CN106935665B - 一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途 - Google Patents

一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途 Download PDF

Info

Publication number
CN106935665B
CN106935665B CN201710153832.0A CN201710153832A CN106935665B CN 106935665 B CN106935665 B CN 106935665B CN 201710153832 A CN201710153832 A CN 201710153832A CN 106935665 B CN106935665 B CN 106935665B
Authority
CN
China
Prior art keywords
organically
cds
composite materials
modified
tube composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710153832.0A
Other languages
English (en)
Other versions
CN106935665A (zh
Inventor
孙铁囤
姚伟忠
汤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou EGing Photovoltaic Technology Co Ltd
Original Assignee
Changzhou EGing Photovoltaic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou EGing Photovoltaic Technology Co Ltd filed Critical Changzhou EGing Photovoltaic Technology Co Ltd
Priority to CN201710153832.0A priority Critical patent/CN106935665B/zh
Publication of CN106935665A publication Critical patent/CN106935665A/zh
Application granted granted Critical
Publication of CN106935665B publication Critical patent/CN106935665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能电池制备领域,尤其涉及一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途。提供一种有机改性CdS掺杂硅纳米管复合材料,将CdS掺杂入硅纳米管中,制备CdS掺杂硅纳米管,以聚乙烯醇月桂酸酯作为改性材料,有机硅烷作为偶联剂,无机盐作为催化剂,对CdS掺杂硅纳米管进行有机改性,制备有机改性CdS掺杂硅纳米管复合材料。将这种材料用于制备碲化镉薄膜太阳电池,该电池可以在正面感应太阳光的同时,其背钝化层同时可以感应太阳光产生的热辐射,极大地提高了太阳能电池的光能利用效率。

Description

一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途
技术领域
本发明属于太阳能电池制备领域,尤其涉及一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途。
背景技术
纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围。由于它的尺寸已经接近电子的相干长度,因此强相干所带来的自组织使得性质发生很大变化。并且,尺度已接近光的波长,加上具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等,往往不同于该物质在整体状态时所表现的性质。
硅是现代电子工业主要半导体原料,其硅纳米管同样具有半导体性能,容易与现有的硅工业制备工艺兼容,是一种在集成电路新领域极有应用前景的新型材料,因此,人们认为硅纳米管是具有重要理论研究和应用研究价值的材料。硫化镉(CdS)也是一种半导体材料,具有2.42eV能带隙,是一种典型的光电半导体材料,在光吸收、光电转换和非线性光学等领域有着广泛的应用。
碲化镉(CdTe)薄膜太阳电池是以CdTe为吸收层的一种化合物半导体薄膜太阳电池,因其高效、低成本的特点,受到很多研究机构和公司的关注。CdTe薄膜太阳电池的结构为:玻璃/透明导电膜/窗口层/吸收层/背钝化层/背电极层。由于碲化镉功函数较高,很难直接和背金属形成欧姆接触,因此必须增加背钝化层来解决这个问题。其中吸收层CdTe为p型,且其电子亲和势~4.3eV,禁带宽度~1.5eV,很难找到功函数比CdTe高的金属材料与其形成欧姆接触。如果CdTe和金属电极直接接触,接触势垒很高,将使得电池的串联电阻很大。这一问题的解决方法通常是在CdTe和背电极之间引入半导体背钝化层,来减小接触势垒对空穴传输的阻碍,从而减小串联电阻。目前常用的背钝化层材料有碲化锌(ZnTe)、碲化汞(HgTe)和碲化锑(Sb2Te3)等,这些材料多为化合物半导体材料,价格较为昂贵,使得碲化镉薄膜太阳电池的成本较高,也有采用氮化钼和氧化钼混合物作为背钝化层以降低生产成本,但上述的材料无法对热辐射产生感应,制备的电池光电转换效率普遍不高。
发明内容
本发明的目的:针对目前碲化镉薄膜太阳能电池背钝化层材料无法对热辐射产生感应的问题,提供一种有机改性CdS掺杂硅纳米管复合材料及制备方法,将这种复合材料用于制备碲化镉薄膜太阳电池,增强电池对热辐射的感应能力,提高了电池的光电转换效率。
本发明的技术方案:提供一种有机改性CdS掺杂硅纳米管复合材料,将CdS掺杂到硅纳米管中,制备CdS掺杂硅纳米管,以聚乙烯醇月桂酸酯作为改性材料,有机硅烷作为偶联剂,无机盐作为催化剂,对CdS掺杂硅纳米管进行有机改性,制得有机改性CdS掺杂硅纳米管复合材料。
提供一种有机改性CdS掺杂硅纳米管复合材料的制备方法,其具体操作步骤包括:
(1)将硅纳米管和去离子水加入到三口烧瓶中,超声分散1-2小时,向三口烧瓶中添加CdS,于110-150℃下水热反应5-8小时,将所得产物过滤,洗涤,50-70℃下干燥,制得CdS掺杂硅纳米管;
作为优选,步骤(1)中硅纳米管、去离子水和CdS的摩尔比为5-9:15-25:1。
(2)取聚乙烯醇月桂酸酯和有机硅烷偶联剂加入到溶剂中,充分搅拌0.5小时,然后加入步骤(1)制备的CdS掺杂硅纳米管,最后加入无机盐催化剂,常温和150-300r/min转速条件下搅拌反应3-5小时,制得有机改性CdS掺杂硅纳米管复合材料。
作为优选,步骤(2)中溶剂为乙醇、丙酮、芳香烃类或乙二醇醚类;步骤(2)中有机硅烷偶联剂为甲基丙烯酰氧基硅烷;步骤(2)中无机盐催化剂为硫酸盐、盐酸盐或磷酸盐。
作为优选,步骤(2)中聚乙烯醇月桂酸酯、有机硅烷偶联剂、溶剂、CdS掺杂硅纳米管和无机盐催化剂摩尔比为1:0.3-0.6:10-15:1-3:0.05-0.1。
提供一种有机改性CdS掺杂硅纳米管复合材料制备的碲化镉薄膜太阳电池,其制备方法包括:
(1)在碲化镉太阳能电池的吸收层表面沉积Cu层后,在Cu层表面沉积有机改性CdS掺杂硅纳米管复合材料层;
作为优选,步骤(1)中Cu层的制备方法为电子束热蒸发法、磁控溅射法或Cu盐扩散法;步骤(1)中有机改性CdS掺杂硅纳米管复合材料层的制备方法为电子束热蒸发法、磁控溅射法或反应溅射法。
作为优选,步骤(1)中有机改性CdS掺杂硅纳米管复合材料层厚度为50-100nm。
(2)沉积有机改性CdS掺杂硅纳米管复合材料层后,在200-300℃条件下退火处理40-60分钟,制得碲化镉薄膜太阳电池的背钝化层(背钝化层位于电池吸收层和背电极层之间);
(3)其余制备方法和选用材料同常规的碲化镉薄膜太阳电池,制得有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
本发明的技术效果:CdS具有一定的金属性,本发明制备的复合材料掺杂了CdS,是一种较好的背钝化材料。聚乙烯醇月桂酸酯和有机硅烷偶联剂的有机部分在无机盐催化作用下发生反应,有机硅烷偶联剂同时能与硅纳米管发生偶联,形成聚乙烯醇月桂酸酯改性硅纳米管复合材料。聚乙烯醇月桂酸酯作为一种热敏材料,将其用于改性硅纳米管,使得复合材料同时具有了热敏特性和硅纳米管特有的光热特性,两者形成协同作用,对热辐射有强烈的感应能力。本发明制备的碲化镉太阳能电池背钝化层可以感应太阳光产生的热辐射,极大地提高了太阳能电池的光能利用效率。
具体实施方式
实施例1
制备有机改性CdS掺杂硅纳米管复合材料:
(1)将2.5mol硅纳米管和7.5mol去离子水加入到三口烧瓶中,超声分散1小时,向三口烧瓶中添加0.5mol CdS,于120~125℃下水热反应5小时,将所得产物过滤,洗涤,60℃下干燥,即制得CdS掺杂硅纳米管;
(2)取1mol聚乙烯醇月桂酸酯和0.3mol甲基丙烯酰氧基硅烷加入到10mol乙醇中,充分搅拌0.5小时,然后加入1mol步骤(1)制备的CdS掺杂硅纳米管,最后加入0.05molNa2SO4,常温和200r/min转速条件下搅拌反应3小时,制得有机改性CdS掺杂硅纳米管复合材料。
制备有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池:
(1)采用电子束热蒸发法在碲化镉太阳能电池的吸收层表面沉积Cu层后,采用磁控溅射法在Cu层表面沉积50nm有机改性CdS掺杂硅纳米管复合材料层;
(2)在沉积有机改性CdS掺杂硅纳米管复合材料层后,在250-260℃条件下退火处理40分钟,制得碲化镉薄膜太阳电池的背钝化层;
(3)其余制备方法和选用材料同常规的碲化镉薄膜太阳电池,制得有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
实施例2
制备有机改性CdS掺杂硅纳米管复合材料:
(1)将4.5mol硅纳米管和12.5mol去离子水加入到三口烧瓶中,超声分散2小时,向三口烧瓶中添加0.5mol CdS,于120~125℃下水热反应8小时,将所得产物过滤,洗涤,60℃下干燥,即制得CdS掺杂硅纳米管;
(2)取1mol聚乙烯醇月桂酸酯和0.6mol甲基丙烯酰氧基硅烷加入到15mol乙醇中,充分搅拌0.5小时,然后加入3mol步骤(1)制备的CdS掺杂硅纳米管,最后加入0.1molNa2SO4,常温和200r/min转速条件下搅拌反应5小时,制得有机改性CdS掺杂硅纳米管复合材料。
制备有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池:
(1)采用电子束热蒸发法在碲化镉太阳能电池的吸收层表面沉积Cu层后,采用磁控溅射法在Cu层表面沉积50nm有机改性CdS掺杂硅纳米管复合材料层;
(2)在沉积有机改性CdS掺杂硅纳米管复合材料层后,在250-260℃条件下退火处理40分钟,制得碲化镉薄膜太阳电池的背钝化层;
(3)其余制备方法和选用材料同常规的碲化镉薄膜太阳电池,制得有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
实施例3
制备有机改性CdS掺杂硅纳米管复合材料:
(1)将3.5mol硅纳米管和10mol去离子水加入到三口烧瓶中,超声分散2小时,向三口烧瓶中添加0.5mol CdS,于120~125℃下水热反应7小时,将所得产物过滤,洗涤,60℃下干燥,即制得CdS掺杂硅纳米管;
(2)取1mol聚乙烯醇月桂酸酯和0.4mol甲基丙烯酰氧基硅烷加入到12mol乙醇中,充分搅拌0.5小时,然后加入2mol步骤(1)制备的CdS掺杂硅纳米管,最后加入0.08molNa2SO4,常温和200r/min转速条件下搅拌反应4小时,制得有机改性CdS掺杂硅纳米管复合材料。
制备有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池:
(1)采用电子束热蒸发法在碲化镉太阳能电池的吸收层表面沉积Cu层后,采用磁控溅射法在Cu层表面沉积50nm有机改性CdS掺杂硅纳米管复合材料层;
(2)在沉积有机改性CdS掺杂硅纳米管复合材料层后,在250-260℃条件下退火处理40分钟,制得碲化镉薄膜太阳电池的背钝化层;
(3)其余制备方法和选用材料同常规的碲化镉薄膜太阳电池,制得有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
实施例4
制备有机改性CdS掺杂硅纳米管复合材料:
(1)将3.5mol硅纳米管和10mol去离子水加入到三口烧瓶中,超声分散2小时,向三口烧瓶中添加0.5mol CdS,于120~125℃下水热反应5小时,将所得产物过滤,洗涤,60℃下干燥,即制得CdS掺杂硅纳米管;
(2)取1mol聚乙烯醇月桂酸酯和0.4mol甲基丙烯酰氧基硅烷加入到12mol乙醇中,充分搅拌0.5小时,然后加入2mol步骤(1)制备的CdS掺杂硅纳米管,最后加入0.08molNa2SO4,常温和200r/min转速条件下搅拌反应3小时,制得有机改性CdS掺杂硅纳米管复合材料。
制备有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池:
(1)采用电子束热蒸发法在碲化镉太阳能电池的吸收层表面沉积Cu层后,采用磁控溅射法在Cu层表面沉积50nm有机改性CdS掺杂硅纳米管复合材料层;
(2)在沉积有机改性CdS掺杂硅纳米管复合材料层后,在250-260℃条件下退火处理40分钟,制得碲化镉薄膜太阳电池的背钝化层;
(3)其余制备方法和选用材料同常规的碲化镉薄膜太阳电池,制得有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
实施例5
制备有机改性CdS掺杂硅纳米管复合材料:
(1)将3.5mol硅纳米管和10mol去离子水加入到三口烧瓶中,超声分散2小时,向三口烧瓶中添加0.5mol CdS,于120~125℃下水热反应8小时,将所得产物过滤,洗涤,60℃下干燥,即制得CdS掺杂硅纳米管;
(2)取1mol聚乙烯醇月桂酸酯和0.4mol甲基丙烯酰氧基硅烷加入到12mol乙醇中,充分搅拌0.5小时,然后加入2mol步骤(1)制备的CdS掺杂硅纳米管,最后加入0.08molNa2SO4,常温和200r/min转速条件下搅拌反应5小时,制得有机改性CdS掺杂硅纳米管复合材料。
制备有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池:
(1)采用电子束热蒸发法在碲化镉太阳能电池的吸收层表面沉积Cu层后,采用磁控溅射法在Cu层表面沉积50nm有机改性CdS掺杂硅纳米管复合材料层;
(2)在沉积有机改性CdS掺杂硅纳米管复合材料层后,在250-260℃条件下退火处理40分钟,制得碲化镉薄膜太阳电池的背钝化层;
(3)其余制备方法和选用材料同常规的碲化镉薄膜太阳电池,制得有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
对比实施例1
不添加实施例1使用的聚乙烯醇月桂酸酯,制备有机改性CdS掺杂硅纳米管复合材料工艺操作为:(1)将2.5mol硅纳米管和7.5mol去离子水加入到三口烧瓶中,超声分散1小时,向三口烧瓶中添加0.5mol CdS,于120~125℃下水热反应5小时,将所得产物过滤,洗涤,60℃下干燥,即制得CdS掺杂硅纳米管;(2)取0.3mol甲基丙烯酰氧基硅烷加入到10mol乙醇中,充分搅拌0.5小时,然后加入1mol步骤(1)制备的CdS掺杂硅纳米管,最后加入0.05mol Na2SO4,常温和200r/min转速条件下搅拌反应3小时,制得有机改性CdS掺杂硅纳米管复合材料。其余操作同实施例1,制得有机改性CdS掺杂硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
对比实施例2
不添加实施例1使用的CdS,制备有机改性硅纳米管复合材料工艺操作为:(1)将2.5mol硅纳米管和7.5mol去离子水加入到三口烧瓶中,超声分散1小时,于120~125℃下水热反应5小时,将所得产物过滤,洗涤,60℃下干燥,即制得硅纳米管;(2)取1mol聚乙烯醇月桂酸酯和0.3mol甲基丙烯酰氧基硅烷加入到10mol乙醇中,充分搅拌0.5小时,然后加入1mol步骤(1)制备的硅纳米管,最后加入0.05mol Na2SO4,常温和200r/min转速条件下搅拌反应3小时,制得有机改性硅纳米管复合材料。其余操作同实施例1,制得有机改性硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
对比实施例3
不添加实施例1使用的聚乙烯醇月桂酸酯和CdS,制备硅纳米管复合材料工艺操作为:(1)将2.5mol硅纳米管和7.5mol去离子水加入到三口烧瓶中,超声分散1小时,于120~125℃下水热反应5小时,将所得产物过滤,洗涤,60℃下干燥,即制得硅纳米管;(2)0.3mol甲基丙烯酰氧基硅烷加入到10mol乙醇中,充分搅拌0.5小时,然后加入1mol步骤(1)制备的硅纳米管,最后加入0.05mol Na2SO4,常温和200r/min转速条件下搅拌反应3小时,制得硅纳米管复合材料。其余操作同实施例1,制得硅纳米管复合材料背钝化层碲化镉薄膜太阳能电池。
表1实施例1-5和对比实施例1-3制备的太阳能电池使用参数表

Claims (8)

1.一种有机改性CdS掺杂硅纳米管复合材料,其特征在于,所述复合材料的制备方法为:将CdS掺杂到硅纳米管中,制备CdS掺杂硅纳米管,以聚乙烯醇月桂酸酯作为改性材料,有机硅烷作为偶联剂,Na2SO4作为催化剂,对CdS掺杂硅纳米管进行有机改性,制得有机改性CdS掺杂硅纳米管复合材料。
2.一种如权利要求1所述的有机改性CdS掺杂硅纳米管复合材料的制备方法,其特征在于,所述制备方法的具体操作步骤包括:
(1)将硅纳米管和去离子水加入到三口烧瓶中,超声分散1-2小时,向三口烧瓶中添加CdS,于110-150℃下水热反应5-8小时,将所得产物过滤,洗涤,50-70℃下干燥,制得CdS掺杂硅纳米管;
(2)取聚乙烯醇月桂酸酯和有机硅烷偶联剂加入到溶剂中,充分搅拌0.5小时,然后加入步骤(1)制备的CdS掺杂硅纳米管,最后加入Na2SO4催化剂,常温和150-300r/min转速条件下搅拌反应3-5小时,制得有机改性CdS掺杂硅纳米管复合材料。
3.如权利要求2所述的有机改性CdS掺杂硅纳米管复合材料的制备方法,其特征在于,步骤(1)中硅纳米管、去离子水和CdS的摩尔比为(5-9):(15-25):1。
4.如权利要求2所述的有机改性CdS掺杂硅纳米管复合材料的制备方法,其特征在于,步骤(2)中溶剂为乙醇、丙酮、芳香烃类或乙二醇醚类;步骤(2)中有机硅烷偶联剂为甲基丙烯酰氧基硅烷。
5.如权利要求2所述的有机改性CdS掺杂硅纳米管复合材料的制备方法,其特征在于,步骤(2)中聚乙烯醇月桂酸酯、有机硅烷偶联剂、溶剂、CdS掺杂硅纳米管和Na2SO4催化剂的摩尔比为1:(0.3-0.6):(10-15):(1-3):(0.05-0.1)。
6.一种如权利要求1所述的有机改性CdS掺杂硅纳米管复合材料的用途,其特征在于,所述的有机改性CdS掺杂硅纳米管复合材料用于制备碲化镉薄膜太阳电池,其制备方法包括:
(1)在碲化镉薄膜太阳电池的吸收层表面沉积Cu层后,在Cu层表面沉积有机改性CdS掺杂硅纳米管复合材料层;
(2)沉积有机改性CdS掺杂硅纳米管复合材料层后,在200-300℃条件下退火处理40-60分钟,制得碲化镉薄膜太阳电池的背钝化层;
(3)其余制备方法和选用材料同常规的碲化镉薄膜太阳电池,制得有机改性CdS掺杂硅纳米管复合材料背钝化碲化镉薄膜太阳电池。
7.如权利要求6所述的有机改性CdS掺杂硅纳米管复合材料的用途,其特征在于,步骤(1)中Cu层的制备方法为电子束热蒸发法、磁控溅射法或Cu盐扩散法;步骤(1)中有机改性CdS掺杂硅纳米管复合材料层的制备方法为电子束热蒸发法、磁控溅射法或反应溅射法。
8.如权利要求6所述的有机改性CdS掺杂硅纳米管复合材料的用途,其特征在于,步骤(1)中有机改性CdS掺杂硅纳米管复合材料层厚度为50-100nm。
CN201710153832.0A 2017-03-15 2017-03-15 一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途 Active CN106935665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710153832.0A CN106935665B (zh) 2017-03-15 2017-03-15 一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710153832.0A CN106935665B (zh) 2017-03-15 2017-03-15 一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途

