CN104992987B - 氟化石墨烯作为高阻层的太阳能电池及其制备方法 - Google Patents

氟化石墨烯作为高阻层的太阳能电池及其制备方法 Download PDF

Info

Publication number
CN104992987B
CN104992987B CN201510339381.0A CN201510339381A CN104992987B CN 104992987 B CN104992987 B CN 104992987B CN 201510339381 A CN201510339381 A CN 201510339381A CN 104992987 B CN104992987 B CN 104992987B
Authority
CN
China
Prior art keywords
solar cell
fluorinated graphene
resistive formation
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510339381.0A
Other languages
English (en)
Other versions
CN104992987A (zh
Inventor
吴京锦
赵策洲
赵胤超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong Liverpool University
Original Assignee
Xian Jiaotong Liverpool University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong Liverpool University filed Critical Xian Jiaotong Liverpool University
Priority to CN201510339381.0A priority Critical patent/CN104992987B/zh
Publication of CN104992987A publication Critical patent/CN104992987A/zh
Application granted granted Critical
Publication of CN104992987B publication Critical patent/CN104992987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种氟化石墨烯薄膜作为高阻层的太阳能电池。在太阳能电池中,电池的结构从下到上依次为作为背电极的金属薄膜层、背接触层、吸收层、窗口层、氟化石墨烯高阻层和透明导电薄膜层。0.34~20nm厚的氟化石墨烯薄膜代替本征氧化物作为新型高阻层,可以减少不同薄膜之间原子的扩散,提高界面性质,可以避免因窗口层薄膜的针孔效应引起的电池短路,进一步提高电池的效率。相比于传统高阻层,厚度较薄的氟化石墨烯薄膜更有益于电子的隧穿效应,以及电子的转移和收集。

Description

氟化石墨烯作为高阻层的太阳能电池及其制备方法
技术领域
本发明涉及一种太阳能电池新,具体地涉及一种以氟化石墨烯薄膜为高阻层的太阳能电池及其制备方法。
背景技术
近年来,石墨烯以其独特的二维纳米结构和优异的电学和热学性能,吸引了广大的科学研究者的关注。石墨烯的功能化产生了石墨烯衍生物,拓宽了石墨烯的广泛应用领域。石墨烯的衍生物包括氧化石墨烯,氢化石墨烯和氟化石墨烯。新型氟化石墨烯通常用水热法、物理剥离法或等离子体法制得。在氟化石墨烯表面,氟原子与碳原子以共价键的形式结合,将石墨烯从二维变为三维结构,也使得其完成了从导体到向半导体或绝缘体的转变。在氟化过程中,如果石墨烯只有一面暴露在氟源中,氟原子的覆盖率到达25%(C4F),能带隙增加为2.93eV,而当石墨烯两面都暴露在氟源中,氟原子的覆盖率为100%(CF)时,能带隙为3.07eV。
氟化石墨烯是目前已知的最薄的绝缘体,透光率高,且化学、热力学性能稳定、表面能低,可应用在纳米电子器件、光电子器件、以及热电装置等领域可作为。此外,氟化石墨烯耐高温、耐腐蚀、耐摩擦等特性,所以可以作为钝化层,抑制金属薄膜表面被氧化也可以阻挡不同薄膜之间的原子的扩散。
以碲化镉薄膜太阳能电池为例,硫化镉(CdS)窗口层为重掺杂N型区,碲化镉(CdTe)吸收层为轻掺P型区,形成了异质结结构。当光照射到太阳能电池上,在PN结处会产生电子空穴对,将光能转换成电能。为了提高光能转换效率,透明导电薄膜电极(TCEs)要具有较高的透光率,使得更多的光能传送到PN结。另外,硫化镉通常厚度较薄而碲化镉较厚,使得内部电场集中在碲化镉区域,以促进在CdTe层产生的电子空穴对的分离。然而当硫化镉厚度较薄时,硫化镉薄膜产生针孔效应,即出现不连续的区域,导致了CdTe和前电极TCE之间的直接接触,产生过多的分流,影响了太阳能电池的效率。通常解决这个问题的方案是在透明电极和硫化镉薄膜之间增加一层本征氧化物(如i-ZnO)高阻层。但是,以高阻层为氧化锌为例,氧化锌薄膜的有效厚度范围为80-200nm,不利于在CdTe/CdS形成的异质结处产生的电子遂穿通过氧化锌到达前电极。此外,它的透光率也是有一定的限制(~81%)。
发明内容
鉴于以上所述技术存在的缺陷,本发明目的:提供一种氟化石墨烯作为高阻层的太阳能电池,在太阳能电池中,以0.34~20nm厚的氟化石墨烯薄膜代替本征氧化物作为高阻层。该太阳能电池具有更好的光传输率,提高了太阳能电池的光转换效率。
本发明的技术方案是:
一种氟化石墨烯作为高阻层的太阳能电池,所述太阳能电池包括从下到上依次为作为背电极的金属薄膜层、背接触层、吸收层、窗口层、氟化石墨烯高阻层和透明导电薄膜层。
优选的,所述氟化石墨烯高阻层的厚度为0.34-20nm。
优选的,所述氟化石墨烯薄膜由以下步骤制备得到:
(1)在冰水浴中将石墨粉、硝酸钠和浓硫酸混合均匀,然后加入高锰酸钾,搅拌;
(2)将(1)中的混合液加温至35-500C,持续搅拌5-8h,然后加入高锰酸钾,保持温度,反应8-14h;
(3)将上述液体冷却至室温,然后加入过氧化氢溶液反应;
(4)待反应结束,将溶液离心,取出沉淀,用去离子水、盐酸和无水乙醇的混合溶液进行过滤,最后干燥,研磨,得到氧化石墨烯粉;
(5)在得到的氧化石墨烯粉中加入去离子水,经过超声处理得到氧化石墨烯分散液;
(6)将上述分散液加入带有聚四氟乙烯的内衬的水热釜内,同时加入氢氟酸,将水热釜密封,并置于烘箱内,待反应完成,冷却至室温;
(7)最后过滤、洗涤、烘干,得到氟化石墨烯薄膜。
优选的,所述步骤(1)中的高锰酸钾与步骤(2)中的高锰酸钾的重量相等,其中步骤(1)的高锰酸钾等分后依次缓慢加入混合液中,步骤(2)的高锰酸钾一次性加入混合液中。
优选的,所述盐酸和过氧化氢溶液的浓度都为30%。
本发明还公开了一种以氟化石墨烯为高阻层的太阳能电池的制备方法,包括以蒸镀有透明氧化薄膜层的玻璃为衬底,将制备得到的氟化石墨烯旋涂到该衬底上,烘干;然后依次生长窗口层、吸收层、背接触层和作为背电极的金属薄膜层形成太阳电池。
优选的,所述透明氧化薄膜层为氧化铟锡。
本发明的优点是:
1)本发明所提出的太阳能电池的制备方法,成本低廉,操作方便。而且生产的氟化石墨烯薄膜纯度高,质量好。
2)氟化石墨烯具有比传统高阻层具有更薄的物理厚度所以有更好的光传输率,提高了太阳能电池的光转换效率。
3)氟化石墨烯能作为钝化层,抑制金属薄膜表面被氧化和阻挡不同薄膜之间原子的扩散,减少了热退火过程中玻璃中的钠离子进入PN结耗尽层以及窗口层扩散进入透明导电薄膜层,保证了器件的可靠性。
4)氟化石墨烯具有比传统高阻层具有更薄的物理厚度,所以促进了电子的隧穿效应,从而使电子更容易扩散到透明导电薄膜电极端,使得电子空穴对有效的分离,提高了太阳能电池的光转换效率。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为碲化镉薄膜太阳能电池的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
实施例1
如图1所示,一种以氟化石墨烯薄膜作为高阻层的碲化镉薄膜太阳能电池,太阳能电池最下层为金属薄膜层10,在金属薄膜层10上设置有背接触层20,在背接触层20上设置吸收层30,该吸收层30材料可以为碲化镉,在吸收层30上设置窗口层40,该窗口层40的材料可以为硫化镉,在窗口层40上为氟化石墨烯高阻层50,最上层为透明导电薄膜层60。
氟化石墨烯高阻层50的厚度为0.34-20nm。
一种碲化镉薄膜太阳能电池的制备方法,以蒸镀有透明氧化薄膜层(例如可以为氧化铟锡)的玻璃为衬底,将制备得到的氟化石墨烯旋涂到该衬底上,烘干;然后依次生长硫化镉、碲化镉和背接触金属形成碲化镉薄膜太阳电池。该方法成本低廉,操作方便,得到的太阳能电池质量好。
在碲化镉薄膜太阳能电池中,氟化石墨烯薄膜可以代替传统高阻层,例如本征氧化锌(i-ZnO)。与氧化锌层相比,较薄的氟化石墨烯薄膜不仅可以避免硫化镉薄膜的针孔效应导致的漏电流和氧化锌粗糙的表面对太阳能电池效率的影响,而且降低了物理厚度,促进了电子隧穿效应,更有益于电子的转移和收集。
上述的氟化石墨烯薄膜可以通过以下方法制备得到,该制备方法包括以下步骤:
步骤一氧化石墨烯薄膜的制备:
在冰水浴中将3g石墨粉、1.5g硝酸钠和69mL浓硫酸混合均匀,在200C的温度环境中,将9g的高锰酸钾等分后依次缓慢加入混合液中,搅拌。
然后加温至350C,持续搅拌7h。之后,将另外9g的高锰酸钾一次性加入混合液中,保持温度,反应时间为12h。
再将400mL的冰水加入上述液体中,使其冷却至室温。
然后向加入3mL浓度为30%的过氧化氢溶液,待反应结束,将溶液离心,取出沉淀,用各200mL的去离子水、浓度为30%盐酸和无水乙醇的混合溶液进行过滤,最后干燥,研磨,得到氧化石墨烯粉。
步骤二氟化石墨烯的制备:
将100mg的氧化石墨烯加入100mL去离子水中,经过超声处理30min得到氧化石墨烯分散液。
将上述分散液加入带有聚四氟乙烯的内衬的水热釜内,同时加入一定量的氢氟酸,将水热釜密封,并置于烘箱内,在一定的时间内保持温度。
待反应完成,冷却至室温。最后过滤,洗涤,烘干,得到氟化石墨烯。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (7)

1.一种氟化石墨烯作为高阻层的太阳能电池,其特征在于,所述太阳能电池包括从下到上依次为作为背电极的金属薄膜层、背接触层、吸收层、窗口层、氟化石墨烯高阻层和透明导电薄膜层。
2.根据权利要求1所述的太阳能电池,其特征在于,所述氟化石墨烯高阻层的厚度为0.34-20nm。
3.根据权利要求1所述的太阳能电池,其特征在于,所述氟化石墨烯薄膜由以下步骤制备得到:
(1)在冰水浴中将石墨粉、硝酸钠和浓硫酸混合均匀,然后加入高锰酸钾,搅拌;
(2)将(1)中的混合液加温至35-500C,持续搅拌5-8h,然后加入高锰酸钾,保持温度,反应8-14h;
(3)将(2)中的液体冷却至室温,然后加入过氧化氢溶液反应;
(4)待反应结束,将溶液离心,取出沉淀,用去离子水、盐酸和无水乙醇的混合溶液进行过滤,最后干燥,研磨,得到氧化石墨烯粉;
(5)在得到的氧化石墨烯粉中加入去离子水,经过超声处理得到氧化石墨烯分散液;
(6)将上述分散液加入带有聚四氟乙烯的内衬的水热釜内,同时加入氢氟酸,将水热釜密封,并置于烘箱内,待反应完成,冷却至室温;
(7)最后过滤、洗涤、烘干,得到氟化石墨烯薄膜。
4.根据权利要求3所述的太阳能电池,其特征在于,所述步骤(1)中的高锰酸钾与步骤(2)中的高锰酸钾的重量相等,其中步骤(1)的高锰酸钾等分后依次缓慢加入混合液中,步骤(2)的高锰酸钾一次性加入混合液中。
5.根据权利要求3所述的太阳能电池,其特征在于,所述盐酸和过氧化氢溶液的浓度都为30%。
6.一种氟化石墨烯作为高阻层的太阳能电池的制备方法,其特征在于,包括以蒸镀有透明氧化薄膜层的玻璃为衬底,将制备得到的氟化石墨烯旋涂到该衬底上,烘干;然后依次生长窗口层、吸收层、背接触层和作为背电极的背接触金属,形成太阳电池。
7.根据权利要求6所述的太阳能电池的制备方法,其特征在于,所述透明氧化薄膜层为氧化铟锡。
CN201510339381.0A 2015-06-18 2015-06-18 氟化石墨烯作为高阻层的太阳能电池及其制备方法 Active CN104992987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510339381.0A CN104992987B (zh) 2015-06-18 2015-06-18 氟化石墨烯作为高阻层的太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510339381.0A CN104992987B (zh) 2015-06-18 2015-06-18 氟化石墨烯作为高阻层的太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN104992987A CN104992987A (zh) 2015-10-21
CN104992987B true CN104992987B (zh) 2016-11-23

Family

ID=54304772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510339381.0A Active CN104992987B (zh) 2015-06-18 2015-06-18 氟化石墨烯作为高阻层的太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104992987B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106486555A (zh) * 2016-12-01 2017-03-08 梁结平 一种碲化镉薄膜太阳能电池
CN106935665B (zh) * 2017-03-15 2018-06-08 常州亿晶光电科技有限公司 一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途
CN109004054B (zh) * 2018-07-11 2020-04-17 华中科技大学 一种硫化钼薄膜异质结太阳能电池及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530910A (zh) * 2010-12-22 2012-07-04 海洋王照明科技股份有限公司 氟化石墨烯的制备方法
CN104300029A (zh) * 2014-08-08 2015-01-21 浙江大学 以氟化石墨烯为绝缘层的硅基雪崩光电探测器及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502653A (ja) * 2010-12-30 2014-02-03 ▲海▼洋王照明科技股▲ふん▼有限公司 導電性高分子材料並びにその製造方法及び応用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530910A (zh) * 2010-12-22 2012-07-04 海洋王照明科技股份有限公司 氟化石墨烯的制备方法
CN104300029A (zh) * 2014-08-08 2015-01-21 浙江大学 以氟化石墨烯为绝缘层的硅基雪崩光电探测器及制备方法

Also Published As

Publication number Publication date
CN104992987A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
CN102569442B (zh) 薄膜太阳能电池及其制作方法
CN106129259B (zh) 一种以黑磷和石墨烯为空穴传输层的钙钛矿太阳能电池及制备方法
CN102074590B (zh) 碲化镉薄膜太阳能电池结构中的背接触电极及制备方法
WO2021047673A1 (zh) 碲化镉太阳能电池及其制备方法
CN104011879B (zh) 形成用于太阳能电池的cigs光吸收层的方法及cigs太阳能电池
CN104992987B (zh) 氟化石墨烯作为高阻层的太阳能电池及其制备方法
CN104659123A (zh) 化合物薄膜太阳能电池及其制备方法
CN104241415A (zh) 一种石墨烯/砷化镓太阳电池及其制造方法
CN105514182A (zh) 用于太阳能电池表面钝化和电流收集的方法、材料及应用
CN110429145A (zh) 一种硒化锑薄膜太阳电池及其制备方法
CN107546289A (zh) 一种硒化锑薄膜太阳能电池及其制备方法
CN104143579A (zh) 一种锑基化合物薄膜太阳能电池及其制备方法
JP2014504035A (ja) 太陽光発電装置及びその製造方法。
Wang et al. High-performance Si/organic hybrid solar cells using a novel cone-shaped Si nanoholes structures and back surface passivation layer
CN104617183B (zh) 一种cigs基薄膜太阳电池及其制备方法
CN103811579B (zh) 一种柔性CdTe薄膜太阳能电池及其制备方法
CN107342331B (zh) 一种t型顶电极背反射薄膜太阳电池的生产工艺
CN106252514A (zh) 一种以黑磷‑银‑石墨烯叠层为空穴传输层的钙钛矿太阳能电池及制备方法
CN204230261U (zh) 一种石墨烯/砷化镓太阳电池
CN103367514B (zh) 一种弧形底电极薄膜太阳电池
CN105355681B (zh) 一种溅射靶材及用该溅射靶材制作的cigs基薄膜太阳能电池
CN100592536C (zh) 光电转换装置及其制造方法
CN203932119U (zh) 石墨烯电极柔性薄膜钙钛矿太阳能电池
CN103219398A (zh) 光电转换装置
CN105489672A (zh) 一种氯化物体系两步法制备铜铟硒光电薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant