CN108155267B - 一种基于肖特基-mos混合结构的光致负阻器件 - Google Patents

一种基于肖特基-mos混合结构的光致负阻器件 Download PDF

Info

Publication number
CN108155267B
CN108155267B CN201711295008.5A CN201711295008A CN108155267B CN 108155267 B CN108155267 B CN 108155267B CN 201711295008 A CN201711295008 A CN 201711295008A CN 108155267 B CN108155267 B CN 108155267B
Authority
CN
China
Prior art keywords
oxide
top electrode
semiconductor substrate
isolation layer
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711295008.5A
Other languages
English (en)
Other versions
CN108155267A (zh
Inventor
徐杨
李炜
郭宏伟
刘威
万霞
刘粒祥
吕建杭
李泠霏
阿亚兹
胡乐
刘晨
俞滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711295008.5A priority Critical patent/CN108155267B/zh
Publication of CN108155267A publication Critical patent/CN108155267A/zh
Application granted granted Critical
Publication of CN108155267B publication Critical patent/CN108155267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于肖特基‑MOS混合结构的光致负阻器件,包括半导体衬底,半导体衬底的上表面覆盖氧化物隔离层,氧化物隔离层的上表面覆盖环形顶电极;氧化物隔离层上开有圆形氧化层窗口;氧化层窗口的面积为顶电极所围面积的1/10~1/9;在氧化层窗口的内侧壁、半导体衬底暴露部分、顶电极的内侧壁和上表面、氧化物隔离层上表面覆盖石墨烯薄膜;本发明以石墨烯作为有源层和透明电极,石墨烯与半导体接触形成肖特基结,石墨烯覆盖在氧化物的上表面与半导体衬底形成MOS结,两种元件并联形成混合结构。一定强度的光照可以直接控制器件的阻抗特性,适合应用于光电开关和光控振荡器等电路。本发明器件成本低廉,具有负阻区间大,响应速度快,易于集成的特点。