Publications (2)

Publication Number Publication Date
CN106935665A CN106935665A (zh) 2017-07-07
CN106935665B true CN106935665B (zh) 2018-06-08

Family

ID=59432743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710153832.0A Active CN106935665B (zh) 2017-03-15 2017-03-15 一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途

Country Status (1)

Country Link
CN (1) CN106935665B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897335A (zh) * 2014-03-13 2014-07-02 天津大学 改性硅纳米管杂化膜及其制备方法和应用
CN104992987A (zh) * 2015-06-18 2015-10-21 西交利物浦大学 氟化石墨烯作为高阻层的太阳能电池及其制备方法
CN105118876A (zh) * 2015-09-21 2015-12-02 西交利物浦大学 一种碲化镉薄膜太阳能电池及其钝化层的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186810A1 (en) * 2005-02-08 2010-07-29 Nicola Romeo Method for the formation of a non-rectifying back-contact a cdte/cds thin film solar cell
US8084682B2 (en) * 2009-01-21 2011-12-27 Yung-Tin Chen Multiple band gapped cadmium telluride photovoltaic devices and process for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897335A (zh) * 2014-03-13 2014-07-02 天津大学 改性硅纳米管杂化膜及其制备方法和应用
CN104992987A (zh) * 2015-06-18 2015-10-21 西交利物浦大学 氟化石墨烯作为高阻层的太阳能电池及其制备方法
CN105118876A (zh) * 2015-09-21 2015-12-02 西交利物浦大学 一种碲化镉薄膜太阳能电池及其钝化层的制备方法

Also Published As

Publication number Publication date
CN106935665A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
Xue et al. Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure
CN102646745B (zh) 一种光伏器件及太阳能电池
CN103367512B (zh) 一种基于无机体异质结的太阳电池及其制备方法
Gao et al. Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability
Yang et al. Enhanced photocurrent of a ZnO nanorod array sensitized with graphene quantum dots
CN104788649A (zh) 一种电子传输层材料及钙钛矿太阳电池
CN102074590A (zh) 碲化镉薄膜太阳能电池结构中的背接触电极及制备方法
CN106571425A (zh) 一种基于ZnO‑钙钛矿结构的紫外‑可见可调光电探测器及其制备方法
Lam Modelling and numerical analysis of ZnO/CuO/Cu2O heterojunction solar cell using SCAPS
CN107154460A (zh) 一种全碳基钙钛矿太阳能电池及其制备工艺
CN102779864A (zh) 一种碲化镉薄膜电池及其制备方法
CN109698278A (zh) 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
Zhao et al. ZnO/TiO 2 core–shell nanowire arrays for enhanced dye-sensitized solar cell efficiency
Shan et al. Improved responsivity of highly reproducible performance ZnO thin film flexible UV photodetectors by piezo-phototronic effect
Huang et al. Self-powered ultraviolet photodetector based on CuGaO/ZnSO heterojunction
CN106206249A (zh) 一种具有光伏特性的拓扑绝缘体薄膜及其制备方法
CN104638034A (zh) 一种柔性薄膜太阳能电池
CN104851942B (zh) ZnO/I掺杂ZnO核/壳结构纳米线阵列的制备方法
CN106935665B (zh) 一种有机改性CdS掺杂硅纳米管复合材料及制备方法和用途
CN102522505B (zh) 无机与有机混合太阳能电池
CN106848069B (zh) 一种TiO2纳米材料及制备方法和用途
Wu et al. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals
Wang et al. Low-cost TiO2/Sb2 (S, Se) 3 heterojunction thin film solar cell fabricated by sol-gel and chemical bath deposition
CN103578775B (zh) 基于ZnO透明导电纳米线阵列电极的染料敏化太阳电池及其制备方法
CN107369729B (zh) 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant