CN106486555A - 一种碲化镉薄膜太阳能电池 - Google Patents

一种碲化镉薄膜太阳能电池 Download PDF

Info

Publication number
CN106486555A
CN106486555A CN201611100126.1A CN201611100126A CN106486555A CN 106486555 A CN106486555 A CN 106486555A CN 201611100126 A CN201611100126 A CN 201611100126A CN 106486555 A CN106486555 A CN 106486555A
Authority
CN
China
Prior art keywords
layer
doped graphene
cadmium telluride
solar battery
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611100126.1A
Other languages
English (en)
Inventor
梁结平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611100126.1A priority Critical patent/CN106486555A/zh
Publication of CN106486555A publication Critical patent/CN106486555A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种碲化镉薄膜太阳能电池,包括自下而上依次设置的玻璃衬底、金属背电极层,第一扩散阻挡层、低电阻接触层,镁掺杂石墨烯钝化层、碲化镉吸收层、硫化镉窗口层、氟化石墨烯高阻层、透明导电氧化物层、第二扩散阻挡层以及背支撑基板,本发明的优点在于,所述镁掺杂石墨烯钝化层具有和碲化镉吸收层接近的功函数,有益于对碲化镉吸收层中产生的空穴的收集和传输,同时还保留了石墨烯优良的电学性能,能够很好地抑制相邻的金属材料被氧化,也可以作为钝化层,阻止不同薄层之间原子或离子的扩散,有效地阻止了低电阻接触层中的铜扩散,同时有效降低太阳能电池的退化速率。

Description

一种碲化镉薄膜太阳能电池
技术领域
本发明属于太阳能电池技术领域,具体涉及一种碲化镉薄膜太阳能电池以及碲化镉薄膜太阳能电池中镁掺杂石墨烯钝化层的制备方法。
背景技术
石墨烯是由sp2杂化单层碳原子构成的二维平面晶体,一层石墨烯的厚度为一个碳原子。石墨烯具有优异的机械性能,其化学、热力学性能稳定,此外,石墨烯拥有良好的热导率(5000Wm-1K-1)、透光性(97.7%)、导电性和极高的载流子迁移率10000cm2V-1s-1,成本低且柔韧易弯曲。当石墨烯沉积在金属薄膜上时,它可以抑制金属材料被氧化。将石墨烯置于不同的薄膜之间,可以起到钝化的作用,阻止了不同薄膜之间原子或离子的互扩散。
在碲化镉薄膜太阳能电池中,碲化镉薄膜的功函数为5.5eV,为了避免形成肖特基势垒,同时为了形成欧姆接触,普遍与碲化镉薄膜接触的金属背电极层的功函数需要大于5.5eV。然而,只有少数金属的功函数是大于5.5eV。通常解决这个问题的方案是在碲化镉薄膜和背电极层中间增加一层0.3-5nm的铜薄膜或是增加一层掺杂有铜离子的缓冲层。当适量的金属铜扩散进入碲化镉薄膜后,在碲化镉表面形成了一层CuxTe过渡层。这个过渡层上产生了可以将在碲化镉薄膜中空穴从碲化镉传输到背电极的隧道。另外,铜在碲化镉薄膜中的扩散增加了碲化镉薄膜的掺杂浓度,巨大地减小了碲化镉薄膜的电阻,将碲化镉薄膜太阳能电池的光转换效率从0.9%提高到6.8%。但是,由于铜活泼的性质,铜在碲化镉中的过度扩散,甚至扩散到了碲化镉和硫化镉的界面,导致了复合中心和分流电路的形成,使得太阳能电池的退化速率急剧加快。
发明内容
本发明目的是:提供一种碲化镉薄膜太阳能电池以及碲化镉薄膜太阳能电池中镁掺杂石墨烯钝化层的制备方法,该镁掺杂石墨烯钝化层具有和碲化镉吸收层接近的功函数,有益于对碲化镉吸收层中产生的空穴的收集和传输,同时还保留了石墨烯优良的电学性能,能够很好地抑制相邻的金属材料被氧化,也可以作为钝化层,阻止不同薄层之间原子或离子的扩散,有效地阻止了铜的扩散,有效降低太阳能电池的退化速率。
本发明的技术方案是:一种碲化镉薄膜太阳能电池,包括自下而上依次设置的玻璃衬底、金属背电极层,第一扩散阻挡层、低电阻接触层,镁掺杂石墨烯钝化层、碲化镉吸收层、硫化镉窗口层、氟化石墨烯高阻层、透明导电氧化物层、第二扩散阻挡层以及背支撑基板。
作为优选的技术方案,所述金属背电极层的金属为金,钼,镍或银。
作为优选的技术方案,所述低电阻接触层为CuxTe层。
作为优选的技术方案,所述镁掺杂石墨烯钝化层为p型镁掺杂石墨烯薄膜。
作为优选的技术方案,所述镁掺杂石墨烯钝化层以及氟化石墨烯高阻层的厚度均为5~15nm。
作为优选的技术方案,所述第一扩散阻挡层材质为TiNx,所述第二扩散阻挡层材质为氧化硅或氮化硅。
一种碲化镉薄膜太阳能电池中镁掺杂石墨烯钝化层的制备方法,包括以下步骤:
步骤1):以铜箔作为催化剂,依次使用异丙醇、丙酮、三氯化铁和盐酸混合水溶液、去离子水超声波清洗铜箔,再将铜箔放在石英片上并置于管式炉中央,然后将镁源放入反应室;
步骤2):在氢气和氩气混合气氛保护下加温达到900~1100℃后退火,退火时间为10~60mins,然后通入碳源甲烷和待掺杂元素进行p型掺杂镁掺杂石墨烯薄膜沉积,温度不变,沉积时间为10~60mins,然后自然冷却至室温,得到在铜箔上生长的p型镁掺杂石墨烯薄膜;
步骤3):在上述p型镁掺杂石墨烯薄膜一侧涂上聚甲基丙烯酸甲酯,将覆有铜箔衬底和转移衬底的p型镁掺杂石墨烯薄膜放入三氯化铁中腐蚀铜箔,再将带有转移衬底的p型镁掺杂石墨烯薄膜放入丙酮中去除聚甲基丙烯酸甲酯,最终得到镁掺杂石墨烯钝化层。
作为优选的技术方案,所述镁源为镁单质。
作为优选的技术方案,步骤2)中所述氢气的体积流量为50~200sccm;
所述氩气的体积流量为100~500sccm;所述碳源甲烷的体积流量为1~200sccm。
本发明的优点是:
1.本发明的镁掺杂石墨烯钝化层不仅增加了载流子浓度,并提高了石墨烯的导电性,而且还具有和碲化镉吸收层接近的功函数,有益于形成欧姆接触,避免形成肖特基势垒,同时有益于收集和传输在碲化镉吸收层中产生的空穴;
2.本发明采用镁掺杂石墨烯钝化层置于在碲化镉吸收层和低电阻接触层之间,保留了石墨烯优良的电学性能的同时,能够很好地抑制相邻的金属材料被氧化,也还可以有效抑制铜从低电阻接触层扩散进入碲化镉薄膜而导致太阳能电池退化;