Description

一种基于肖特基-MOS混合结构的光致负阻器件
技术领域
本发明属于光电子器件技术领域,涉及光电子器件结构,尤其涉及一种基于肖特基-MOS混合结构的光致负阻器件。
背景技术
光学控制器件在工业界有着非常广泛的应用,如光敏电阻,高速光耦等。负阻特性也称为负微分电阻特性,是指一些电路或电子元件在某特定埠的电流增加时,电压反而减少的特性。负阻元件在振荡电路和混频电路中有非常广泛的应用。
石墨烯是由单层sp2杂化碳原子构成的蜂窝状二维平面晶体薄膜,具有优异的力、热、光、电等性能。与普通金属不同,石墨烯是一种具有透明和柔性的新型二维导电材料。石墨烯和硅接触可以形成肖特基结,制备工艺简单,在光电探测领域有广泛应用。石墨烯/二氧化硅/硅则可以形成MOS结,在栅电压的作用下半导体形成的耗尽层具有较强的光响应。通常科研人员研究石墨烯/硅肖特基结器件,二氧化硅仅用来绝缘,没有考虑到石墨烯/二氧化硅/硅的MOS结的作用,而且目前也没有人发现负阻特性的存在。
发明内容
本发明的目的在于针对现有技术的不足,提出一种基于肖特基-MOS混合结构的光致负阻器件,通过扩大MOS结面积,我们可以利用MOS结的表面复合制备出光致负阻器件;同时经过一系列的实验比较,我们得出在顶电极与肖特基结窗口距离在半导体衬底的少数载流子扩散长度,且器件在肖特基结面积占整个器件面积1/10~1/9时,负阻效应最为显著;负阻特性仅仅在大于5μW的光照下才存在;利用该器件的特性可以制造出集成度更高的光电开关或振荡器电路等。
本发明的目的是通过以下技术方案来实现的:一种基于肖特基-MOS混合结构的光致负阻器件,包括:底电极、半导体衬底、氧化物隔离层、氧化层窗口、顶电极、石墨烯薄膜;其中,所述半导体衬底的上表面覆盖氧化物隔离层,在氧化物隔离层的上表面覆盖环形顶电极,顶电极的边界小于氧化物隔离层的边界;在氧化物隔离层上开有与环形顶电极同轴的圆形氧化层窗口,使窗口区域的半导体衬底暴露出来;顶电极内边缘到氧化层窗口外边缘的距离为半导体衬底的少数载流子扩散长度,且氧化层窗口的面积为顶电极所围面积的1/10~1/9;在氧化层窗口的内侧壁、半导体衬底的暴露部分、环形顶电极的内侧壁和上表面、环形顶电极所围的氧化物隔离层的上表面覆盖石墨烯薄膜;在半导体衬底下表面设置底电极。
进一步地,所述石墨烯薄膜同时覆盖在氧化物隔离层和氧化层窗口上构成MOS结和肖特基结的混合结构。
进一步地,所述半导体衬底为电阻率为1~10Ω·cm的n型硅衬底。
进一步地,所述顶电极内边缘到氧化层窗口外边缘的距离在100~200um之间。
进一步地,该负阻器件工作的必要条件为光功率大于5μW的外部光源照射。
本发明具有以下有益效果:
1.本发明基于的原理是,在一定栅压范围内,MOS结下半导体的表面复合速度随着栅压的增大先增加后减小。器件工作反偏时,栅下的半导体进入耗尽状态,能够吸收光子产生光生电荷,而在较小的电压范围内,随着电压的增加,半导体表面复合率上升,导致一部分的光生电荷在MOS结表面复合增加,最终在肖特基结表现出来的光电流减小的负阻特性。
2.通过测试不同MOS结与肖特基结的面积比的器件,我们得到器件在肖特基结面积占整个器件面积1/10~1/9时负阻特性最为显著。这是因为在此面积比下,肖特基结的光生载流子能够最大限度的扩散到MOS结下进行复合。
3.MOS结与肖特基结的混合结构能够吸收更多的光子,产生的光电流更大,负阻特性更明显。
4.光照可以直接控制器件的阻抗特性,仅在光功率大于5μW时负阻特性才会产生。这一特性适合用于光电开关和光控振荡器等应用场合。
5.成本低廉,工艺简单,与CMOS工艺相兼容,适合大规模量产。
附图说明
图1为本发明一种基于肖特基-MOS混合结构的光致负阻器件的结构示意图;
图2为本发明中实施例所制备的光致负阻器件工作在0~-5V下,波长532nm、光功率为10μW的激光在光开与光关条件下器件的光学响应曲线图;
图中,底电极1、半导体衬底2、氧化物隔离层3、氧化层窗口4、顶电极5、石墨烯薄膜6。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,本发明的目的和效果将更加明显。
本发明提供的光致负阻器件的工作原理如下:半导体的表面复合速度能够被栅电压控制,在一定栅压范围内,随着栅压的增大先增加后减小。器件工作在反偏电压下,栅下的半导体进入耗尽状态,能够吸收光子产生光生电荷,而在较小的电压范围内,随着电压的增加,半导体表面复合率上升,导致一部分的光生电荷在MOS结表面复合增加,最终在肖特基结表现出来的光电流减小的负阻特性。
如图1所示,本发明提供的基于肖特基-MOS混合结构的光致负阻器件,包括:底电极1、半导体衬底2、氧化物隔离层3、氧化层窗口4、顶电极5、石墨烯薄膜6;其中,所述半导体衬底2的上表面覆盖氧化物隔离层3,在氧化物隔离层3的上表面覆盖环形顶电极5,顶电极5的边界小于氧化物隔离层3的边界;在氧化物隔离层3上开有与环形顶电极5同轴的圆形氧化层窗口4,使窗口区域的半导体衬底2暴露出来;顶电极5内边缘到氧化层窗口4外边缘的距离为半导体衬底2的少数载流子扩散长度,且氧化层窗口4的面积为顶电极5所围面积的1/10~1/9;在氧化层窗口4的内侧壁、半导体衬底2的暴露部分、环形顶电极5的内侧壁和上表面、环形顶电极5所围的氧化物隔离层3的上表面覆盖石墨烯薄膜6;在半导体衬底2下表面设置底电极1。石墨烯薄膜6同时覆盖在氧化物隔离层3和氧化层窗口4上构成MOS结和肖特基结的混合结构。
制备上述器件的方法,以半导体衬底2为n型硅衬底为例,包括以下步骤:
(1)在n型硅衬底的上表面氧化生长二氧化硅隔离层,所用硅衬底的电阻率为1~10Ω·cm;二氧化硅隔离层的厚度为300nm,生长温度为900~1200℃;
(2)在二氧化硅隔离层表面光刻出顶电极图形,然后采用电子束蒸发技术,首先生长厚度约为5nm的铬黏附层,然后生长60nm的金电极;
(3)在生长有顶电极的二氧化硅隔离层表面光刻出二氧化硅窗口图形,然后通过反应离子刻蚀技术,采用C4F8等离子体刻蚀二氧化硅隔离层并用缓冲氧化物刻蚀(BOE)溶液去除残留的二氧化硅;其中,所述BOE溶液由氟化氨(NH4F)、氢氟酸(HF)和水组成,NH4F:HF:H2O=60g:30ml:100ml;顶电极内边缘到氧化层窗口外边缘的距离在100~200um之间;
(4)石墨烯薄膜的制备:采用化学气相沉积方法(CVD)在铜箔基底上制备石墨烯薄膜;
(5)在氧化层窗口的内侧壁、半导体衬底的暴露部分、环形顶电极的内侧壁和上表面、环形顶电极所围的氧化物隔离层的上表面覆盖石墨烯薄膜;其中,石墨烯的转移方法为:将石墨烯薄膜表面均匀涂覆一层聚甲基丙烯酸甲酯(PMMA)薄膜,然后放入刻蚀溶液中4h腐蚀去除铜箔,留下由PMMA支撑的石墨烯薄膜;将PMMA支撑的石墨烯薄膜用去离子水清洗后转移到氧化层窗口的内侧壁、半导体衬底的暴露部分、环形顶电极的内侧壁和上表面、环形顶电极所围的氧化物隔离层的上表面;最后用丙酮和异丙醇去除PMMA;其中,所述刻蚀溶液由CuSO4、HCl和水组成,CuSO4:HCl:H2O=10g:50ml:45ml;
(6)在n型硅衬底底部涂覆镓铟浆料,制备镓铟底电极,与n型硅衬底形成欧姆接触。
对上述基于混合结构的石墨烯硅基光致负阻器件加反向偏压,使肖特基结耗尽。其中电压的负极连接在器件的底电极上,电压的正电极连接在器件的顶电极上,如图1所示。
本实例所制备的基于肖特基-MOS混合结构的光致负阻器件工作在0~-5V下,在无光和10μW的532nm激光照射下的暗电流和光电流曲线如图2所示。从图2可以看出,所制备的器件在无光条件下,电压电流关系为正阻抗关系;而当波长为532nm、光功率为10μW的激光照射时产生明显的光电流,且电流随着电压的增大而减小,呈现明显的负阻特性。

Claims (5)

1.一种基于肖特基-MOS混合结构的光致负阻器件,其特征在于,包括:底电极(1)、半导体衬底(2)、氧化物隔离层(3)、氧化层窗口(4)、顶电极(5)、石墨烯薄膜(6);其中,所述半导体衬底(2)的上表面覆盖氧化物隔离层(3),在氧化物隔离层(3)的上表面覆盖环形顶电极(5),顶电极(5)的边界小于氧化物隔离层(3)的边界;在氧化物隔离层(3)上开有与环形顶电极(5)同轴的圆形氧化层窗口(4),使窗口区域的半导体衬底(2)暴露出来;顶电极(5)内边缘到氧化层窗口(4)外边缘的距离为半导体衬底(2)的少数载流子扩散长度,且氧化层窗口(4)的面积为顶电极(5)所围面积的1/10~1/9;在氧化层窗口(4)的内侧壁、半导体衬底(2)的暴露部分、环形顶电极(5)的内侧壁和上表面、环形顶电极(5)所围的氧化物隔离层(3)的上表面覆盖石墨烯薄膜(6);在半导体衬底(2)下表面设置底电极(1)。
2.根据权利要求1所述的一种基于肖特基-MOS混合结构的光致负阻器件,其特征在于,所述石墨烯薄膜(6)同时覆盖在氧化物隔离层(3)和氧化层窗口(4)上构成MOS结和肖特基结的混合结构。
3.根据权利要求1所述的一种基于肖特基-MOS混合结构的光致负阻器件,其特征在于,所述半导体衬底(2)为电阻率为1~10Ω·cm的n型硅衬底。
4.根据权利要求3所述的一种基于肖特基-MOS混合结构的光致负阻器件,其特征在于,所述顶电极(5)内边缘到氧化层窗口(4)外边缘的距离在100~200um之间。
5.根据权利要求3所述的一种基于肖特基-MOS混合结构的光致负阻器件,其特征在于,该负阻器件工作的必要条件为光功率大于5μW的外部光源照射。
CN201711295008.5A 2017-12-08 2017-12-08 一种基于肖特基-mos混合结构的光致负阻器件 Active CN108155267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711295008.5A CN108155267B (zh) 2017-12-08 2017-12-08 一种基于肖特基-mos混合结构的光致负阻器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711295008.5A CN108155267B (zh) 2017-12-08 2017-12-08 一种基于肖特基-mos混合结构的光致负阻器件

Publications (2)

Publication Number Publication Date
CN108155267A CN108155267A (zh) 2018-06-12
CN108155267B true CN108155267B (zh) 2019-09-13

Family

ID=62466755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711295008.5A Active CN108155267B (zh) 2017-12-08 2017-12-08 一种基于肖特基-mos混合结构的光致负阻器件

Country Status (1)

Country Link
CN (1) CN108155267B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230057648A1 (en) * 2020-03-27 2023-02-23 Mitsubishi Electric Corporation Electromagnetic wave detector, electromagnetic wave detector array, and manufacturing method of electromagnetic wave detector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065952A (zh) * 1991-04-13 1992-11-04 武汉大学 光致负阻器件
US8901689B1 (en) * 2013-05-10 2014-12-02 International Business Machines Corporation Graphene photodetector
CN104157720B (zh) * 2014-08-08 2016-05-04 浙江大学 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN105023969B (zh) * 2015-06-11 2018-02-02 上海电力学院 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
CN106169516B (zh) * 2016-08-31 2018-01-30 杭州紫元科技有限公司 一种基于石墨烯的硅基紫外光电探测器及其制备方法

Also Published As

Publication number Publication date
CN108155267A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
CN106784122B (zh) 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
Wang et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions
Shin et al. Experimental study of design parameters in silicon micropillar array solar cells produced by soft lithography and metal-assisted chemical etching
KR100847741B1 (ko) p-n접합 계면에 패시베이션층을 구비하는 점 접촉 이종접합 실리콘 태양전지 및 그의 제조방법
CN108666381B (zh) 一种异质结光电传感器及其制备方法
CN106169516A (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
KR20160062004A (ko) 전해-연마 및 다공화
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
CN104157720A (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN108155267B (zh) 一种基于肖特基-mos混合结构的光致负阻器件
Zhao et al. Piezo-phototronic effect-modulated carrier transport behavior in different regions of a Si/CdS heterojunction photodetector under a Vis–NIR waveband
KR20090062152A (ko) 플라즈마 표면 처리를 이용한 태양전지의 제조방법
KR101284271B1 (ko) 태양전지의 제조방법 및 그를 이용하여 제조된 태양전지
CN108963021A (zh) 一种基于化学修饰的黑磷材料太阳能电池及制备方法
KR20080105280A (ko) 태양전지의 제조방법 및 그를 이용하여 제조된 태양전지
KR101223061B1 (ko) 태양전지의 제조방법 및 그를 이용하여 제조된 태양전지
CN102683504B (zh) 通过离子注入砷改进晶体硅太阳能电池制作工艺的方法
US20140360584A1 (en) Manufacturing method of solar cell
JP5645734B2 (ja) 太陽電池素子
JP2011243855A (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
TW201626585A (zh) 太陽能電池及其製造方法
RU2568421C1 (ru) СОЛНЕЧНЫЙ ЭЛЕМЕНТ НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ СМЕШАННЫЙ АМОРФНЫЙ И НАНОКРИСТАЛЛИЧЕСКИЙ НИТРИД КРЕМНИЯ - КРЕМНИЙ p-ТИПА
KR101244791B1 (ko) 실리콘 웨이퍼의 텍스쳐링 방법, 태양전지의 제조방법 및태양전지
Lu et al. In-Situ Fabrication of a Self-Aligned Selective Emitter Silicon Solar Cell Using the Gold Top Contacts To Facilitate the Synthesis of a Nanostructured Black Silicon Antireflective Layer Instead of an External Metal Nanoparticle Catalyst
KR101142513B1 (ko) 에피택셜층을 포함하는 태양전지 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant