CN105008825A - 具有热量回收的风冷式冷却器 - Google Patents

具有热量回收的风冷式冷却器 Download PDF

Info

Publication number
CN105008825A
CN105008825A CN201480004836.7A CN201480004836A CN105008825A CN 105008825 A CN105008825 A CN 105008825A CN 201480004836 A CN201480004836 A CN 201480004836A CN 105008825 A CN105008825 A CN 105008825A
Authority
CN
China
Prior art keywords
heat recovery
cold
producing medium
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480004836.7A
Other languages
English (en)
Other versions
CN105008825B (zh
Inventor
W·L·科普科
S·库兰卡拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Tyco IP Holdings LLP
Original Assignee
Johnson Controls Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Co filed Critical Johnson Controls Technology Co
Publication of CN105008825A publication Critical patent/CN105008825A/zh
Application granted granted Critical
Publication of CN105008825B publication Critical patent/CN105008825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Abstract

一种具有辅助热量回收系统的风冷式冷却器,包括用于将热量从压缩的制冷剂传递至过程流体的热量回收换热器。根据一些实施方案,所述风冷式冷却器还包括压缩机、冷凝器、膨胀装置以及控制器,所述控制器管理膨胀装置、冷凝器中的风扇以及冷却器系统的其他部件的操作。所述控制器可以从位于整个冷却器系统的温度传感器和压力传感器接收信号,以确定所述热量回收换热器的热量回收负载。所述控制器可以根据低热量回收模式、中间热量回收模式或全热量回收模式管理冷凝器风扇和膨胀装置的操作。在全热量回收模式中,所述控制器基于在热量回收换热器中检测到的低温冷却来操作所述膨胀装置。

Description

具有热量回收的风冷式冷却器
背景技术
本公开内容总体涉及用于冷却器应用的制冷系统,并且更具体而言,涉及提供热量回收的冷却器系统。
一些制冷和空调系统依赖冷却器来降低过程流体(通常是水)的温度。在这样的应用中,冷却水可以被传递通过下游设备(诸如,空气处理器),以使其他流体(诸如,建筑物中的空气)变凉。在典型的冷却器中,过程流体被蒸发器冷却,该蒸发器通过将制冷剂蒸发从过程流体吸收热量。制冷剂随后被压缩机压缩并且传递至冷凝器。在冷凝器中,制冷剂典型地通过空气或水流变凉,并且被重新冷凝成液体。风冷式冷凝器通常包括一个或多个冷凝器线圈以及一个或多个风扇,所述风扇引起在所述线圈上的气流。一些系统可以采用节约器来提高性能。在具有闪蒸罐节约器的系统中,离开冷凝器线圈的已冷凝的制冷剂被导引至一个闪蒸罐,在该闪蒸罐中液体制冷剂至少部分地蒸发。可以从闪蒸罐中提取蒸气并且使该蒸气返回至压缩机,而来自闪蒸罐的液体制冷剂被导引至蒸发器,结束制冷环路。在具有换热器节约器的系统中,离开冷凝器线圈的冷凝的制冷剂被分成在换热器的两侧上流动的两个流动流。所述两个流动流之一蒸发并冷却第二流。蒸发的流动流流动至压缩机,而另一个流流动至蒸发器,结束制冷环路。
在一些常规风冷式冷却器设计中,热量回收换热器(HRHX)可以被用于提供对在建筑中使用的水或其他过程流体的辅助加热。在这样的系统中,压缩的制冷剂在进入冷凝器之前流经HRHX,以将热传递至被循环通过HRHX的流体。如果没有流体被循环通过HRHX,则制冷系统可以像典型的风冷式冷却器一样起作用。不幸地,随着对热量回收的需求增加,离开HRHX的制冷剂可变得更冷凝。这会减少对于通过冷凝器的热传递而言可用的制冷剂蒸气的量。因此,冷凝器中的液体制冷剂的量会增加,而蒸发器中的液体制冷剂的量减少。这可以导致蒸发器中的液体制冷剂水平的损失,造成制冷系统由于低吸入压力而出错。此外,随着期望的热量回收负载增加,该系统可能难以使用常规冷却器控制器来控制。例如,随着对热量回收的需求增加,常规冷却器控制模式可能会输出在用于促进冷凝器内的良好热传递的期望水平以下的冷凝器风扇速度。因此,存在对用于控制包括热量回收系统的冷却器应用的改进的技术的需要。
附图说明
图1是根据本技术的多个方面的包括风冷式制冷系统的商用暖通空调与制冷(HVAC&R)系统的一个示例性实施方案的例示;
图2是根据本技术的一个示例性HVAC&R系统的图解表示;
图3是一个表格,例示了图2的系统的多种目前设想的操作模式以及一些部件在所述多种模式中如何被控制;
图4是一种响应于图2的系统上的多种热量回收负载的方法的流程图;
图5是一种使图2的系统在中间热量回收模式操作的方法的流程图;
图6是根据本技术的一个示例性HVAC&R系统的图解表示;以及
图7是根据本技术的一个包括换热器节约器的示例性HVAC&R系统的图解表示。
具体实施方式
本公开内容涉及用于控制具有辅助热量回收的风冷式冷却器的系统和方法。该系统除了别的以外可以包括用于循环制冷剂的压缩机、冷凝器、膨胀装置、节约器和蒸发器,以及从制冷剂传递热以加热过程流体的热量回收换热器。控制器基于传感器反馈来控制膨胀装置和冷凝器风扇,以提供期望量的热量回收。该系统在采用具有相对小的内部制冷剂体积的微通道风冷式冷凝器和具有相对大的内部制冷剂体积的壳侧蒸发器的冷却器中特别有益。根据一些实施方案,本文中描述的技术被设计成提供制冷系统中的从0至100%的热量回收的平滑控制。
图1描绘了制冷系统的一个示例性应用。一般而言,这样的系统可以应用在各种各样的设置中,既可应用在HVAC&R领域内也可应用在该HVAC&R领域以外。该制冷系统可以通过蒸气压缩制冷、吸收制冷或热电冷却向数据中心、电气装置、冷冻器、致冷器或其他环境提供冷却。然而,在目前设想的应用中,制冷系统可用在住宅、商用、轻工业、工业和任何其他应用中,以用于加热或冷却体积物或封闭物,诸如住宅、建筑、结构等。此外,制冷系统可以用在工业应用中,在适当情况下,用于多种流体的基本制冷和加热。
图1示出一个示例性应用,在此情况下,用于建筑环境管理的HVAC&R系统可以采用换热器。建筑10通过包括冷却器12和锅炉14的系统被冷却。如示出的,冷却器12被设置在建筑10的屋顶上并且锅炉14位于地下室中;然而,冷却器和锅炉可以位于建筑附近的其他设备间或区域内。冷却器12是实施制冷循环以冷却水的风冷式或水冷式装置。冷却器12被放在单个结构件内,该单个结构件包括制冷电路和相关联的设备(诸如,泵、阀和管道)。例如,冷却器12可以是单个封装屋顶单元。锅炉14是在其内加热水的封闭容器。来自冷却器12和锅炉14的水通过水导管16循环通过建筑10。水导管16被路由至空气处理器18,该空气处理器18位于各个楼层上且在建筑10的部分内。
空气处理器18被联接至管道系统20,该管道系统20适于在空气处理器18之间分配空气且可以从外部进气口(未示出)接收空气。空气处理器18包括换热器,所述换热器循环来自冷却器12的冷水和来自锅炉14的热水以提供加热的或冷却的空气。在空气处理器18内的风扇吸引空气通过换热器且将经调节的空气导引至建筑10(诸如,房间、公寓、或办公室)内的环境,以将所述环境维持在指定的温度。控制装置(这里示为包括恒温器22)可以用于指定经调节的空气的温度。控制装置22还可以用于控制通过空气处理器18的空气的流动和来自空气处理器18的空气的流动。当然,在所述系统中可以包括其他装置(诸如,调节水的流量的控制阀以及感测水、空气的温度和压力的压力和/或温度换能器或开关等)。此外,控制装置可以包括与其他建筑控制或监测系统集成或分立的计算机系统,以及甚至是远离建筑的系统。
图2示意性地描绘冷却器12的一个实施方案,该冷却器包含一个热量回收系统且可以由控制器24控制。如下面进一步讨论的,该热量回收系统可以提供通过使用通常由冷却器12排至环境的热量中的一些或全部来加热液体的辅助作用。冷却器12包括一个冷却流体环路23,该冷却流体环路使冷却流体(诸如冷却的水、乙烯乙二醇水溶液、盐水等)循环至冷却负载(诸如,建筑、设备件或环境)。例如,冷却流体环路23可以使冷却流体循环至图1中示出的水导管16。在一些实施方案中,冷却流体可以在冷却流体环路23内循环至冷却负载,诸如,研究实验室、计算机机房、办公建筑、医院、模制挤塑厂、食品加工厂、工业设施、机器或需要冷却的任何其他环境或装置。
来自冷却流体环路23的温流体进入蒸发器26且变凉,生成可以返回至冷却负载的冷却流体。在冷却流体时,蒸发器26将热量从冷却流体环路23传递至在封闭的制冷剂环路27内流动的制冷剂。制冷剂可以是吸收和提取热量的任何流体。例如,制冷剂可以是氢氟烃(HFC)基的R-410A、R-407C或R-134a,或其可以是二氧化碳(R-744)或氨(R-717)或氢氟烯烃(HFO)基的。随着制冷剂流经蒸发器26,制冷剂被蒸发。蒸发的制冷剂然后离开蒸发器26且流经吸入管线28进入压缩机系统30内,该压缩机系统可以代表一个或多个压缩机。制冷剂在压缩机系统30内被压缩且通过一个或多个压缩机排出管线32离开。
压缩的制冷剂然后流经热量回收系统35的热量回收换热器(HRHX)34。热量回收系统35包括HRHX 34和热量回收流体环路37,该热量回收流体环路使热量回收流体(诸如,水或盐水)循环通过HRHX34。当该热量回收流体流经HRHX 34时,热量回收流体从流经HRHX 34的制冷剂吸收热量以产生温的热量回收流体。根据一些实施方案,温的热量回收流体可以在建筑10(图1)内循环以提供对在建筑10内使用的水或另外液体的辅助加热。
从HRHX 34,制冷剂然后行进经过制冷剂环路27的管线36且流经冷凝器38,制冷剂在该冷凝器中进一步被冷却且被冷凝成液体。冷凝的制冷剂通过制冷剂环路27的液体管线40离开冷凝器38,液体管线40导引制冷剂经过膨胀阀42至闪蒸罐44。根据一些实施方案,膨胀阀42可以是热膨胀阀或电子膨胀阀,该热膨胀阀或电子膨胀阀被控制器24操作以响应于吸入过热、蒸发器液体水平或其他参数来改变制冷剂流。根据一些实施方案,可以使用节约换热器代替闪蒸罐44。在闪蒸罐44内,液相制冷剂可以与气相制冷剂分离并且收集在闪蒸罐44的下部内。液相制冷剂然后可以离开闪蒸罐44且流经孔口46至蒸发器26,完成循环。
气相制冷剂通过节约器管线49离开闪蒸罐44,节约器管线49导引气相制冷剂至压缩机系统30。位于节约器管线49内的节约器阀48可以用于控制制冷剂蒸气返回至压缩机系统30。经过节约器管线49,离开闪蒸罐44的制冷剂蒸气可以被引入到压缩机系统30内,所述离开闪蒸罐44的制冷剂蒸气处于比从蒸发器26进入压缩机系统30的制冷剂蒸气更高的压力下。对来自闪蒸罐44的较高压力的制冷剂蒸气的压缩可以增加制冷系统的效率和容量。虽然节约器通常与螺旋式压缩机一起使用,但是类似的配置可以与其他压缩机配置(诸如像,往复式压缩机、涡旋式压缩机或多级离心式压缩机)一起使用。此外,在另一些实施方案中,可以省略闪蒸罐44和节约器管线49使得离开冷凝器38的全部制冷剂都流动至蒸发器26。此外,在另一些实施方案中,闪蒸罐44可以由换热器节约器71替换,如图7中所例示的。
如图2中示出的,蒸发器26是壳管式蒸发器,在该蒸发器内制冷剂流经蒸发器的壳侧而待被冷却的流体流经该蒸发器内的管。根据一些实施方案,蒸发器26可以是降膜蒸发器、溢流式蒸发器、或降膜蒸发器与溢流式蒸发器的混合。此外,在一些实施方案中,蒸发器26可以是壳管式蒸发器,在该蒸发器内制冷剂流经该蒸发器内的管而待被冷却的流体流经壳侧。在再另一些实施方案中,蒸发器26可以是板式换热器,在该蒸发器内制冷剂和待被冷却的流体在由紧密定位的板形成的通道内流动。此外,在一些实施方案中,冷凝器38可以是风冷式、微通道冷凝器。在这些实施方案中,制冷剂可以循环通过冷凝器的微通道管,并且因此,冷凝器可以具有与蒸发器的壳侧内可用的制冷剂体积相比相对小的制冷剂体积。相对于蒸发器而言冷凝器中的相对小的制冷剂体积可以允许,即使当冷凝器38主要充满液体制冷剂时,制冷系统维持蒸发器26中的液体制冷剂的适当水平。当热量回收需求非常高时(例如,接近冷却器排热的100%),这样的情况可以发生。在这些情况下,离开HRHX 34的制冷剂可以大部分或全部冷凝且因此,冷凝器38可以主要接收液相制冷剂。
在所例示的实施方案中,温度传感器50和压力换能器52被设置于在冷凝器38与闪蒸罐44之间延伸的液体管线40中。如下文所述,由这些传感器50和52监测的温度和压力可以被控制器24使用以计算用于离开冷凝器38的制冷剂的低温冷却的量。类似地,温度传感器54和压力换能器56位于管线36中,该管线36在HRHX 34与冷凝器38之间延伸。由这些传感器54和56监测的温度和压力可以被控制器24使用以确定用于离开HRHX 34的制冷剂的低温冷却的量。热量回收系统35还包括另一个温度传感器58,该温度传感器58测量离开HRHX34的热量回收流体的温度。此外,设置在压缩机排出管线32中的压力换能器59提供压力测量值,该压力测量值可以用于操作制冷系统的一些控制器。
如图2中所示出的,HRHX 34使用通常通过线圈38排至环境的热量的一部分用于辅助加热功能(例如,加热用于在建筑10中使用的水或其他流体)。因此,冷却器12中包含热量回收系统35允许冷却器12既冷却用于循环经过冷却流体环路23的过程流体,又加热用于循环经过热量回收环路37的热量回收流体。这对于为酒店、医院、加工业以及具有加热和冷却多种需求的其他应用提供同时加热和冷却特别有用。
虽然HRHX 34可以用于加热被泵送经过其的任何合适的热量回收流体,但是下面的讨论针对加热用于建筑(例如,建筑10)中使用的水的背景下的制冷系统的实施方案。在这些实施方案中,通过泵60将水泵送经过HRHX 34,并且流经HRHX 34的制冷剂将水加热至期望的温度。控制器24管理马达62的操作,该马达62以适当的风扇速度驱动一个或多个冷凝器风扇63。控制器24还可以基于用于辅助加热功能的期望量的热量回收,调节膨胀阀42打开至适当位置。
冷却器12还包括可选热量回收旁通阀64和冷凝器旁通阀66,它们可以响应于对系统的给定热量回收需求被控制器24电动地打开或闭合。例如,当不期望辅助加热时,可以打开旁通阀64以将离开压缩机的制冷剂导引通过旁通管线65到达管线36,允许制冷剂到达旁通热量回收系统35。在另一个实施例中,当热量回收系统35以满容量或接近满容量操作时,可以打开旁通阀66以将离开HRHX 34的制冷剂导引至膨胀阀42,允许制冷剂到达旁通冷凝器38。在一些操作模式中,可以打开三通热量回收阀68以调节流经HRHX 34的水的温度。例如,阀68可以被放置在一个再循环位置中,在此情况下离开HRHX 34的加热的水被重新流通经过HRHX 34以增加传递至水的热量。当实现期望的水温度时,阀68则可以被放置在建筑返回位置,在此情况下离开HRHX 34的加热的水被返回至建筑以提供辅助加热。冷却器12还可以在热量回收换热器34与冷凝器38之间包括可选阀69。可以控制此可选阀69以确保两相制冷剂流从而防止冷凝器38充满制冷剂液体,冷凝器38充满制冷剂液体可以导致低吸入压力和其他操作问题。同时,通过可选阀69的压降不应该太高以确保经过阀42的足够液体流动。此可选阀69可以是期望有的,这取决于冷凝器38的内部体积与制冷剂充注量的比较。也就是说,如果该内部体积足够小以允许冷凝器38完全充满制冷剂液体而没有操作问题,则可以删除可选阀69。
可以由控制器24管理阀64、66、68和69以及其他部件(诸如,阀42、阀48和马达62)的操作以实现在0至100%的热量回收的期望范围内对系统的相对精确、连续且平滑地控制。也就是说,控制器24可以控制膨胀阀42和控制冷凝器风扇速度(经由马达62),使得可以在压缩机系统30与冷凝器38之间从制冷剂回收期望量的热。根据热量回收负载,控制器24可以在不同模式操作(在下文详细描述),用于控制多种部件。
应注意,虽然在所示的制冷系统中包括一个HRHX 34,但是在其他实施方案中,在热量回收系统35中可以包括多个HRHX以向多个应用提供辅助加热。所述多个HRHX可以串联连接、并联连接或串并组合连接并且可以循环多种热量回收流体。在这些实施方案中,热量回收系统35可以包括多个泵60和/或多个三通热量回收阀68,可以经由控制器24使多个泵60和/或多个三通热量回收阀68彼此独立地操作来供应期望温度的水或其他热量回收流体至具有一个或多个期望的加热负载的多个应用。
控制器24可以执行硬件或软件控制算法以调节冷却器12和相关联的热量回收系统35的操作。根据示例性实施方案,控制器24可以包括模拟至数字(A/D)转换器、一个或多个微处理器或通用计算机或专用计算机、非易失性存储器、存储器电路以及接口板。例如,控制器可以包括用于存储程序以及控制例程和算法的存储器电路系统,所述控制例程和算法被实施以用于控制多种系统部件,诸如风扇马达62或冷凝器38与闪蒸罐44之间的膨胀阀42。控制器62还包括用于从输入传感器50、52、54、56和58接收感测到的信号的输入/输出电路系统,和用于对阀42、48、64、66、68、69以及马达62输出控制信号的接口电路系统,或者与上述输入/输出电路系统和上述接口电路系统相关联。例如,控制器通常还将控制例如节约器管线49的阀门调节、压缩机30的速度和负载等,并且存储器电路系统可以存储任何或全部这样的参数的设定点、实际值、历史值等。当然,在系统中可以包括其他装置,诸如,感测制冷剂、换热器、压缩机、闪蒸罐、入口空气和出口空气等的温度和压力的附加压力和/或温度换能器或开关。此外,基于多种因素(诸如,系统容量、冷却负载等)的其他值和/或设定点可以用于确定何时操作热量回收系统35。控制器24还可以包括用于操作者与系统交互的部件(诸如,显示面板和/或输入/输出装置),以用于检查操作参数、输入设定点和期望的操作参数、检查错误记录和历史操作等。
如下文所述,控制器24收集数据,诸如,位于HRHX 34与冷凝器38之间的管线36中的制冷剂的温度和压力数据,以及位于冷凝器38与闪蒸罐44之间的管线40中的制冷剂的温度和压力数据。控制器24则可以使用此数据以管理冷却器12的操作,诸如,打开和关闭膨胀阀42,其提供制冷剂至闪蒸罐44。该控制器还可以基于其他参数来管理冷却器12的操作,诸如离开HRHX 34的水的温度或者压缩机容量,该压缩机容量例如可以通过监测和控制压缩机30的速度而确定。可以由控制器24用作输入来管理冷却器12的操作的另一些参数可以包括周围空气温度、冷凝压力、节约器操作(即,节约器是否在操作和以何速率在操作)、蒸发压力和风扇操作(即,与冷凝器24相关联的一个或多个风扇是否在操作和以何条件或速度在操作)。
图3是一个表格,例示图2的系统的多种目前设想的操作模式70以及一些部件在这些模式中如何被控制。每个模式代表用于辅助加热应用的热量回收负载72的一个范围和由控制器24响应于热量回收负载72所应用的适当的控制逻辑。热量回收负载72可以是从流经冷却器12的制冷剂可得的总热量的百分比。该可得的总热量可以等于经由蒸发器26从冷却流体传递至制冷剂的热的量加上输入到用于压缩制冷剂的压缩机30的功率的量。可以通过比较传递经过HRHX 34的热量与该可得的总热量来确定热量回收负载72。经由HRHX 34从压缩的制冷剂传递至过程流体的热量与流经HRHX 34的过程流体的质量流率以及在进入HRHX 34的过程流体与离开HRHX 34的过程流体之间的温度差直接相关。在一些实施方案中,质量流率和进入HRHX 34的过程流体的温度保持恒定,使得可以完全基于离开HRHX 34的过程流体的测量温度(如通过温度传感器58测量到的)来确定冷却器12上的热量回收负载。当热量回收开始时,此测量温度可以近似等于进入HRHX 34的过程流体的温度,使得热量回收负载72是近似0%的热量回收。热量回收操作模式70可以与代表加热的过程流体的期望温度(例如,由操作者输入)的温度设定点有关。控制器24可以比较来自温度传感器58的测量温度和温度设定点,并且当测量温度在温度设定点之下时,控制器确定存在热量回收需求。这样,即使当热量回收负载72是近似0%时,也存在热量回收需求。随着HRHX 34促进从压缩的制冷剂至过程流体的热传递,离开HRHX 34的过程流体的温度增加,从而增加由温度传感器58测量到的温度以及所确定的热量回收负载72。直到测量温度达到温度设定点,控制器24根据下文详细描述的不同的热量回收操作模式70中的一个或多个来控制冷却器12的部件。控制器24被配置为基于离开HRHX 34的过程流体的测量温度来确定适当的热量回收模式70。此外,控制器24被配置为随着热量回收负载72增加(例如,从0至100%的热量回收)在不同的热量回收模式70之间平滑地转变,直到测量温度达到期望的设定点为止。
当热量回收负载72落入一个给定范围内时,每个模式70可以采用不同的控制逻辑。在图3的其他列中详细说明不同的控制方案,其描述了各个模式70中的每个可采用的热水流设定74、风扇控制76的类型、膨胀阀控制78的类型以及热水阀控制80的类型。共同地,当以特定模式70操作时,热水流设定74、风扇控制76的类型、膨胀阀控制78的类型以及热水阀控制80的类型形成由控制器24使用的逻辑。热水流设定74为每个模式规定泵60是否泵送水通过HRHX 34。可以通过不基于热量回收负载72的另一个途径(例如,一个不同的控制器)控制和监测来自泵60的水的流率。然而,在一些实施方案中,控制器24可以基于热量回收负载72控制来自泵60的水的流率。同样地,风扇控制76的类型基于热量回收的期望量指定可以用于确定适当风扇速度的途径。此外,膨胀阀控制78的类型基于热量回收负载指定用于确定膨胀阀42的适当位置的控制逻辑或算法的类型,热水阀控制80的类型基于热量回收负载指定用于确定三通热量回收阀68的适当位置的控制逻辑或算法的类型。
控制器24可以基于期望量的热量回收以如下四种不同的模式操作:零热量回收模式82、低热量回收模式84、中间热量回收模式86和全热量回收模式88。每个模式70可以指示一个给定的热量回收负载范围(例如,对于0至50%的热量回收为低热量回收模式)。在零热量回收模式82中,没有被应用到制冷系统的热量回收负载,并且因此可以手动地或通过控制器24自动地关断来自泵60的热水流。
在零热量回收模式82中,控制器以适于正常冷却器操作的风扇速度操作马达62。术语“正常冷却器操作”可以指以至少部分基于使用温度传感器57检测到的周围空气温度所确定的风扇速度操作冷凝器风扇马达62。周围温度可以影响控制器24在相对高的周围温度的时期期间如何调整风扇操作。随着周围温度增加,由于减小的温度差,较少的热量从冷凝器制冷剂传递至外面的空气。此情况可以导致冷凝器38内的增加的制冷剂温度。随着制冷剂的温度增加,冷凝器线圈内的压力也可以增加。通常不期望在某些压力之上操作冷凝器线圈。因此,控制器24可以响应于高的周围温度自动地增加马达62的风扇速度。增加的风扇速度可以促进额外的热量从制冷剂传递至外面的空气,因此减小冷凝器压力。为了实现增加的冷却器效率,正常冷却器操作还可以包括调整风扇速度以减小向压缩机30输入的功率与向风扇马达62输入的功率的组合量。可以通过控制器24基于压缩机30的已知容量和离开压缩机的制冷剂的压力(如由压力传感器59监测的)来计算压缩机30的功率。
在零热量回收模式82中,可以通过控制器24将膨胀阀打开至一个位置以用于维持离开冷凝器线圈38的制冷剂的期望的且大体上恒定的低温冷却。控制器24可以连续地监测根据传感器50和传感器52测量到的温度值和压力值所确定的制冷剂低温冷却。这可以维持冷凝器线圈38中的液体的相对恒定的量,这适于零热量回收要求和低热量回收要求,但是对于允许来自制冷系统的大量的热量回收不是最优的。因为当在零热量回收模式82操作时没有热水被泵送经过HRHX 34,所以不采用对三通热量回收阀68的控制。
应当注意,用于模式70的例示的热水负载72范围是代表性的并且可以对不同的冷却器设计而不同。也就是说,可以设计冷却器12的其他实施方案,使得图3中所绘的控制在不同的热量回收负载范围下都是期望的。例如,用于在低热量回收模式84操作的冷却器12的热水负载72的范围可以随着特定的冷却器12而变化(例如,0-30%、0-40%、0-60%等)。类似地,用于在中间热量回收模式86操作的冷却器12的热水负载72的范围可以变化(例如,30-80%、40-95%、60-75%等)。同样地,用于在全热量回收模式88操作的冷却器12的热水负载72的范围可以变化(例如,75-100%、80-100%、95-100%等)。换句话说,低热量回收模式可以具有一个在0到第一阈值之间的百分比范围,并且中间热量回收模式可以具有一个在第一阈值到第二阈值之间的百分比范围,所述第二阈值大于所述第一阈值但是小于100%。全热量回收模式可以具有一个在第二阈值之上的百分比范围。热水负载72因此可以被分成任何适当的范围以用于应用指定的控制模式70。
低热量回收模式84是当需求的热量回收在近似零至50%的热量回收的范围内时的控制器24的操作模式。也就是说,将要从压缩机系统30与蒸发器26之间的制冷剂排出的总热量的零至50%被期望用于辅助加热功能,该辅助加热功能通过HRHX 34变得更为方便。在此模式中,泵60操作并且因此,热水流74导通。类似于先前的模式,风扇控制76基于典型冷却器操作并且膨胀阀控制是基于通过传感器50和传感器52监测的冷凝器线圈低温冷却而被确定的。然而,与先前的操作模式不同,低热量回收模式84控制三通热量回收阀68来旁通HRHX 34以维持供应至HRHX的水的温度。也就是说,离开HRHX 34的加热的水被直接送至期望的加热应用并且不向泵60反馈。在零热量回收模式或低热量回收模式中,可以打开热量回收旁通阀64以通过减小流经HRHX34的制冷剂的压降且减少油在HRHX 34内的积聚来提高系统性能。
应注意,零热量回收模式82和低热量回收模式84均包括对于风扇速度和膨胀阀打开的类似控制。在Kopko等人于2010年3月31日提交的题为“CONTROL SYSTEM FOR OPERATING CONDENSER FANS”的序列号12/751,475的美国专利申请以及Kopko等人于2010年7月30日提交的题为“REFRIGERANT CONTROL SYSTEM AND METHOD”的序列号12/846,959的美国专利申请中描述了这样的冷却器系统的风扇速度和膨胀阀打开的示例性控制,所述美国专利申请通过引用方式均被整体纳入本公开内容。
制冷系统和控制器24被设计成通过HRHX 34提供高达100%的热量回收。在全热量回收模式88中,热水流被表示为导通,是因为泵60正泵送水经过HRHX 34。然而,与先前的模式不同,风扇控制是基于离开HRHX 34的热水的温度(如通过温度传感器58测量到的)。当此热水温度增加时,控制器减小冷凝器风扇速度来导致将从冷凝器线圈38中的制冷剂排出的较少量的热量。在100%的热量回收下,风扇63将被完全关断以使得制冷剂流经线圈而在进入膨胀阀42之前不损失附加热量。在全热量回收模式88中,控制器24基于离开HRHX 34而不是冷凝器线圈38的制冷剂的低温冷却将膨胀阀42打开至一个位置。也就是说,将选择膨胀阀42的打开以维持来自HRHX 34的制冷剂的恒定低温冷却,例如基于近似5-10°F的低温冷却设定点。打开三通热量回收阀68以允许离开HRHX 34的热水重新进入HRHX 34,直到通过传感器58测量到的离开HRHX 34的水温度达到一个阈值。这允许水重复循环通过HRHX 34,直到达到期望的温度,使得相同的HRHX结构对于低热量回收应用以及高热量回收应用都有效率。
因为在全热量回收模式88中通过冷凝器38的排热相对较低,可选的线圈旁通阀66可以被打开以减小流经冷凝器38的线圈的液体制冷剂的压降。可以通过打开旁通阀42附近的一个旁通阀(未示出)来实现相同的效果。在此情况下,该旁通阀的尺寸可以被设定成使得实现通过膨胀阀42的适当流动容量。也就是说,当该膨胀阀近乎完全打开或完全打开时,该旁通阀可以被打开,并且当该膨胀阀近乎关闭时,该旁通阀可以被完全关闭。
在低热量回收模式84和全热量回收模式88之间,控制器24使制冷系统在中间热量回收模式86操作。对于这样的中间条件,控制是基于用于低热量回收的控制逻辑与用于全热量回收的控制逻辑的组合设定的。基于在低热量回收模式84中使用的冷却器控制计算一个风扇速度,基于通过传感器58测量到的热水温度计算另一个风扇速度,并且控制器24以这两个计算出的风扇速度中较低的风扇速度驱动风扇63。类似地,基于离开冷凝器线圈38的制冷剂的低温冷却计算用于膨胀阀42的一个位置且基于离开HRHX 34的制冷剂的低温冷却计算用于膨胀阀42的另一个位置,并且膨胀阀被打开成两个开口中较大的那个。三通热量回收阀68可以被初始地打开以允许至HRHX 34的完全流动,直到离开HRHX的水的温度达到一个阈值,类似于全热量回收模式88中的操作。在一些实施方案中,如果通过冷凝器线圈38的压降足够低,膨胀阀控制78可以完全基于离开冷凝器38的制冷剂的低温冷却,而不随着热量回收负载增加转变到不同的控制。
图4是描绘一种用于操作制冷系统的示例性方法的流程图。该方法始于确定冷却器系统是否正在运行(块90)。如果该冷却器系统没有运行,控制器24可以关断冷凝器风扇63(块92)。如果该冷却器系统正在运行,控制器24确定是否存在对来自该冷却器系统的HRHX 34的热量回收需求(块94)。控制器24可以通过将温度设定点和感测的温度进行比较来确定热量回收需求。例如,控制器24可以从温度传感器58接收一个指示被HRHX 34加热的辅助水的当前温度的信号。控制器24可以将该当前温度与存储在控制器24中的一个温度设定点(例如,先前由操作者输入的或者存储在存储器中的预设值)比较。如果感测的温度不与温度设定点一样高,热量回收需求存在,并且控制器24确定对于热量回收的需求。如果热量回收需求不存在,控制器24使该冷却器系统在零热量回收模式82操作,如先前描述的。控制器还可以关断泵60和打开热量回收旁通阀64(如果存在的话)以减小通过HRHX 34的制冷剂的压降。如果检测到热量回收需求,控制器24确定热量回收负载72是否为低(块96)。如果该负载为低,控制器24根据如图3中指定的低热量回收模式84操作风扇速度、膨胀阀位置以及三通热水阀位置。如果热量回收需求不为低,控制器24确定热量回收负载是否落入热量回收值的中间范围内(块98)。控制器24然后根据热量回收负载72使冷却器在中间热量回收模式86或全热量回收模式88操作。在全热量回收模式88中,控制器24可以将风扇完全关断。
图5是描绘一种使制冷系统在中间热量回收模式86操作的示例性方法的流程图。与低热量回收模式和全热量回收模式中不同,对于中间热量回收负载的整个范围,风扇速度和膨胀阀位置不是根据来自相同组的传感器的读数来控制的。首先,控制器24基于冷却器控制计算第一风扇速度(块100)。也就是说,在低热量回收模式84中确定风扇速度使用的相同的控制逻辑将用于在中间热量回收模式中计算可能的风扇速度。然后,根据在全热量回收模式88中使用的相同的控制逻辑,控制器基于离开HRHX 34的热水的温度计算第二风扇速度(块102)。控制器24以所述两个计算出的风扇速度中的最小值驱动风扇马达62(块104)。还为了控制膨胀阀42的位置,控制器24基于冷凝器线圈38的低温冷却计算第一阀打开(块106)并且基于离开HRHX 34的制冷剂的低温冷却计算第二阀打开(块108)。然后,通过控制器24将膨胀阀42打开(块110)至所述两个计算出的阀开口中的最大值。以此方式,在中间热量回收模式86中可以独立于风扇速度控制膨胀阀位置,允许对于从零至全热量回收的热量回收负载以及在各种周围温度对制冷系统的相对稳定和连续的控制。
图6例示根据本技术方案的多个方面的另一个示例性制冷系统。该系统包括与图2的制冷系统类似的部件,但是具有不同配置的三通热量回收阀68。在此配置中,三通阀68可以基于从温度传感器58接收的测量对由HRHX 34输出的热水温度提供附加控制,而不改变冷凝器风扇速度或膨胀阀位置。三通阀68可以被打开以使得当热量回收需求相对低时,相对较冷的供应水与离开HRHX 34的加热的水混合,并且三通阀68可以被闭合使得所有供应水都被泵送经过HRHX 34以促进相对较高的热量回收。以此方式,控制器24可以定位三通热量回收阀68以当系统在任何控制模式70操作时提供对热量回收输出温度的精细调整。应当注意,可以采用制冷系统的其他布置和配置,具有或不具有一些部件,例如,可选旁通阀等。附加传感器也可以被用于或包含在不同的配置中以提供流体管线内的流体温度的测量或制冷部件两端的压降。这样的测量可以由控制器24接收以对于任何期望量的热量回收监测和控制制冷系统的操作。
虽然仅例示和描述了本发明的一些特征和实施方案,但在不实质脱离在权利要求书中所记载的主题的新颖教导和优点的前提下,本领域技术人员可以想到许多修改和改变(例如,各种元件的尺寸、尺度、结构、形状和比例、以及参数值(例如,温度、压力等)、安装布置、材料的使用、颜色、定向等方面的变化)。可以根据替代实施方案改变或重新排序任何过程或方法步骤的次序或序列。因此,应理解,所附权利要求旨在涵盖如同落入本发明的真实主旨内的所有这样的修改和改变。此外,当试图提供对示例实施方案的精确描述时,可能并未描述实际的实施方式的所有特征(即,没有描述与当前设想的执行本发明的最佳模式无关的那些特征,或与实现所要求保护的发明无关的那些特征)。应理解,在任何这样的实际实施方式的开发中,如在任何工程或设计项目中,可以做出许多实施具体决定。这样的开发努力可能是复杂和耗时的,但对于得益于本公开内容的本领域普通技术人员而言,仍是设计、装配和制造的例行任务,而无需过度实验。

Claims (22)

1.一种制冷系统,包括:
一个蒸发器,被配置为经由与制冷剂的热交换来使冷却流体冷却;
一个压缩机,被配置为从所述蒸发器接收制冷剂并且压缩所述制冷剂;
一个热量回收换热器,被配置为接收压缩的制冷剂并且将热量从所述压缩的制冷剂传递至过程流体;
一个冷凝器,被配置为从所述热量回收换热器接收并且冷凝所述压缩的制冷剂;
一个膨胀装置,被配置为使所述冷凝的制冷剂膨胀;以及
一个控制器,被配置为基于热量回收负载确定所述系统的热量回收操作模式,所述热量回收负载是通过比较经过所述热量回收换热器从所述过程流体传递至所述制冷剂的热的确定量和从流经所述制冷系统的制冷剂可得的热的量而确定的,其中,所述控制器被配置为基于所确定的热量回收操作模式控制所述过程流体经过所述热量回收换热器的流动,控制所述冷凝器的风扇速度并且控制所述膨胀装置。
2.根据权利要求1所述的制冷系统,其中所述控制器被配置为通过计算从所述过程流体传递至所述制冷剂的热的量与以下值的百分比来确定所述热量回收负载,该值为在所述蒸发器中从所述冷却流体传递至所述制冷剂的热的量加上输入到所述压缩机的功率的量。
3.根据权利要求2所述的制冷系统,包括一个温度传感器,所述温度传感器被配置为测量离开所述热量回收换热器的所述过程流体的温度,其中所述控制器被配置为基于离开所述热量回收换热器的所述过程流体的温度确定所述热量回收负载。
4.根据权利要求2所述的制冷系统,其中所述控制器被配置为通过以下方式操作在低热量回收模式中,即,通过以适于正常冷却器操作的速度控制所述风扇速度、控制所述膨胀装置以维持离开所述冷凝器的制冷剂的低温冷却水平、并且维持一个旁通阀以控制所述过程流体经过所述热量回收换热器的流动。
5.根据权利要求2所述的制冷系统,其中所述控制器被配置为通过以下方式操作在中间热量回收模式中,即,通过根据在基于正常冷却器操作计算出的一个速度与基于所述热量回收换热器的一个过程流体出口处的温度计算出的一个速度中较低的速度来控制所述风扇速度,根据基于离开所述冷凝器的制冷剂计算出的一个值与基于离开所述热量回收换热器的制冷剂计算出的一个值中较大的值控制所述膨胀装置,并且控制一个旁通阀初始打开以允许所述过程流体经过所述热量回收换热器的完全流动。
6.根据权利要求2所述的制冷系统,其中所述控制器被配置为通过以下方式操作在全热量回收模式中,即,通过以基于所述热量回收换热器的一个过程流体出口处的温度计算出的一个速度控制所述风扇速度,控制所述膨胀装置以维持离开所述热量回收换热器的所述制冷剂的低温冷却水平,并且控制一个旁通阀初始打开以允许所述过程流体经过所述热量回收换热器的完全流动。
7.根据权利要求1所述的制冷系统,其中所述控制器被配置为当一个传感器检测到所述热量回收换热器的一个过程流体出口处的温度不满足对于该温度的设定点时,开始所述过程流体经过所述热量回收换热器的流动。
8.根据权利要求2所述的制冷系统,其中所述控制器被配置为当计算出的从所述过程流体传递至所述制冷剂的热的量与以下值的百分比在近似0%和50%之间时确定所述热量回收负载为低热量回收负载,该值为在所述蒸发器中从所述冷却流体传递至所述制冷剂的热的量加上输入到所述压缩机的功率的量。
9.根据权利要求2所述的制冷系统,其中所述控制器被配置为当计算出的从所述过程流体传递至所述制冷剂的热的量与以下值的百分比在近似50%和80%之间时确定所述热量回收负载为中间热量回收负载,该值为在所述蒸发器中从所述冷却流体传递至所述制冷剂的热的量加上输入到所述压缩机的功率的量。
10.根据权利要求2所述的制冷系统,其中所述控制器被配置为当计算出的从所述过程流体传递至所述制冷剂的热的量与以下值的百分比在近似80%和100%之间时确定所述热量回收负载为全热量回收负载,该值为在所述蒸发器中从所述冷却流体传递至所述制冷剂的热的量加上输入到所述压缩机的功率的量。
11.一种制冷系统,包括:
一个压缩机,被配置用于将制冷剂压缩;
一个热量回收换热器,被配置用于接收压缩的制冷剂并且将热量从所述压缩的制冷剂传递至过程流体;
一个冷凝器,被配置用于接收并且冷凝所述压缩的制冷剂;
一个膨胀装置,被配置用于膨胀经冷凝的制冷剂;
一个节约器,被配置用于接收膨胀的制冷剂并且至少部分地蒸发所述制冷剂;
一个蒸发器,被配置用于从所述节约器接收制冷剂并且蒸发所述制冷剂;
一个温度传感器,被配置用于感测离开所述热量回收换热器的过程流体的温度并且产生一个代表该温度的温度信号;以及
一个控制器,被联接至所述温度传感器并且被配置为至少部分地基于所述温度信号确定热量回收操作模式,并且控制所述过程流体经过所述热量回收换热器的流动、控制所述冷凝器的风扇速度,并且基于所确定的热量回收操作模式控制所述膨胀装置,并且其中所确定的热量回收操作模式是低热量回收模式、中间热量回收模式或者全热量回收模式。
12.根据权利要求11所述的制冷系统,其中所述控制器被配置为通过计算经过所述热量回收换热器从所述过程流体传递至所述制冷剂的热的量与以下值的百分比来确定所述热量回收操作模式,该值为在所述蒸发器中从所述冷却流体传递至所述制冷剂的热的量加上输入到所述压缩机的功率的量。
13.根据权利要求12所述的制冷系统,其中所述控制器被配置为当计算出的百分比在0与大于0%的第一阈值百分比之间时确定为所述低热量回收模式,当计算出的百分比在所述第一阈值百分比与大于所述第一阈值百分比且小于100%的第二阈值百分比之间时确定为所述中间热量回收模式,以及当计算出的百分比在所述第二阈值百分比以上时确定为所述全热量回收模式。
14.根据权利要求11所述的制冷系统,其中所述节约器包括:
一个闪蒸罐,被配置为至少部分地蒸发所述制冷剂;或者
一个换热器,被配置为通过蒸发第二制冷剂流来冷却第一制冷剂流。
15.根据权利要求11所述的制冷系统,其中所述蒸发器包括:
一个壳管式蒸发器,其中所述制冷剂流经所述蒸发器的壳侧;
一个壳管式蒸发器,其中所述制冷剂流经所述蒸发器的管侧;或者
一个板式换热器,其中所述制冷剂在由板形成的通道内流动。
16.一种方法,包括:
基于设定点和离开热量回收换热器的过程流体的测量温度,确定制冷系统中是否存在对通过热量回收换热器的热量回收的需求;
通过比较经过所述热量回收换热器从所述过程流体传递至所述制冷剂的热的确定量与从流经所述制冷系统的制冷剂可得的热的量,确定一个热量回收负载;以及
基于一个基于所确定的热量回收负载而确定的热量回收操作模式控制所述过程流体经过所述热量回收换热器的流动、所述制冷系统的冷凝器的风扇速度、以及所述制冷系统的一个膨胀装置。
17.根据权利要求16所述的方法,包括:
当所确定的热量回收负载是低热量回收负载时,基于低热量回收模式控制所述制冷系统;
当所确定的热量回收负载是中间热量回收负载时,基于中间热量回收模式控制所述制冷系统;以及
当所确定的热量回收负载既不是低热量回收负载也不是中间热量回收负载时,基于全热量回收模式控制所述制冷系统。
18.根据权利要求17所述的方法,其中基于所述低热量回收模式控制所述制冷系统包括:
以适于正常冷却器操作的速度控制所述风扇速度;
控制所述膨胀装置以维持离开所述冷凝器的制冷剂的低温冷却水平;以及
维持一个旁通阀来控制所述过程流体经过所述热量回收换热器的流动。
19.根据权利要求17所述的方法,其中基于所述中间热量回收模式控制所述制冷系统包括:
基于正常冷却器操作计算所述冷凝器的第一风扇速度;
基于所述热量回收换热器的一个过程流体出口处的温度计算所述冷凝器的第二风扇速度;
以所述第一风扇速度和所述第二风扇速度中的最小值驱动所述冷凝器的风扇马达;
基于离开所述冷凝器的制冷剂的低温冷却的量计算所述膨胀装置的第一阀开口;
基于离开所述热量回收换热器的制冷剂的低温冷却的量计算所述膨胀装置的第二阀开口;以及
将所述膨胀装置打开至所述第一阀开口和所述第二阀开口中最大的开口。
20.根据权利要求17所述的方法,其中基于所述全热量回收模式控制所述制冷系统包括:
以基于所述热量回收换热器的过程流体出口处的温度计算出的速度控制所述风扇速度;
控制所述膨胀装置以维持离开所述热量回收换热器的制冷剂的低温冷却水平;以及
维持一个旁通阀初始打开以允许所述过程流体经过所述热量回收换热器的完全流动。
21.根据权利要求16所述的方法,其中确定所述热量回收负载包括计算从所述过程流体传递至所述制冷剂的热的量与以下值的百分比,该值为在所述制冷系统的一个蒸发器中从冷却流体传递至所述制冷剂的热的量加上输入到所述制冷系统的一个压缩机的功率的量。
22.根据权利要求21所述的方法,包括:
当计算出的百分比在0与大于0%的第一阈值百分比之间时,确定为低热量回收负载;以及
当计算出的百分比在所述第一阈值百分比与小于100%的第二阈值百分比之间时,确定为中间热量回收负载。
CN201480004836.7A 2013-01-15 2014-01-14 具有热量回收的风冷式冷却器 Active CN105008825B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361752821P 2013-01-15 2013-01-15
US61/752,821 2013-01-15
PCT/US2014/011510 WO2014113397A1 (en) 2013-01-15 2014-01-14 Air cooled chiller with heat recovery

Publications (2)

Publication Number Publication Date
CN105008825A true CN105008825A (zh) 2015-10-28
CN105008825B CN105008825B (zh) 2017-11-17

Family

ID=50069305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480004836.7A Active CN105008825B (zh) 2013-01-15 2014-01-14 具有热量回收的风冷式冷却器

Country Status (3)

Country Link
US (2) US10401068B2 (zh)
CN (1) CN105008825B (zh)
WO (1) WO2014113397A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198258A1 (en) * 2015-06-08 2016-12-15 Danfoss A/S A method for operating a vapour compression system with heat recovery
US10830515B2 (en) * 2015-10-21 2020-11-10 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling refrigerant in vapor compression system
US20170122633A1 (en) * 2015-10-29 2017-05-04 Jeffery Lynn Riddle Integrated inverter compressor variable volume refrigerant loop data center cooling unit and control system
JP6710938B2 (ja) * 2015-11-05 2020-06-17 富士通株式会社 データセンタシステム、データセンタシステムの制御方法及びプログラム
US10545466B2 (en) * 2016-01-19 2020-01-28 Honeywell International Inc. System for auto-adjustment of gateway poll rates
US10161834B1 (en) * 2016-02-05 2018-12-25 William R Henry Method to determine performance of a chiller and chiller plant
CN109073257B (zh) 2016-04-07 2024-02-02 开利公司 风冷式致冷器液体循环套件
CA2973023A1 (en) * 2016-07-12 2018-01-12 Basx Solutions, Llc Hybrid dry air cooling system
WO2018039254A1 (en) 2016-08-22 2018-03-01 Johnson Controls Technology Company Systems and methods for controlling a refrigeration system
CN106949653B (zh) * 2017-04-06 2019-12-10 北京百度网讯科技有限公司 应用于数据中心的冷却系统
CN108870803A (zh) 2017-05-12 2018-11-23 开利公司 热泵系统及其控制方法
US10955179B2 (en) * 2017-12-29 2021-03-23 Johnson Controls Technology Company Redistributing refrigerant between an evaporator and a condenser of a vapor compression system
US10697674B2 (en) * 2018-07-10 2020-06-30 Johnson Controls Technology Company Bypass line for refrigerant
US11162723B2 (en) 2019-03-29 2021-11-02 Trane International Inc. Methods and systems for controlling working fluid in HVACR systems
US11231211B2 (en) * 2019-04-02 2022-01-25 Johnson Controls Technology Company Return air recycling system for an HVAC system
CN111765670A (zh) * 2019-04-02 2020-10-13 开利公司 电子膨胀阀,热交换系统以及控制电子膨胀阀的方法
EP3736509B1 (en) * 2019-05-09 2024-05-08 Carrier Corporation Refrigeration system with heat recovery
US11116114B2 (en) * 2019-06-18 2021-09-07 Baidu Usa Llc Cooling system design for data centers
US10912229B1 (en) * 2019-08-15 2021-02-02 Baidu Usa Llc Cooling system for high density racks with multi-function heat exchangers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201069292Y (zh) * 2007-06-08 2008-06-04 劳特斯空调(江苏)有限公司 自适应热回收机组
CN201273702Y (zh) * 2008-09-10 2009-07-15 陈增华 热回收型空调热水器
CN101943471A (zh) * 2009-07-09 2011-01-12 陈则韶 一种制冷回路极简单的双热源热泵热水装置
CN102472543A (zh) * 2009-07-31 2012-05-23 江森自控科技公司 制冷剂控制系统和方法
CN102483277A (zh) * 2009-07-27 2012-05-30 埃科拉克蒂公司 用于在蒸汽制冷系统上进行热量回收的方法和设备
CN102549356A (zh) * 2009-08-17 2012-07-04 江森自控科技公司 具有改进的热回收特征的热泵冷却器
EP2233863A3 (en) * 2009-03-24 2013-07-24 Johnson Controls Techonology Company Free cooling refrigeration system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321797A (en) * 1978-10-06 1982-03-30 Air & Refrigeration Corp. Quick connector and shut-off valve assembly for heat recovery system
KR101270615B1 (ko) * 2006-07-25 2013-06-07 엘지전자 주식회사 코제너레이션 및 그 제어 방법
EP2414492B1 (en) * 2009-03-31 2020-06-24 Johnson Controls Technology Company Control system for operating condenser fans
EP2469195B1 (en) * 2009-09-29 2017-10-25 Mitsubishi Electric Corporation Heat storage water-heating and air-conditioning machine
KR101155496B1 (ko) * 2010-04-23 2012-06-15 엘지전자 주식회사 히트펌프식 급탕장치
KR101190407B1 (ko) * 2010-05-20 2012-10-12 엘지전자 주식회사 히트펌프 연동 급탕장치
JP5632700B2 (ja) * 2010-10-19 2014-11-26 三浦工業株式会社 熱回収システム
US20120312037A1 (en) * 2011-06-08 2012-12-13 Hamilton Sundstrand Corporation Vapor cycle system with de-superheater
GB2510547B (en) * 2012-03-01 2016-04-27 Waste Heat Recovery Ltd Heat recovery
US9915450B2 (en) * 2012-03-15 2018-03-13 Pas, Inc. Multi-split heat pump for heating, cooling, and water heating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201069292Y (zh) * 2007-06-08 2008-06-04 劳特斯空调(江苏)有限公司 自适应热回收机组
CN201273702Y (zh) * 2008-09-10 2009-07-15 陈增华 热回收型空调热水器
EP2233863A3 (en) * 2009-03-24 2013-07-24 Johnson Controls Techonology Company Free cooling refrigeration system
CN101943471A (zh) * 2009-07-09 2011-01-12 陈则韶 一种制冷回路极简单的双热源热泵热水装置
CN102483277A (zh) * 2009-07-27 2012-05-30 埃科拉克蒂公司 用于在蒸汽制冷系统上进行热量回收的方法和设备
CN102472543A (zh) * 2009-07-31 2012-05-23 江森自控科技公司 制冷剂控制系统和方法
CN102549356A (zh) * 2009-08-17 2012-07-04 江森自控科技公司 具有改进的热回收特征的热泵冷却器

Also Published As

Publication number Publication date
CN105008825B (zh) 2017-11-17
US20150345846A1 (en) 2015-12-03
US10401068B2 (en) 2019-09-03
WO2014113397A1 (en) 2014-07-24
US20190383538A1 (en) 2019-12-19
US11378314B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
CN105008825A (zh) 具有热量回收的风冷式冷却器
CN101646911B (zh) 使风冷式冷却器系统以最优能量效率比运行的方法
CN102472543B (zh) 制冷剂控制系统和方法
EP2464924B1 (en) Free cooling refrigeration system
CN103370584B (zh) 制冷循环装置及制冷循环控制方法
CN205245632U (zh) 冷冻循环装置
CN103097835B (zh) 使用过冷值操作蒸汽压缩系统的方法
CN101970953B (zh) 二氧化碳制冷剂蒸汽压缩系统
CN105180513A (zh) 具有多种运行模式的热泵系统
CN102077041B (zh) 空调装置和空调装置的制冷剂量判定方法
CN102077042B (zh) 空气调节装置的制冷剂量判定方法及空气调节装置
CN101821560B (zh) 空气调节装置
CN104937350A (zh) 空调装置
US20060107683A1 (en) Air conditioning system and method for controlling the same
CN108700347A (zh) 用于控制制冷系统的系统和方法
CN104813108A (zh) 用于控制具有泵送制冷剂节能的蒸气压缩冷却系统的负荷估算器
CN102725596B (zh) 热泵系统
CN103842736A (zh) 制冷装置
US20230144991A1 (en) Chiller suction flow limiting with input power or motor current control
CN101755179B (zh) 控制系统
WO2008044807A2 (en) Air conditioner and controlling method for the same
JP6576468B2 (ja) 空気調和機
US20240110735A1 (en) Increasing a flow rate of oil into a compressor of a refrigeration assembly
US20220128285A1 (en) Water regulator
US20230080007A1 (en) Free cooling system for hvac system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230406

Address after: Wisconsin

Patentee after: Johnson Controls Tyco intellectual property holdings limited liability partnership

Address before: Michigan USA

Patentee before: JOHNSON CONTROLS TECHNOLOGY Co.

TR01 Transfer of patent right