3.本发明的镁掺杂石墨烯钝化层可以作为钝化层,阻止不同薄层之间原子或离子的扩撒,并有效抑制低电阻接触层中铜离子扩散进入碲化镉薄膜;
4.本发明的镁掺杂石墨烯钝化层厚度很薄,柔韧易弯曲,有良好的热导率和载流子迁移率等性质。
附图说明
下面结合附图和具体实施方式对本发明作进一步说明:
图1为本发明碲化镉薄膜太阳能电池的结构示意图。
具体实施方式
实施例:参照图1所示,一种碲化镉薄膜太阳能电池,包括自下而上依次设置的玻璃衬底1、金属背电极层2,第一扩散阻挡层3、低电阻接触层4,镁掺杂石墨烯钝化层5、碲化镉吸收层6、硫化镉窗口层7、氟化石墨烯高阻层8、透明导电氧化物层9、第二扩散阻挡层10以及背支撑基板11,所述金属背电极层的金属为金,钼,镍或银,所述低电阻接触层为CuxTe层,所述镁掺杂石墨烯钝化层为p型镁掺杂石墨烯薄膜,所述镁掺杂石墨烯钝化层以及氟化石墨烯高阻层的厚度均为5~15nm,所述第一扩散阻挡层材质为TiNx,所述第二扩散阻挡层材质为氧化硅或氮化硅。
实施例1:上述碲化镉薄膜太阳能电池中镁掺杂石墨烯钝化层的制备方法,包括以下步骤:
步骤1):以铜箔作为催化剂,依次使用异丙醇、丙酮、三氯化铁和盐酸混合水溶液、去离子水超声波清洗铜箔,再将铜箔放在石英片上并置于管式炉中央,然后将镁源放入反应室,其中镁源为镁单质;
步骤2):在氢气(体积流量为200sccm)和氩气(体积流量为100sccm)混合气氛保护下加温达到1100℃后退火,退火时间为60mins,然后通入碳源甲烷(体积流量为200sccm)和待掺杂元素进行p型掺杂镁掺杂石墨烯薄膜沉积,温度不变,沉积时间为10~60mins,然后自然冷却至室温,得到在铜箔上生长的p型镁掺杂石墨烯薄膜;
步骤3):在上述p型镁掺杂石墨烯薄膜一侧涂上聚甲基丙烯酸甲酯,将覆有铜箔衬底和转移衬底的p型镁掺杂石墨烯薄膜放入三氯化铁中腐蚀铜箔,再将带有转移衬底的p型镁掺杂石墨烯薄膜放入丙酮中去除聚甲基丙烯酸甲酯,最终得到镁掺杂石墨烯钝化层,其钝化层厚度为5~15nm。
实施例2:上述碲化镉薄膜太阳能电池中镁掺杂石墨烯钝化层的制备方法,包括以下步骤:
步骤1):以铜箔作为催化剂,依次使用异丙醇、丙酮、三氯化铁和盐酸混合水溶液、去离子水超声波清洗铜箔,再将铜箔放在石英片上并置于管式炉中央,然后将镁源放入反应室,其中镁源为镁单质;
步骤2):在氢气(体积流量为100sccm)和氩气(体积流量为500sccm)混合气氛保护下加温达到1000℃后退火,退火时间为30mins,然后通入碳源甲烷(体积流量为30sccm)和待掺杂元素进行p型掺杂镁掺杂石墨烯薄膜沉积,温度不变,沉积时间为10~60mins,然后自然冷却至室温,得到在铜箔上生长的p型镁掺杂石墨烯薄膜;
步骤3):在上述p型镁掺杂石墨烯薄膜一侧涂上聚甲基丙烯酸甲酯,将覆有铜箔衬底和转移衬底的p型镁掺杂石墨烯薄膜放入三氯化铁中腐蚀铜箔,再将带有转移衬底的p型镁掺杂石墨烯薄膜放入丙酮中去除聚甲基丙烯酸甲酯,最终得到镁掺杂石墨烯钝化层,其钝化层厚度为5~15nm。
实施例3:上述碲化镉薄膜太阳能电池中镁掺杂石墨烯钝化层的制备方法,包括以下步骤:
步骤1):以铜箔作为催化剂,依次使用异丙醇、丙酮、三氯化铁和盐酸混合水溶液、去离子水超声波清洗铜箔,再将铜箔放在石英片上并置于管式炉中央,然后将镁源放入反应室,其中镁源选自三溴化镁和镁单质中的至少一种;
步骤2):在氢气(体积流量为50sccm)和氩气(体积流量为100sccm)混合气氛保护下加温达到900℃后退火,退火时间为10mins,然后通入碳源甲烷(体积流量为100sccm)和待掺杂元素进行p型掺杂镁掺杂石墨烯薄膜沉积,温度不变,沉积时间为10~60mins,然后自然冷却至室温,得到在铜箔上生长的p型镁掺杂石墨烯薄膜;
步骤3):在上述p型镁掺杂石墨烯薄膜一侧涂上聚甲基丙烯酸甲酯,将覆有铜箔衬底和转移衬底的p型镁掺杂石墨烯薄膜放入三氯化铁中腐蚀铜箔,再将带有转移衬底的p型镁掺杂石墨烯薄膜放入丙酮中去除聚甲基丙烯酸甲酯,最终得到镁掺杂石墨烯钝化层,其钝化层厚度为5~15nm。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (9)

1.一种碲化镉薄膜太阳能电池,其特征在于,包括自下而上依次设置的玻璃衬底、金属背电极层,第一扩散阻挡层、低电阻接触层,镁掺杂石墨烯钝化层、碲化镉吸收层、硫化镉窗口层、氟化石墨烯高阻层、透明导电氧化物层、第二扩散阻挡层以及背支撑基板。
2.根据权利要求1所述的碲化镉薄膜太阳能电池,其特征在于,所述金属背电极层的金属为金,钼,镍或银。
3.根据权利要求1所述的碲化镉薄膜太阳能电池,其特征在于,所述低电阻接触层为CuxTe层。
4.根据权利要求1所述的碲化镉薄膜太阳能电池,其特征在于,所述镁掺杂石墨烯钝化层为p型镁掺杂石墨烯薄膜。
5.根据权利要求1所述的碲化镉薄膜太阳能电池,其特征在于,所述镁掺杂石墨烯钝化层以及氟化石墨烯高阻层的厚度均为5~15nm。
6.根据权利要求1所述的碲化镉薄膜太阳能电池,其特征在于,所述第一扩散阻挡层材质为TiNx,所述第二扩散阻挡层材质为氧化硅或氮化硅。
7.一种如权利要求1所述的碲化镉薄膜太阳能电池中镁掺杂石墨烯钝化层的制备方法,其特征在于,包括以下步骤:
步骤1):以铜箔作为催化剂,依次使用异丙醇、丙酮、三氯化铁和盐酸混合水溶液、去离子水超声波清洗铜箔,再将铜箔放在石英片上并置于管式炉中央,然后将镁源放入反应室;
步骤2):在氢气和氩气混合气氛保护下加温达到900~1100℃后退火,退火时间为10~60mins,然后通入碳源甲烷和待掺杂元素进行p型掺杂镁掺杂石墨烯薄膜沉积,温度不变,沉积时间为10~60mins,然后自然冷却至室温,得到在铜箔上生长的p型镁掺杂石墨烯薄膜;
步骤3):在上述p型镁掺杂石墨烯薄膜一侧涂上聚甲基丙烯酸甲酯,将覆有铜箔衬底和转移衬底的p型镁掺杂石墨烯薄膜放入三氯化铁中腐蚀铜箔,再将带有转移衬底的p型镁掺杂石墨烯薄膜放入丙酮中去除聚甲基丙烯酸甲酯,最终得到镁掺杂石墨烯钝化层。
8.根据权利要求6所述的镁掺杂石墨烯钝化层的制备方法,其特征在于,所述镁源为镁单质。
9.根据权利要求6所述的镁掺杂石墨烯钝化层的制备方法,其特征在于,步骤2)中所述氢气的体积流量为50~200sccm;所述氩气的体积流量为100~500sccm;所述碳源甲烷的体积流量为1~200sccm。
CN201611100126.1A 2016-12-01 2016-12-01 一种碲化镉薄膜太阳能电池 Pending CN106486555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611100126.1A CN106486555A (zh) 2016-12-01 2016-12-01 一种碲化镉薄膜太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611100126.1A CN106486555A (zh) 2016-12-01 2016-12-01 一种碲化镉薄膜太阳能电池

Publications (1)

Publication Number Publication Date
CN106486555A true CN106486555A (zh) 2017-03-08

Family

ID=58275791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611100126.1A Pending CN106486555A (zh) 2016-12-01 2016-12-01 一种碲化镉薄膜太阳能电池

Country Status (1)

Country Link
CN (1) CN106486555A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180880A (zh) * 2017-05-23 2017-09-19 北京大学深圳研究生院 一种超薄半透明薄膜太阳能电池及其制备方法
CN110854239A (zh) * 2019-11-26 2020-02-28 龙焱能源科技(杭州)有限公司 一种薄膜太阳能电池及其制作方法
CN112310230A (zh) * 2019-07-31 2021-02-02 东泰高科装备科技有限公司 太阳能电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215548A (zh) * 2013-04-24 2013-07-24 厦门烯成新材料科技有限公司 一种金属纳米颗粒掺杂石墨烯的制备方法
CN104992987A (zh) * 2015-06-18 2015-10-21 西交利物浦大学 氟化石墨烯作为高阻层的太阳能电池及其制备方法
CN105118876A (zh) * 2015-09-21 2015-12-02 西交利物浦大学 一种碲化镉薄膜太阳能电池及其钝化层的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215548A (zh) * 2013-04-24 2013-07-24 厦门烯成新材料科技有限公司 一种金属纳米颗粒掺杂石墨烯的制备方法
CN104992987A (zh) * 2015-06-18 2015-10-21 西交利物浦大学 氟化石墨烯作为高阻层的太阳能电池及其制备方法
CN105118876A (zh) * 2015-09-21 2015-12-02 西交利物浦大学 一种碲化镉薄膜太阳能电池及其钝化层的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180880A (zh) * 2017-05-23 2017-09-19 北京大学深圳研究生院 一种超薄半透明薄膜太阳能电池及其制备方法
CN107180880B (zh) * 2017-05-23 2019-08-27 北京大学深圳研究生院 一种超薄半透明薄膜太阳能电池及其制备方法
CN112310230A (zh) * 2019-07-31 2021-02-02 东泰高科装备科技有限公司 太阳能电池
CN110854239A (zh) * 2019-11-26 2020-02-28 龙焱能源科技(杭州)有限公司 一种薄膜太阳能电池及其制作方法

Similar Documents

Publication Publication Date Title
Lee et al. Ni/Cu metallization for low-cost high-efficiency PERC cells
KR101197639B1 (ko) 그래핀 구조, 그 제조 방법 및 그래핀 구조를 이용한 투명 전극
US8916412B2 (en) High efficiency cadmium telluride solar cell and method of fabrication
US8759671B2 (en) Thin film metal oxide bearing semiconductor material for single junction solar cell devices
CN112103364B (zh) 选择性发射极结构、其制备方法及应用
WO2006016577A1 (ja) Cis系化合物半導体薄膜太陽電池及び該太陽電池の光吸収層の製造方法
TW201218401A (en) Crystalline photovoltaic cell and method of manufacturing crystalline photovoltaic cell
CN105118876A (zh) 一种碲化镉薄膜太阳能电池及其钝化层的制备方法
CN106486555A (zh) 一种碲化镉薄膜太阳能电池
KR101300790B1 (ko) 확산방지층을 가지는 CdTe 박막 태양전지 및 이의 제조방법
US20140070207A1 (en) Electrode for oxide semiconductor, method of forming the same, and oxide semiconductor device provided with the electrode
Lee Cost effective process for high-efficiency solar cells
CN102234775A (zh) 用于基于碲化镉的薄膜光伏器件的硫化镉层及其制造方法
CN103620794A (zh) 太阳能电池及其制造方法
JP2016517183A (ja) 光電池又は光電池モジュール用のバックコンタクト基材
US4064522A (en) High efficiency selenium heterojunction solar cells
CN103222068B (zh) 太阳能电池及其制造方法
CN102208484B (zh) 基于碲化镉的薄膜光伏器件所用的导电透明氧化物膜层的形成方法
CN205039160U (zh) 一种碲化镉薄膜太阳能电池
CN104733547A (zh) 基于石墨烯的柔性碲化镉薄膜太阳能电池及其制备方法
JPS61222180A (ja) P形半導体用多層オ−ミツク接触及びその作製方法
CN109616533A (zh) 一种晶硅异质结太阳电池及其制备方法
TWI535655B (zh) 具有曲折構型之石墨烯薄膜、包含該石墨烯薄膜的熱電裝置及其製造方法
CN113964244B (zh) 太阳能薄膜电池及其制作方法
CN104022179B (zh) 形成太阳能电池的缓冲层的方法和由此形成的太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170308

WD01 Invention patent application deemed withdrawn after publication