CN104971709A - 应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法 - Google Patents

应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法 Download PDF

Info

Publication number
CN104971709A
CN104971709A CN201510383834.XA CN201510383834A CN104971709A CN 104971709 A CN104971709 A CN 104971709A CN 201510383834 A CN201510383834 A CN 201510383834A CN 104971709 A CN104971709 A CN 104971709A
Authority
CN
China
Prior art keywords
flower
zno
shaped zno
solution
adulterate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510383834.XA
Other languages
English (en)
Other versions
CN104971709B (zh
Inventor
马建中
惠爱平
刘俊莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201510383834.XA priority Critical patent/CN104971709B/zh
Publication of CN104971709A publication Critical patent/CN104971709A/zh
Application granted granted Critical
Publication of CN104971709B publication Critical patent/CN104971709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法。ZnO作为一种光催化剂,存在可见光的利用率低、光生电子复合率高等缺陷,限制了ZnO光催化的性能。本发明以氢氧化钠为碱源,六水合硝酸锌为ZnO的晶种来源,十二烷基硫酸钠为分散剂,六水合硝酸铈为掺杂剂,乙醇和水的混合液为溶剂,经机械搅拌、超声、微波辅助水热法合成、离心、干燥等步骤制备的ZnO形貌为花状结构。光催化降解实验表明,向ZnO晶格结构中引入杂原子Ce可以有效的抑制ZnO内部光生电子与光生空穴(e-/h+)的复合,拓宽ZnO的光谱响应范围,这对于提高纳米ZnO光催化对可见光的利用效率提供了切实可行的参考依据。

Description

应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法
技术领域
    本发明属于材料技术领域,具体涉及一种应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法。
背景技术
染料废水作为水体的主要污染源之一,在处理过程中存在诸多难点,比如高的COD浓度、部分有机物难降解、可生物降解性差等问题。在众多染料废水处理的技术中,半导体光催化技术具有处理效率高、不存在二次污染、处理成本低的优势,被认为是一种潜在的环境污染深度净化技术。
ZnO作为一种重要的宽禁带半导体氧化物,室温下禁带宽度为3.37eV,激子束缚能为60meV,具有常温常压下反应、氧化有机物彻底、成本低、无毒性、无二次污染等优点。但ZnO作为一种光催化剂,本身存在一些缺陷,如可见光的利用率低、光生电子复合率高等,这些缺点在一定程度上限制了ZnO光催化的性能,因此,为充分发挥ZnO光催化剂的性能,需要拓宽ZnO的光谱响应范围。
发明内容
本发明的目的是提供一种应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法,提高其在可见光下光催化降解染料废水中的有机污染物的降解效率。
本发明所采用的技术方案是:
应用于染料废水处理的Ce掺杂花状ZnO光催化剂的制备方法,其特征在于:
由以下步骤实现:
步骤一:将8.8~9.2g氢氧化钠溶解在25mL水中得到氢氧化钠溶液,接着将3.8~4.2g六水合硝酸锌和[Ce]/[Zn]摩尔比为0.4%~1%的六水合硝酸铈依次加入氢氧化钠溶液,机械搅拌至溶液变澄清,即得Ce掺杂花状ZnO的前驱体溶液;
步骤二:向Ce掺杂花状ZnO的前驱体溶液中加入300mL摩尔浓度为0.020~0.030mol/L的十二烷基硫酸钠溶液,十二烷基硫酸钠溶液是将十二烷基硫酸钠溶于无水乙醇与水的混合物中得到的,无水乙醇与水的体积混合比例为4:1,然后机械搅拌0.5~1h,接着在超声功率300~500W下超声0.5~1h;
步骤三:超声完成后,将步骤二得到的混合溶液先转移到聚四氟乙烯内衬的微波水热罐中,填充比55%,然后放入微波消解仪反应;微波消解仪运行参数为:温度170~210℃,功率800~1400W,保温反应时间2~2.5h;反应结束后,取出水热罐,将所得混合液离心并分别用蒸馏水和无水乙醇洗涤离心得到的沉淀物,沉淀物置于50~70℃真空烘箱中3~5h,即得到Ce掺杂花状ZnO光催化剂。
如所述的应用于染料废水处理的Ce掺杂花状ZnO光催化剂的制备方法制得的光催化剂。
Ce掺杂花状ZnO光催化剂的形貌呈花状结构,该结构由平均直径100~150nm、长度1~2μm的纳米棒自组装成花状结构。
本发明具有以下优点:
本发明以氢氧化钠为碱源,六水合硝酸锌为锌源,十二烷基硫酸钠为分散剂,六水合硝酸铈为掺杂剂,乙醇和水的混合液为溶剂,制备在可见光作用下具有较高光催化活性的Ce掺杂花状ZnO光催化剂。本发明制备的Ce掺杂花状ZnO光催化剂在模拟可见光(氙灯,500W)作用下,光照240min后对罗丹明B(10mg/L)的光催化降解效率为75.6%。该方法为微波辅助水热法,具有制备体系稳定、工艺方法操作简单、经济可行、产物尺寸均匀、结晶性良好等优点,为工业化生产高纯度、形貌可控的Ce掺杂花状ZnO光催化剂材料提供了技术条件。
附图说明
图1:未掺杂和Ce掺杂花状ZnO样品X-射线衍射光谱图。
图2:未掺杂花状ZnO样品场发射扫描电镜照片。
图3:实施例1条件下制备的Ce掺杂花状ZnO样品场发射扫描电镜照片。
图4:实施例2条件下制备的Ce掺杂花状ZnO样品场发射扫描电镜照片。
图5:实施例3条件下制备的Ce掺杂花状ZnO样品场发射扫描电镜照片。
图6:实施例4条件下制备的Ce掺杂花状ZnO样品场发射扫描电镜照片。
图7:未掺杂和Ce掺杂花状ZnO光催化剂光催化降解罗丹明B的降解效率随光照时间的变化。
图8:实施例3所制备的Ce掺杂花状ZnO光催化剂在模拟可见光作用下,光催化降解罗丹明B溶液在400~650nm范围内的吸光度值随光照时间的变化。
具体实施方式
下面结合具体实施方式对本发明进行详细的说明。
本发明涉及的应用于染料废水处理的Ce掺杂花状ZnO光催化剂的制备方法,以氢氧化钠为碱源,六水合硝酸锌为ZnO的晶种来源,十二烷基硫酸钠为分散剂,六水合硝酸铈为掺杂剂,乙醇和水的混合液为溶剂,经机械搅拌、超声、微波辅助水热法合成、离心、干燥等步骤制备的ZnO形貌为花状结构。光催化降解实验表明,向ZnO晶格结构中引入杂原子Ce可以有效的抑制ZnO内部光生电子与光生空穴(e-/h+)的复合,拓宽ZnO的光谱响应范围,这对于提高纳米ZnO光催化对可见光的利用效率提供了切实可行的参考依据。具体由以下步骤实现:
步骤一:将8.8~9.2g氢氧化钠溶解在25mL水中得到氢氧化钠溶液,接着将3.8~4.2g六水合硝酸锌和[Ce]/[Zn]摩尔比为0.4%~1%的六水合硝酸铈依次加入氢氧化钠溶液,机械搅拌至溶液变澄清,即得Ce掺杂花状ZnO的前驱体溶液;
步骤二:向Ce掺杂花状ZnO的前驱体溶液中加入300mL摩尔浓度为0.020~0.030mol/L的十二烷基硫酸钠溶液,十二烷基硫酸钠溶液是将十二烷基硫酸钠溶于无水乙醇与水的混合物中得到的,无水乙醇与水的体积混合比例为4:1,然后机械搅拌0.5~1h,接着在超声功率300~500W下超声0.5~1h;
步骤三:超声完成后,将步骤二得到的混合溶液先转移到聚四氟乙烯内衬的微波水热罐中,填充比55%,然后放入微波消解仪(MDS-10,上海新仪微波化学有限公司)反应;微波消解仪运行参数为:温度170~210℃,功率800~1400W,保温反应时间2~2.5h;反应结束后,取出水热罐,将所得混合液离心并分别用蒸馏水和无水乙醇洗涤离心得到的沉淀物,沉淀物置于50~70℃真空烘箱中3~5h,即得到Ce掺杂花状ZnO光催化剂。
Ce掺杂花状ZnO光催化剂的形貌呈花状结构,该结构由平均直径100~150nm、长度1~2μm的纳米棒自组装成花状结构。
实施例1:
步骤一:将8.8g氢氧化钠溶解在25mL水中得到氢氧化钠溶液,接着将4.2g六水合硝酸锌和[Ce]/[Zn]摩尔比为0.4%的六水合硝酸铈依次加入氢氧化钠溶液,机械搅拌至溶液变澄清,即得Ce掺杂花状ZnO的前驱体溶液;
步骤二:向Ce掺杂花状ZnO的前驱体溶液中加入300mL摩尔浓度为0.030mol/L的十二烷基硫酸钠溶液,十二烷基硫酸钠溶液是将十二烷基硫酸钠溶于无水乙醇与水的混合物中得到的,无水乙醇与水的体积混合比例为4:1,然后机械搅拌0.5h,接着在超声功率500W下超声0.5h;
步骤三:超声完成后,将步骤二得到的混合溶液先转移到聚四氟乙烯内衬的微波水热罐中,填充比55%,然后放入微波消解仪反应;微波消解仪运行参数为:温度210℃,功率800W,保温反应时间2.5h;反应结束后,取出水热罐,将所得混合液离心并分别用蒸馏水和无水乙醇洗涤离心得到的沉淀物,沉淀物置于50℃真空烘箱中5h,即得到Ce掺杂花状ZnO光催化剂。
实施例2:
步骤一:将9.0g氢氧化钠溶解在25mL水中得到氢氧化钠溶液,接着将4.0g六水合硝酸锌和[Ce]/[Zn]摩尔比为0.8%的六水合硝酸铈依次加入氢氧化钠溶液,机械搅拌至溶液变澄清,即得Ce掺杂花状ZnO的前驱体溶液;
步骤二:向Ce掺杂花状ZnO的前驱体溶液中加入300mL摩尔浓度为0.025mol/L的十二烷基硫酸钠溶液,十二烷基硫酸钠溶液是将十二烷基硫酸钠溶于无水乙醇与水的混合物中得到的,无水乙醇与水的体积混合比例为4:1,然后机械搅拌0.5h,接着在超声功率400W下超声0.5h;
步骤三:超声完成后,将步骤二得到的混合溶液先转移到聚四氟乙烯内衬的微波水热罐中,填充比55%,然后放入微波消解仪反应;微波消解仪运行参数为:温度190℃,功率1100W,保温反应时间2h;反应结束后,取出水热罐,将所得混合液离心并分别用蒸馏水和无水乙醇洗涤离心得到的沉淀物,沉淀物置于60℃真空烘箱中4h,即得到Ce掺杂花状ZnO光催化剂。
实施例3:
步骤一:将9.2g氢氧化钠溶解在25mL水中得到氢氧化钠溶液,接着将3.8g六水合硝酸锌和[Ce]/[Zn]摩尔比为0.8%的六水合硝酸铈依次加入氢氧化钠溶液,机械搅拌至溶液变澄清,即得Ce掺杂花状ZnO的前驱体溶液;
步骤二:向Ce掺杂花状ZnO的前驱体溶液中加入300mL摩尔浓度为0.020mol/L的十二烷基硫酸钠溶液,十二烷基硫酸钠溶液是将十二烷基硫酸钠溶于无水乙醇与水的混合物中得到的,无水乙醇与水的体积混合比例为4:1,然后机械搅拌1h,接着在超声功率300W下超声1h;
步骤三:超声完成后,将步骤二得到的混合溶液先转移到聚四氟乙烯内衬的微波水热罐中,填充比55%,然后放入微波消解仪反应;微波消解仪运行参数为:温度170℃,功率1400W,保温反应时间2h;反应结束后,取出水热罐,将所得混合液离心并分别用蒸馏水和无水乙醇洗涤离心得到的沉淀物,沉淀物置于70℃真空烘箱中3h,即得到Ce掺杂花状ZnO光催化剂。
实施例4:
步骤一:将9.2g氢氧化钠溶解在25mL水中得到氢氧化钠溶液,接着将4.2g六水合硝酸锌和[Ce]/[Zn]摩尔比为1%的六水合硝酸铈依次加入氢氧化钠溶液,机械搅拌至溶液变澄清,即得Ce掺杂花状ZnO的前驱体溶液;
步骤二:向Ce掺杂花状ZnO的前驱体溶液中加入300mL摩尔浓度为0.030mol/L的十二烷基硫酸钠溶液,十二烷基硫酸钠溶液是将十二烷基硫酸钠溶于无水乙醇与水的混合物中得到的,无水乙醇与水的体积混合比例为4:1,然后机械搅拌1h,接着在超声功率500W下超声1h;
步骤三:超声完成后,将步骤二得到的混合溶液先转移到聚四氟乙烯内衬的微波水热罐中,填充比55%,然后放入微波消解仪反应;微波消解仪运行参数为:温度210℃,功率1400W,保温反应时间2.5h;反应结束后,取出水热罐,将所得混合液离心并分别用蒸馏水和无水乙醇洗涤离心得到的沉淀物,沉淀物置于70℃真空烘箱中5h,即得到Ce掺杂花状ZnO光催化剂。
本发明将Ce掺杂到花状ZnO的晶体结构中,可以明显改善ZnO表面状态,有利于产生更多的表面羟基,同时可以抑制光生电子与光生空穴(e-/h+)的复合,拓宽ZnO的光谱响应范围,提高ZnO对可见光的利用效率,进而提高ZnO光催化降解染料的活性。
图1为未掺杂和Ce掺杂花状ZnO样品X-射线衍射光谱图表明,未掺杂和Ce掺杂花状ZnO样品均为六方相纤锌矿ZnO(标准卡片JCPDS 36-1451),没有出现其他杂质峰,表明样品纯度较高。
图2为未掺杂花状ZnO场发射扫描电镜照片,其形貌特征由长度400~600nm、平均直径60~80nm的纳米棒自组装而成。
图3为实施例1条件下制备的Ce掺杂花状ZnO场发射扫描电镜照片,其形貌特征由长度1~1.2μm、平均直径60~80nm的纳米棒自组装成花状结构。
图4为实施例2条件下制备的Ce掺杂花状ZnO场发射扫描电镜照片,其形貌特征由长度600~800nm、平均直径120~140nm的纳米棒自组装成花状结构。
图5为实施例3条件下制备的Ce掺杂花状ZnO场发射扫描电镜照片,其形貌特征由长度200~250nm、平均直径40~60nm的纳米棒自组装成花状结构。
图6为实施例4条件下制备的Ce掺杂花状ZnO场发射扫描电镜照片,其形貌特征由长度400~600nm、平均直径100~120nm的纳米棒自组装成花状结构。
光催化实验:
分别将制备好的光催化剂(50mg)放入装有50mL浓度为10mg/L的罗丹明B(分析纯,阿拉丁中国化学试剂有限公司)溶液置于100mL烧杯中,超声10~30min,接着将溶液转移到100mL石英试管中。开动磁力搅拌器,暗反应30min后,打开氙灯光源(BL-GHX-V西安比朗生物科技有限公司,500W),进行光催化反应。每隔20min用移液枪从试管中取出3mL降解液,在转速为9000r/min的离心机(TG16-WS台式离心机,北京医用离心机厂)离心10~30min,将上清液用移液枪移至石英比色皿中,用紫外-可见分光光度计(TU-1900,北京普析通用仪器有限责任公司)测试溶液的吸收光谱。光催化降解效率= (C0-Ct) / C= (A0-At) / A0 × 100%(A0为罗丹明B溶液光照前的吸光度值,At为罗丹明B溶液光照射t时间后的吸光度值)计算得到。
图7为未掺杂和Ce掺杂花状ZnO光催化剂光催化降解罗丹明B的降解效率随光照时间的变化。由光催化实验结果可知,与未掺杂试样相比,掺杂样品的光催化活性明显提高。这说明通过形貌调控和掺杂微量杂原子Ce的技术手段来提高纳米ZnO光催剂的光催化活性是可行的,实施例3所制备的Ce掺杂花状ZnO光催化剂在模拟可见光作用下表现出较高的光催化活性,光照240min后对罗丹明B的光催化降解效率为75.6%。
图8为实施例3所制备的Ce掺杂花状ZnO光催化剂光催化降解罗丹明B溶液在400~650nm范围内的吸光度值随光照时间的变化,从图中可知,罗丹明B的最大特征吸收峰为554nm,随光照时间的延长,罗丹明B逐渐被降解,240min后降解率达到75.6%。
本发明的内容不限于实施例所列举,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (3)

1.应用于染料废水处理的Ce掺杂花状ZnO光催化剂的制备方法,其特征在于:
由以下步骤实现:
步骤一:将8.8~9.2g氢氧化钠溶解在25mL水中得到氢氧化钠溶液,接着将3.8~4.2g六水合硝酸锌和[Ce]/[Zn]摩尔比为0.4%~1%的六水合硝酸铈依次加入氢氧化钠溶液,机械搅拌至溶液变澄清,即得Ce掺杂花状ZnO的前驱体溶液;
步骤二:向Ce掺杂花状ZnO的前驱体溶液中加入300mL摩尔浓度为0.020~0.030mol/L的十二烷基硫酸钠溶液,十二烷基硫酸钠溶液是将十二烷基硫酸钠溶于无水乙醇与水的混合物中得到的,无水乙醇与水的体积混合比例为4:1,然后机械搅拌0.5~1h,接着在超声功率300~500W下超声0.5~1h;
步骤三:超声完成后,将步骤二得到的混合溶液先转移到聚四氟乙烯内衬的微波水热罐中,填充比55%,然后放入微波消解仪反应;微波消解仪运行参数为:温度170~210℃,功率800~1400W,保温反应时间2~2.5h;反应结束后,取出水热罐,将所得混合液离心并分别用蒸馏水和无水乙醇洗涤离心得到的沉淀物,沉淀物置于50~70℃真空烘箱中3~5h,即得到Ce掺杂花状ZnO光催化剂。
2.如权利要求1所述的应用于染料废水处理的Ce掺杂花状ZnO光催化剂的制备方法制得的光催化剂。
3.如权利要求2所述的应用于染料废水处理的Ce掺杂花状ZnO光催化剂,其特征在于:
Ce掺杂花状ZnO光催化剂的形貌呈花状结构,该结构由平均直径100~150nm、长度1~2μm的纳米棒自组装成花状结构。
CN201510383834.XA 2015-07-03 2015-07-03 应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法 Active CN104971709B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510383834.XA CN104971709B (zh) 2015-07-03 2015-07-03 应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510383834.XA CN104971709B (zh) 2015-07-03 2015-07-03 应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN104971709A true CN104971709A (zh) 2015-10-14
CN104971709B CN104971709B (zh) 2017-08-11

Family

ID=54269001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510383834.XA Active CN104971709B (zh) 2015-07-03 2015-07-03 应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN104971709B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105381802A (zh) * 2015-12-23 2016-03-09 哈尔滨工业大学 一种基于异相成核法制备蒲公英状Fe3O4@ZnO核壳结构复合物的方法和应用
CN106362734A (zh) * 2016-08-11 2017-02-01 广西南宁胜祺安科技开发有限公司 一种新型复合氧化锌光催化剂的制备方法
CN106430287A (zh) * 2016-09-21 2017-02-22 苏州大学 一种低温水热合成三维蒲公英状氧化锌的方法
CN109126759A (zh) * 2018-08-17 2019-01-04 阿坝师范学院 ZnO可见光催化剂及其制备方法和应用
CN110170318A (zh) * 2019-06-28 2019-08-27 广西科技大学 一种稀土元素掺杂的纳米氧化锌及其应用
CN111298783A (zh) * 2020-03-06 2020-06-19 浙江农林大学暨阳学院 一种稀土Ce掺杂ZnO制备纳米微球光催化剂的方法及其催化降解方法
CN113694917A (zh) * 2021-07-30 2021-11-26 湖北工程学院 一种掺杂稀土金属Ce的花瓣状ZnO光催化剂及其制备方法
CN113713797A (zh) * 2021-09-03 2021-11-30 巢湖学院 一种夹层状氧化锌-氧化铈复合纳米粒子的制备方法及其应用
CN114029062A (zh) * 2021-11-23 2022-02-11 天津工业大学 一种富氧空位多价态钴原位掺杂ZnO花状微球复合光催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066776A (zh) * 2007-06-05 2007-11-07 武汉理工大学 一种氧化锌的合成方法
CN101407333A (zh) * 2007-10-12 2009-04-15 新疆大学 氧化锌纳米棒组成的花状纳米结构的合成方法
CN104607194A (zh) * 2015-01-29 2015-05-13 陕西科技大学 一种海胆状改性纳米ZnO光催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066776A (zh) * 2007-06-05 2007-11-07 武汉理工大学 一种氧化锌的合成方法
CN101407333A (zh) * 2007-10-12 2009-04-15 新疆大学 氧化锌纳米棒组成的花状纳米结构的合成方法
CN104607194A (zh) * 2015-01-29 2015-05-13 陕西科技大学 一种海胆状改性纳米ZnO光催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余长林等: "《稀土Ce掺杂对ZnO结构和光催化性能的影响》", 《物理化学学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105381802A (zh) * 2015-12-23 2016-03-09 哈尔滨工业大学 一种基于异相成核法制备蒲公英状Fe3O4@ZnO核壳结构复合物的方法和应用
CN105381802B (zh) * 2015-12-23 2018-10-02 哈尔滨工业大学 一种基于异相成核法制备蒲公英状Fe3O4@ZnO核壳结构复合物的方法和应用
CN106362734A (zh) * 2016-08-11 2017-02-01 广西南宁胜祺安科技开发有限公司 一种新型复合氧化锌光催化剂的制备方法
CN106430287A (zh) * 2016-09-21 2017-02-22 苏州大学 一种低温水热合成三维蒲公英状氧化锌的方法
CN106430287B (zh) * 2016-09-21 2018-05-15 苏州大学 一种低温水热合成三维蒲公英状氧化锌的方法
CN109126759A (zh) * 2018-08-17 2019-01-04 阿坝师范学院 ZnO可见光催化剂及其制备方法和应用
CN110170318A (zh) * 2019-06-28 2019-08-27 广西科技大学 一种稀土元素掺杂的纳米氧化锌及其应用
CN111298783A (zh) * 2020-03-06 2020-06-19 浙江农林大学暨阳学院 一种稀土Ce掺杂ZnO制备纳米微球光催化剂的方法及其催化降解方法
CN113694917A (zh) * 2021-07-30 2021-11-26 湖北工程学院 一种掺杂稀土金属Ce的花瓣状ZnO光催化剂及其制备方法
CN113694917B (zh) * 2021-07-30 2022-11-01 湖北工程学院 一种掺杂稀土金属Ce的花瓣状ZnO光催化剂及其制备方法
CN113713797A (zh) * 2021-09-03 2021-11-30 巢湖学院 一种夹层状氧化锌-氧化铈复合纳米粒子的制备方法及其应用
CN114029062A (zh) * 2021-11-23 2022-02-11 天津工业大学 一种富氧空位多价态钴原位掺杂ZnO花状微球复合光催化剂的制备方法
CN114029062B (zh) * 2021-11-23 2024-02-02 天津工业大学 一种富氧空位多价态钴原位掺杂ZnO花状微球复合光催化剂的制备方法

Also Published As

Publication number Publication date
CN104971709B (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
CN104971709A (zh) 应用于染料废水处理的Ce掺杂花状ZnO光催化剂及其制备方法
CN102641732B (zh) 多形貌稀土掺杂BiVO4复合光催化剂及其制备方法
CN104971708B (zh) 应用于染料废水处理的Ce掺杂球形ZnO光催化剂及其制备方法
CN107308957B (zh) 一种球状Bi2S3/Bi2WO6异质结光催化材料的制备方法
CN102897724B (zh) 硒化锡纳米花及其制备方法
CN111646500B (zh) 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法
CN106466604A (zh) 一种Cu2O/TiO2复合光催化材料及其制备方法
CN108722384A (zh) 一种富氧空位二氧化钛纳米花及其制备方法
CN106881079B (zh) 一种二维氧化钨/铌酸锡纳米片-片复合材料的制备方法
CN108355669B (zh) 一种磁性纳米洋葱碳负载Bi2WO6的光催化剂及其制备方法和应用
CN105195131A (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催剂的制备方法
CN105536765B (zh) 一种贝壳基掺硼二氧化钛复合光催化剂及其制备方法
CN110860299B (zh) 一种硫铟锌/钛酸钡复合光催化剂的制备方法
CN108970629A (zh) 一种碳掺杂BiOCl可见光响应光催化材料的制备方法
CN105621407A (zh) 一步合成硫掺杂石墨烯量子点的方法
CN102631909A (zh) 表面氢化的二氧化钛纳米线微球光催化材料及其制备方法
CN105478153A (zh) 一种CeVO4/Ag/g-C3N4复合光催化剂及其制备方法
CN104817280A (zh) 一种具有光催化效应的红色光子晶体结构色薄膜的制备方法
CN114618537A (zh) 一种红磷/钛酸锶异质结光催化剂及制备方法及应用
CN104607194A (zh) 一种海胆状改性纳米ZnO光催化剂及其制备方法和应用
Yin et al. ZIF-8 calcination derived Cu 2 O–ZnO* material for enhanced visible-light photocatalytic performance
CN110841686B (zh) 一种碳包覆亚氧化钛复合氮化碳复合材料及其制法和应用
CN104817282A (zh) 一种具有光催化效应的绿色光子晶体结构色薄膜的制备方法
CN104801317A (zh) 一种响应可见光的光解水制氢催化剂及其制备方法
CN103521205A (zh) 一种制备高光催化活性核壳结构TiO2材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant