CN105023969B - 一种基于金属纳米结构的光吸收增强型石墨烯晶体管 - Google Patents

一种基于金属纳米结构的光吸收增强型石墨烯晶体管 Download PDF

Info

Publication number
CN105023969B
CN105023969B CN201510319639.0A CN201510319639A CN105023969B CN 105023969 B CN105023969 B CN 105023969B CN 201510319639 A CN201510319639 A CN 201510319639A CN 105023969 B CN105023969 B CN 105023969B
Authority
CN
China
Prior art keywords
layer
metal electrode
metal
electrode
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510319639.0A
Other languages
English (en)
Other versions
CN105023969A (zh
Inventor
汤乃云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201510319639.0A priority Critical patent/CN105023969B/zh
Publication of CN105023969A publication Critical patent/CN105023969A/zh
Application granted granted Critical
Publication of CN105023969B publication Critical patent/CN105023969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一种基于金属纳米结构的光吸收增强型石墨烯晶体管,包括由下到上依次设置的柔性衬底、金属电极层、介质层、石墨烯层及金属纳米颗粒层,在所述石墨烯层两端分别生长第一金属电极与第二金属电极,所述金属电极层为栅极,第一金属电极为源极,第二金属电极为漏极,构成MOS结构;所述第一金属电极和第二金属电极之间设有提供偏压的电压源,通过调节所述偏压来调制所述石墨烯层的光电流。相对传统的硅基晶体管,本发明可实现柔性探测,便于携带,可伸缩,塑性强,可应用在众多新型领域,具有广阔的应用前景。

Description

一种基于金属纳米结构的光吸收增强型石墨烯晶体管
技术领域
本发明涉及一种晶体管,尤其是涉及一种基于金属纳米结构的光吸收增强型石墨烯晶体管,属于光电子技术领域。
背景技术
和传统的硅基晶体管的制备材料相比,石墨烯具有优异的力学、热学、光学及电学特性。石墨烯具有独特二维平面结构和狄拉克锥形电子能带结构、以及紫外到近红外的宽谱光吸收特性,用石墨烯制作的光电探测器具有探测波谱范围宽、超快响应速度的工作特性。
另一方面,石墨烯主要是由单层或几层碳原子薄膜支撑,是世界上最薄但最坚硬的纳米材料,其具有高达约1.0TPa的杨氏模量,有很好的机械韧性。将大面积生长的石墨烯薄膜转移到任意柔性材料上,可随之弯曲、折叠,对石墨烯的柔性特征的应用可获得可弯曲可伸展的柔性光电器件。
如上所述,石墨烯的这些优异的性能促使其在电子器件和光电器件领域具有巨大的应用潜力。
但石墨烯的光吸收率仅有2.3%,其吸收率用于实际的光电转换还不够。如何提高石墨烯的光电流仍然是一个重要的问题。在石墨烯层上覆盖一层金属纳米颗粒后,因纳米颗粒的曲率半径很小,光照后纳米颗粒的电场增强,使得石墨烯与电场之间耦合增强,光吸收率增大,器件的量子效率增大。
中国专利CN 104409498 A公布了一种石墨烯微分负阻晶体管,包括:背栅电极层、布置在背栅电极层上的绝缘层、布置在绝缘层的势垒层、以及分别布置在势垒层两侧的源极和漏极;其中,在势垒层上表面形成有第一石墨烯层;在势垒层下表面上布置有第二石墨烯层;而且,其中,第一石墨烯层接触源极而不接触漏极,第二石墨烯层接触漏极而不接触源极。源极、漏极和背栅电极层上分别加有第一正偏置电压、第二负偏置电压和第三正偏置电压,使得在第一石墨烯层内形成二维空穴气,而且在第二石墨烯层内形成二维电子气。该专利公布的晶体管通过设置多层石墨烯来制备石墨烯微分负阻晶体管,在石墨烯的光吸收率以及器件的量子效率和光电增益上效果有待进一步提高。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于金属纳米结构的光吸收增强型石墨烯晶体管。
本发明的目的可以通过以下技术方案来实现:
一种基于金属纳米结构的光吸收增强型石墨烯晶体管,包括由下到上依次设置的柔性衬底、金属电极层、介质层、石墨烯层及金属纳米颗粒层,在所述石墨烯层两端分别生长第一金属电极与第二金属电极,所述金属电极层为栅极,第一金属电极为源极,第二金属电极为漏极,构成MOS结构;所述第一金属电极和第二金属电极之间设有提供偏压的电压源,通过调节所述偏压来调制所述石墨烯层的光电流。
优选地是,所述柔性衬底为超薄玻璃、高分子聚合物或金属箔片,所述高分子聚合物选自聚酰亚胺(Polyimide)、聚萘二甲酸乙二醇酯(PEN)或聚对苯二甲酸乙二醇酯(PET)中的一种或几种。
优选地是,所述金属电极层材料为金,厚度在200nm以内。
优选地是,所述介质层材料为有机材料介质层、透明Al2O3介质层或铁电介质层中的一种,所述介质层厚度在100nm以内。
优选地是,所述金属纳米颗粒层材料为金,厚度小于5nm。
优选地是,所述第一金属电极与第二金属电极为透明导电材料,材质包括氧化铟锡或氧化锌铝,厚度为10-200nm。
将石墨烯晶体管在200℃-300℃下退火30分钟,退火后,因为金属纳米颗粒层薄膜厚度很薄,金属纳米颗粒层受热变成金属纳米颗粒。
所述柔性衬底、金属电极层、介质层、石墨烯层、金属纳米颗粒层、第一金属电极和第二金属电极所用材料均为可弯曲伸展的柔性材料。
石墨烯具有超高电子迁移率、很低的电阻率,但石墨烯的光吸收率仅有2.3%,其吸收率用于实际的光电转换还不够。如何提高石墨烯的光电流仍然是一个重要的问题。在石墨烯层上覆盖一层金属纳米颗粒后,因纳米颗粒的曲率半径很小,光照后纳米颗粒的电场增强,使得石墨烯与电场之间耦合增强,光吸收率增大,石墨烯晶体管的量子效率增大。本发明不仅光谱带宽、响应迅速,同时具有较高的吸收率,及量子效率和增益。同时因发明中使用的主要材料均具有可弯曲特性,故本发明属于柔性电子器件,晶体管的形状可弯曲折叠,应用灵活。
与目前通用的晶体管相比,本发明具有以下有益效果:
(一)本发明采用的材料均有可弯曲伸展的柔性特征,发明具有可弯曲折叠的优点,在弯折后器件的电学性能保持不变。相对传统的硅基晶体管,本发明可实现柔性探测,便于携带,可伸缩,塑性强,可应用在众多新型领域,具有广阔的应用前景。
(二)由于石墨烯的零禁带的能带特征,故本发明可以在很宽的波长范围(紫外到太赫兹)内实现光电信息的存储,转换和探测。
(三)石墨烯具有超高电子迁移率、很低的电阻率,但石墨烯的光吸收率仅有2.3%,其吸收率用于实际的光电转换还不够。在石墨烯层上覆盖一层金属纳米颗粒后,因纳米颗粒的曲率半径很小,光照后纳米颗粒的电场增强,使得石墨烯与电场之间耦合增强,光吸收率增大,器件的量子效率增大。本发明采用金属纳米结构增加了石墨烯的光吸收率,提高了器件的量子效率和光电增益。本发明不仅光谱带宽、响应迅速,同时具有较高的吸收率及量子效率和增益。
附图说明
图1为本发明的基于金属纳米结构的光吸收增强型石墨烯晶体管结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
一种基于金属纳米结构的光吸收增强型石墨烯晶体管,如图1所示,包括由下到上依次设置的柔性衬底1、金属电极层2、介质层3、石墨烯层4及金属纳米颗粒层5,在石墨烯层4两端分别生长第一金属电极6与第二金属电极7,金属电极层2为栅极,第一金属电极6为源极,第二金属电极7为漏极,构成MOS结构;第一金属电极6和第二金属电极7之间设有提供偏压的电压源,通过调节偏压来调制石墨烯层4的光电流。源极与栅极之间施加栅极电压。当光波垂直入射衬底时,石墨烯中光生载流子引起的源漏电极之间的光电流变化,实现宽频谱的光电转换。
其中,所述柔性衬底1为超薄玻璃、高分子聚合物或金属箔片,所述高分子聚合物选自聚酰亚胺(Polyimide)、聚萘二甲酸乙二醇酯(PEN)或聚对苯二甲酸乙二醇酯(PET)中的一种或几种。本实施例选用PET为柔性衬底。
金属电极层2材料为金,厚度在200nm以内。是通过电子束蒸发或磁探测射方法在PET柔性衬底上生长出来的。
介质层3材料为有机材料介质层、透明Al2O3介质层或铁电介质层中的一种,介质层3厚度在100nm以内。本实施例中介质层选用透明Al2O3介质层,是通过原子层淀积方法(ALD方法)在金属电极层上生长出来的。
石墨烯层4可以为单层或数层石墨烯,是通过为CVD法在介质层上直接生长得到石墨烯层,或通过标准机械剥离工艺获得石墨烯,之后通过转移技术转移到介质层上。
金属纳米颗粒层5材料为金,厚度小于5nm,是通过电子束蒸发或磁控射方法在石墨烯层上方生长的。将石墨烯晶体管在200℃-300℃下退火30分钟,退火后,因为金属纳米颗粒层薄膜厚度很薄,金属纳米颗粒层5受热变成金属纳米颗粒。
第一金属电极6与第二金属电极7为透明导电材料,材质包括氧化铟锡或氧化锌铝,厚度为10-200nm,均采用溅射制作而成。
柔性衬底1、金属电极层2、介质层3、石墨烯层4、金属纳米颗粒层5、第一金属电极6和第二金属电极7所用材料均为可弯曲伸展的柔性材料。
本实施例的柔性探测器采用石墨烯作为沟道。石墨烯是一种零带隙半导体材料,其透光性较好,光谱吸收范围可以从紫外到太赫兹频段,因为采用石墨烯为沟道,本发明可以在一个广泛的频谱范围内工作。此外,石墨烯具有超高的载流子迁移率,故本发明响应速度很快。石墨烯层上覆盖一层金属纳米颗粒后,因纳米颗粒的曲率半径很小,光照后纳米颗粒的电场增强,使得石墨烯与电场之间耦合增强,光吸收率增大,器件的量子效率增大。石墨烯具有超高的杨氏模量,将所述石墨烯层为沟道的MOS结构生长在柔性衬底上,可使得此发明具有可弯曲可伸展的特点,实现柔性探测,从而诞生众多新型应用领域。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (2)

1.一种基于金属纳米结构的光吸收增强型石墨烯晶体管,其特征在于,包括由下到上依次设置的柔性衬底(1)、金属电极层(2)、介质层(3)、石墨烯层(4)及金属纳米颗粒层(5),在所述石墨烯层(4)两端分别生长第一金属电极(6)与第二金属电极(7),所述金属电极层(2)为栅极,第一金属电极(6)为源极,第二金属电极(7)为漏极,构成MOS结构;所述第一金属电极(6)和第二金属电极(7)之间设有提供偏压的电压源,通过调节所述偏压来调制所述石墨烯层(4)的光电流;
所述介质层(3)材料为有机材料介质层、透明Al2O3介质层或铁电介质层中的一种,所述介质层(3)厚度在100nm以内;
所述金属电极层(2)材料为金,厚度在200nm以内;
所述第一金属电极(6)与第二金属电极(7)为透明导电材料,材质包括氧化铟锡或氧化锌铝,厚度为10-200nm;
所述的石墨烯层(4)为沟道层;
将石墨烯晶体管在200℃-300℃下退火,退火后,金属纳米颗粒层(5)受热变成金属纳米颗粒。
2.根据权利要求1所述的一种基于金属纳米结构的光吸收增强型石墨烯晶体管,其特征在于,所述柔性衬底(1)为超薄玻璃、高分子聚合物或金属箔片,所述高分子聚合物选自聚酰亚胺、聚萘二甲酸乙二醇酯或聚对苯二甲酸乙二醇酯中的一种或几种。
CN201510319639.0A 2015-06-11 2015-06-11 一种基于金属纳米结构的光吸收增强型石墨烯晶体管 Active CN105023969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510319639.0A CN105023969B (zh) 2015-06-11 2015-06-11 一种基于金属纳米结构的光吸收增强型石墨烯晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510319639.0A CN105023969B (zh) 2015-06-11 2015-06-11 一种基于金属纳米结构的光吸收增强型石墨烯晶体管

Publications (2)

Publication Number Publication Date
CN105023969A CN105023969A (zh) 2015-11-04
CN105023969B true CN105023969B (zh) 2018-02-02

Family

ID=54413793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510319639.0A Active CN105023969B (zh) 2015-06-11 2015-06-11 一种基于金属纳米结构的光吸收增强型石墨烯晶体管

Country Status (1)

Country Link
CN (1) CN105023969B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105824138B (zh) * 2016-04-13 2019-02-15 电子科技大学 基于石墨烯/掺杂硅复合双层结构的光控太赫兹调制器
CN109417106B (zh) * 2016-07-12 2022-04-26 三菱电机株式会社 电磁波检测器以及电磁波检测器阵列
CN106409984B (zh) * 2016-12-02 2017-10-24 中北大学 一种“三明治”型超快光电探测金属超结构的制作方法
CN107328754B (zh) * 2017-07-25 2023-05-16 北京科技大学 光电协同表面等离激元-激子催化反应器件及制备方法
CN108155267B (zh) * 2017-12-08 2019-09-13 浙江大学 一种基于肖特基-mos混合结构的光致负阻器件
CN108231949B (zh) * 2017-12-14 2020-05-15 上海集成电路研发中心有限公司 一种红外敏感器件以及红外传感信号放大电路
CN108389930B (zh) * 2018-02-05 2020-07-31 国家纳米科学中心 一种柔性石墨烯等离激元器件及其制备方法
CN108461446B (zh) * 2018-03-26 2020-07-28 北京大学 一种单栅石墨烯倍频器的制备方法
CN110911409B (zh) * 2018-09-18 2022-05-03 联华电子股份有限公司 非挥发性存储器及其形成方法
CN110911521B (zh) * 2019-11-22 2021-07-13 西安交通大学 一种多层耦合结构多波段石墨烯探测器及其制备工艺
CN113030026B (zh) * 2021-03-07 2022-11-04 天津理工大学 一种lspr多波长窄带可调谐传感器
CN113300091B (zh) * 2021-05-27 2023-03-21 长江师范学院 一种石墨烯金属复合结构的光微波信号转换天线
CN113823636B (zh) * 2021-08-23 2024-04-23 湘潭大学 一种铁电畴工程调制的二维同质结的存储单元及调控方法
CN114520266A (zh) * 2021-10-22 2022-05-20 中国科学院重庆绿色智能技术研究院 硫化铅光电导探测器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052537B2 (ja) * 2011-12-01 2016-12-27 国立大学法人東北大学 グラフェン構造体及びそれを用いた半導体装置並びにそれらの製造方法
KR101380838B1 (ko) * 2012-06-27 2014-04-14 한국기계연구원 귀금속나노입자가 분산된 중간층을 포함하는 유·무기 복합 탠덤 태양전지 및 이의 제조방법
CN103531664B (zh) * 2013-10-28 2016-08-17 苏州大学 柔性衬底上制备石墨烯基光电晶体管的方法
CN104409498A (zh) * 2014-12-10 2015-03-11 上海电机学院 石墨烯微分负阻晶体管

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Plasmon resonance enhanced multicolour photodetection by graphene";Yuan Liu et al;《NATURE COMMUNICATIONS》;20111206;第2-6页 *

Also Published As

Publication number Publication date
CN105023969A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
CN105023969B (zh) 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
Goel et al. Wafer-scale synthesis of a uniform film of few-layer MoS2 on GaN for 2D heterojunction ultraviolet photodetector
CN104766902B (zh) 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
Szendrei et al. PbS nanocrystal solar cells with high efficiency and fill factor
Ju et al. High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature
Bernède et al. Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer
Wu et al. Ultrahigh photoresponsivity MoS2 photodetector with tunable photocurrent generation mechanism
Kumar et al. High-performance and self-powered alternating current ultraviolet photodetector for digital communication
CN105762281A (zh) 一种铁电局域场增强型二维半导体光电探测器及制备方法
US20130285018A1 (en) Photodetector using graphene and method of manufacturing the same
Afal et al. All solution processed, nanowire enhanced ultraviolet photodetectors
CN104779352A (zh) 基于石墨烯与纳米结构钙钛矿材料的光探测器及制备方法
CN205723636U (zh) 一种铁电局域场增强型二维半导体光电探测器
CN104993056A (zh) 一种宽频谱柔性光电探测器及其制作方法
CN108281493B (zh) 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备
Patel et al. High-performing flexible and transparent photodetector by using silver nanowire-networks
Lei et al. Ambipolar photoresponsivity in an ultrasensitive photodetector based on a WSe2/InSe heterostructure by a photogating effect
Qi et al. Transparent and transferrable organic optoelectronic devices based on WO3/Ag/WO3 electrodes
Lin et al. Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes
Xu et al. The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers
Ma et al. All polymer encapsulated, highly-sensitive MoS2 phototransistors on flexible PAR substrate
Kadir et al. Ultraviolet Photodetector Based on Poly (3, 4-Ethylenedioxyselenophene)/ZnO Core–Shell Nanorods pn Heterojunction
Zhang et al. Ultra-broadband, self-powered and high performance vertical WSe2/AlOx/Ge heterojunction photodetector with MXene electrode
CN107123468B (zh) 一种含有功能调节层的透明导电薄膜
Lee et al. Wavelength-selective enhancement of photo-responsivity in metal-gated multi-layer MoS2 phototransistors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant