)由彼此交替沉积的n个A层(4)和m个B层(8)构成,其中n和m为大于1的整数,所述多层膜(10)呈现晶体立方结构,其特征在于所述B层包含钽和所述A层呈现比所述B层更高的缺陷密度,其中所述缺陷的数量由层形态表征,层形态由晶粒的生长方式确定。
2.根据权利要求1所述的涂层系统,其特征在于所述A和B层的化学组成通过系数以原子百分数计的下式给出:
对于所述A层:Me1 1-xAlxNzX1-z,且对于所述B层:Me2 1-x-yAlxTayNzX1-z,其中
Me1是选自:Ti、Cr、V、Ta、Nb、Zr、Hf、Mo、Si和W的一种或多种元素,以及
Me2是选自:Ti、Cr、V、Nb、Zr、Hf、Mo、Si和W的一种或多种元素,以及
X是选自:O、C和B的一种或多种元素,并且
0.2≤x≤0.7,0.7≤z≤1,0.02≤y≤0.80。
3.根据权利要求2所述的涂层系统,其特征在于所述B层的厚度比所述A层的厚度小:A1>B1,A2>B2,A3>B3…An>Bm。
4.根据权利要求3所述的涂层系统,其特征在于所述A层的厚度比所述B层的厚度大至少15%:A1≥1.15B1,A2≥1.15B2,A3≥1.15B3…An≥1.15Bm。
5.涂布体,其包括主体(1)和沉积在所述主体(1)至少一部分表面上的根据权利要求1-4中任一项所述的涂层系统(20)。
6.根据权利要求5所述的涂布体,其特征在于所述涂层系统(20)的多层膜(10)使用PVD技术沉积。
7.根据权利要求6所述的涂布体,其特征在于所述多层膜(10)的B层使用磁控管溅射离子电镀技术或高电离磁控管溅射技术沉积。
8.根据权利要求6-7中任一项所述的涂布体,其特征在于所述A层使用电弧离子电镀技术沉积。
9.制造根据权利要求5-8中任一项所述的涂布体的方法,其特征在于使用PVD技术将所述A层和/或B层沉积到基材上,其中所述缺陷的数量由层形态表征,层形态由晶粒的生长方式确定。
10.根据权利要求9所述的方法,其特征在于使用反应性物理气相沉积技术沉积所述A层和/或B层。
11.根据权利要求10所述的方法,其特征在于氮部分和/或涂层系统的X组分中包括的至少一种元素由反应性气体或由反应性气体混合物分别结合到所述A和/或B层中。
12.根据权利要求9-11中任一项所述的方法,其特征在于所述多层膜(10),即A层和B层两者,使用电弧离子电镀技术沉积。
13.根据权利要求12所述的方法,其特征在于为了调节所述层A和B中所期望的缺陷密度,相应调节线圈电流。
14.根据权利要求9、10、11和13中任一项所述的方法,其特征在于用作用于沉积所述A和/或B层的源材料的至少一个靶通过粉末冶金技术制造。
CN201380058544.7A 2012-09-08 2013-09-04 呈现提高的热稳定性的ti‑al‑ta基涂层 Active CN105026605B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012017731.3 2012-09-08
DE102012017731.3A DE102012017731A1 (de) 2012-09-08 2012-09-08 Ti-Al-Ta-basierte Beschichtung mit einer verbesserten Temperaturbeständigkeit
PCT/EP2013/002658 WO2014037104A1 (en) 2012-09-08 2013-09-04 Ti-al-ta-based coating exhibiting enhanced thermal stability

Publications (2)

Publication Number Publication Date
CN105026605A CN105026605A (zh) 2015-11-04
CN105026605B true CN105026605B (zh) 2018-01-26

Family

ID=49165708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380058544.7A Active CN105026605B (zh) 2012-09-08 2013-09-04 呈现提高的热稳定性的ti‑al‑ta基涂层

Country Status (8)

Country Link
US (1) US9506139B2 (zh)
EP (1) EP2893052B1 (zh)
JP (3) JP2015533936A (zh)
KR (2) KR102386800B1 (zh)
CN (1) CN105026605B (zh)
BR (1) BR112015005064A2 (zh)
DE (1) DE102012017731A1 (zh)
WO (1) WO2014037104A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017731A1 (de) * 2012-09-08 2014-03-13 Oerlikon Trading Ag, Trübbach Ti-Al-Ta-basierte Beschichtung mit einer verbesserten Temperaturbeständigkeit
JP6491031B2 (ja) * 2014-06-24 2019-03-27 株式会社神戸製鋼所 積層型硬質皮膜および切削工具
US11090739B2 (en) * 2015-12-14 2021-08-17 Alp Havacilik Sanayi Ve Ticaret Anonim Sirketi End-mills made of hard metal and ceramic combined by brazing method
DE102016112927A1 (de) * 2016-07-14 2018-02-01 Hoppe Holding Ag Bauteil mit Substrat und Korrosionsschutzbeschichtung
DE102016112928A1 (de) * 2016-07-14 2018-01-18 Hoppe Holding Ag Verfahren zur Herstellung eines Bauteils mit einer Korrosionsschutzbeschichtung
ES2963346T3 (es) 2017-05-23 2024-03-26 Oerlikon Surface Solutions Ag Pfaeffikon Películas gruesas de recubrimiento multicapa de AITiTaN/AICrN sobre componentes de turbinas
CN111587157B (zh) * 2018-03-07 2023-06-20 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
JP7055961B2 (ja) * 2018-10-03 2022-04-19 住友電工ハードメタル株式会社 表面被覆切削工具及びその製造方法
CN110484870B (zh) * 2019-08-15 2021-08-24 广东工业大学 一种多组元氮化物硬质涂层及其制备方法和应用
CN114150282B (zh) * 2021-11-22 2022-08-09 苏州大学 一种纳米刀具涂层及其制备方法
WO2023143857A1 (en) 2022-01-31 2023-08-03 Oerlikon Surface Solutions Ag, Pfäffikon METHOD FOR PRODUCING A MXAl1-XN BASED THIN FILMS WITH INCREASED THERMAL STABILITY
JP7459450B2 (ja) 2022-05-17 2024-04-02 株式会社タンガロイ 被覆切削工具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW554059B (en) * 2000-10-31 2003-09-21 Mmc Kobelco Tool Co Ltd High-speed tool steel gear cutting tool and manufacturing method therefor
CN1853832A (zh) * 2005-04-29 2006-11-01 奥地利色拉提琪有限公司 涂层硬质合金刀具

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351054B2 (ja) 1993-02-16 2002-11-25 株式会社神戸製鋼所 耐酸化性および耐摩耗性に優れた硬質皮膜
JP3256024B2 (ja) 1993-05-21 2002-02-12 株式会社リケン 摺動部材
JPH07331410A (ja) 1994-06-02 1995-12-19 Kobe Steel Ltd 耐酸化性および耐摩耗性に優れた硬質皮膜
SE9701181D0 (sv) * 1997-03-27 1997-03-27 Sandvik Ab Multilayered coated cutting tool
JP3543755B2 (ja) * 2000-10-31 2004-07-21 三菱マテリアル神戸ツールズ株式会社 硬質被覆層がすぐれた切粉潤滑性を有する表面被覆高速度工具鋼製歯切工具
US6660133B2 (en) * 2002-03-14 2003-12-09 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
SE526336C2 (sv) 2002-07-01 2005-08-23 Seco Tools Ab Skär med slitstark refraktär beläggning av MAX-fas
SE526339C2 (sv) 2002-09-04 2005-08-23 Seco Tools Ab Skär med slitstark refraktär beläggning med kompositstruktur
SE526338C2 (sv) 2002-09-04 2005-08-23 Seco Tools Ab Skär med utskiljningshärdad slitstark refraktär beläggning
SE529223C2 (sv) 2005-05-06 2007-06-05 Seco Tools Ab Belagt skärverktyg innefattande hexagonal h-(Mel,Me2)Xfas
JP4720987B2 (ja) 2005-07-08 2011-07-13 三菱マテリアル株式会社 高反応性被削材の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆高速度工具鋼製歯切工具
JP5066880B2 (ja) 2006-09-27 2012-11-07 住友化学株式会社 乳剤組成物
DE102006046917C5 (de) * 2006-10-04 2014-03-20 Federal-Mogul Burscheid Gmbh Kolbenring für Verbrennungskraftmaschinen
AT9999U1 (de) 2007-06-29 2008-07-15 Ceratizit Austria Gmbh Al-ti-ru-n-c hartstoffschicht
DE102007030734A1 (de) * 2007-07-02 2009-01-08 Walter Ag Beschichtetes Werkzeug
WO2009105024A1 (en) 2008-02-21 2009-08-27 Seco Tools Ab Multilayered coated cutting tool
TWI374613B (en) 2008-02-29 2012-10-11 Ind Tech Res Inst Method and apparatus of pre-encoding and pre-decoding
JP5261413B2 (ja) * 2010-02-05 2013-08-14 株式会社神戸製鋼所 硬質皮膜およびその形成方法
JP5594569B2 (ja) * 2010-04-16 2014-09-24 三菱マテリアル株式会社 表面被覆切削工具
JP5239062B2 (ja) * 2011-01-26 2013-07-17 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
DE102012017731A1 (de) * 2012-09-08 2014-03-13 Oerlikon Trading Ag, Trübbach Ti-Al-Ta-basierte Beschichtung mit einer verbesserten Temperaturbeständigkeit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW554059B (en) * 2000-10-31 2003-09-21 Mmc Kobelco Tool Co Ltd High-speed tool steel gear cutting tool and manufacturing method therefor
CN1853832A (zh) * 2005-04-29 2006-11-01 奥地利色拉提琪有限公司 涂层硬质合金刀具

Also Published As

Publication number Publication date
US9506139B2 (en) 2016-11-29
JP7480098B2 (ja) 2024-05-09
JP2022003168A (ja) 2022-01-11
BR112015005064A2 (pt) 2017-07-04
EP2893052B1 (en) 2022-12-07
KR102386800B1 (ko) 2022-04-14
JP2015533936A (ja) 2015-11-26
DE102012017731A1 (de) 2014-03-13
KR20210054602A (ko) 2021-05-13
EP2893052A1 (en) 2015-07-15
KR20150048884A (ko) 2015-05-07
CN105026605A (zh) 2015-11-04
JP2019143251A (ja) 2019-08-29
US20150259782A1 (en) 2015-09-17
WO2014037104A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
CN105026605B (zh) 呈现提高的热稳定性的ti‑al‑ta基涂层
Greczynski et al. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers
He et al. Interfacial structure, mechanical properties and thermal stability of CrAlSiN/CrAlN multilayer coatings
Nedfors et al. Superhard NbB2− x thin films deposited by dc magnetron sputtering
US20220220601A1 (en) Pvd coatings comprising multi-anion high entropy alloy oxy-nitrides
Shanaghi et al. Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVD
Wang et al. Effect of Nb content on the microstructure and corrosion resistance of the sputtered Cr-Nb-N coatings
Khamseh et al. A study of the oxidation behavior of CrN and CrZrN ceramic thin films prepared in a magnetron sputtering system
Alresheedi et al. Structure and morphology of stainless steel coatings sputter-deposited in a nitrogen/argon atmosphere
Grochla et al. Time-and space-resolved high-throughput characterization of stresses during sputtering and thermal processing of Al–Cr–N thin films
Nedfors et al. Characterization of amorphous and nanocomposite Nb–Si–C thin films deposited by DC magnetron sputtering
Huang et al. Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel
CN109513972A (zh) 被覆钻头
US20220170146A1 (en) TM-Al-O-N COATING LAYERS WITH INCREASED THERMAL STABILITY
Crisan et al. Incipient low-temperature formation of MAX phase in Cr–Al–C films
Dalbauer et al. In-situ XRD studies of arc evaporated Al-Cr-O coatings during oxidation
Chang et al. Mechanical and corrosion properties of (Ti, Si) N coating synthesized by cathodic arc plasma evaporation
Alves et al. Influence of magnetron sputtering conditions on the chemical bonding, structural, morphological and optical behavior of Ta1− xOx coatings
Pierson et al. Amorphous Fe–B–N films deposited by reactive sputtering of a FeB target
Zhang et al. Toughness enhancement mechanism of Ni-doped Cr2N
Hampshire et al. Structure and mechanical properties of co-deposited TiAl thin films
EP3722461A1 (en) A coated cutting tool
EP4263898A1 (en) Hard cubic al-rich altin coating layers produced by pvd from ceramic targets
Rueß Effect of target power density on the chemical composition, phase formation, and mechanical properties of MAX-phase Cr $ _2} $ AlC coatings and prediction of mechanical properties of VAlN
Oliveira et al. CHAPTER IV-Optimized Composition for Enhanced Mechanical and Electrochemical Response of ZrCN-Ag Coatings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Swiss hole

Applicant after: Ou Ruikang surface solutions Inc.

Address before: Swiss Te Lui Bach

Applicant before: OERLIKON TRADING AG, TRUBBACH

GR01 Patent grant
GR01 Patent grant