CN104955768B - 微流路的制造方法及微流路 - Google Patents

微流路的制造方法及微流路 Download PDF

Info

Publication number
CN104955768B
CN104955768B CN201380068579.9A CN201380068579A CN104955768B CN 104955768 B CN104955768 B CN 104955768B CN 201380068579 A CN201380068579 A CN 201380068579A CN 104955768 B CN104955768 B CN 104955768B
Authority
CN
China
Prior art keywords
curable resin
liquid
stream
manufacture method
microfluidic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380068579.9A
Other languages
English (en)
Other versions
CN104955768A (zh
Inventor
加藤圣子
井出昌史
野崎孝明
武石贵明
石榑崇明
相马友
相马一友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Citizen Watch Co Ltd
Original Assignee
Keio University
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Citizen Watch Co Ltd filed Critical Keio University
Publication of CN104955768A publication Critical patent/CN104955768A/zh
Application granted granted Critical
Publication of CN104955768B publication Critical patent/CN104955768B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00055Grooves
    • B81C1/00071Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0048Local deformation of formed objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/0338Channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

提供一种用比现有技术少的工序数,制造具有无接合面、也不存在注入口的大致圆形的截面的微流路的方法。微流路的制造方法包括:在基板(1)上形成未固化的固化性树脂(2)的层的工序;将能够注入液体(4)的针体(3)插入固化性树脂内的工序;一边使针体移动,一边借助针体将液体以管状注入到固化性树脂内的工序;将针体从固化性树脂内拔出的工序;通过使固化性树脂固化,在被注入了液体的管状的区域形成流路(4A)的工序。

Description

微流路的制造方法及微流路
技术领域
本发明涉及一种微流路的制造方法及微流路。
背景技术
已知的有液体等流过直径为数μm~数百μm左右的微流路,并进行生物化学性的反应或物理化学性的分离操作等的微流体设备。在这样的微流体设备中,需要具有半圆形或圆形截面的流路。但是,在广泛用于制作微流体设备的光刻工序中,由于所制作的流路的截面多为矩形,因而具有半圆形或圆形截面的流路的制造方法被提出。
在专利文献1中,记载有制造微流路设备的方法,该微流路设备由呈长条板状、形成于其一面、在一端面上具有半圆形开口的槽的一对对开件所构成,将该对开件彼此接合而成。
在非专利文献1中,记载有圆形截面流路的制作方法。在该方法中,采用将在制作电子机械材料时所使用的粘合剂等进行自动涂敷的分配器机器人,在基板上将紫外线固化性树脂等直接描绘成流路图案形状并进行铸模制作。其次,通过采用做成的铸模用PDMS(聚二甲基硅氧烷:polydimethylsiloxane)进行装模,来做成半圆形截面流路。并且,通过将半圆形截面流路彼此贴合,来制作圆形截面流路。
在非专利文献2中,记载有制造圆形的PDMS微流路的方法,该PDMS微流路适于共焦点μPIV/PTV(Particle Image Velocimetry/Particle Tracking Velocimetry、粒子图像测速/粒子跟踪测速)等微流动的可视化、模拟生物体内的微小血管。在该方法中,在将金属线埋入的状态下使PDMS凝固,其后,通过将金属线拔出来形成圆形的流路。
在非专利文献3中,记载有由聚苯乙烯片材构成截面为圆形的微小血管网的方法。在该方法中,利用电镀工序构成硅的半圆形靠模,通过对聚苯乙烯片材进行冲压,并将得到的2片片材接合来形成截面为圆形的流路。
现有技术文献
专利文献
专利文献1日本专利特开2012-137325号公报
非专利文献
非专利文献1东京大学藤井辉夫研究室、“采用分配器的微流路制作及向流量控制机构的应用”、[online]、[2012年12月17日检索]、因特网<URL:http://www.microfluidics.iis.u-tokyo.ac.jp/r11016_j.html>
非专利文献2Rui Lima et al.,“Axisymmetric PDMS microchannels for in vitrohaemodynamic studies”,Biofbrication,2009,vol.1(芮利马等人,《用于体外血液动力学研究的轴对称PDMS微流路》,《生物制造》,2009年,第1期)
非专利文献3Jeffery T.Borenstain et al.,“Functional endothelializedmicrovascular networks with circular cross-sections in a tissue culturesubstrate”,Biomed Microdevices,2010,vol.12,p.71-79(杰弗里T.伯伦斯丁等人,《在组织培养基质上具有圆形截面的功能性内皮化微血管网络》,《生物医学微器件》,2010年,第12期,第71-79页)
发明内容
发明要解决的课题
然而,在形成多个截面为半圆形的流路之后,将这些流路进行贴合的话,将成为工序数多的繁琐的制造方法。另外,为了使空腔贴合,形成保持整齐的圆形状态的流路是困难的。
在非专利文献2的方法中,虽然可以对截面为半圆形的流路不进行贴合而形成圆形流路,但由于有将金属线拔出的工序,所以无法形成无注入口的流路,只能形成直线状等简单结构的流路。另外,在非专利文献2的方法中,为了要得到内部注入有液体的状态的流路,在流路形成之后将液体注入其内部的工序成为必要。
因此,本发明是目的在于提供一种,以与现有技术相比较少的工序数,来制造无接合面也不存在注入口的具有大致圆形截面的微流路的方法。
用于解决课题的手段
微流路的制造方法的特征在于,包括:在基板上形成未固化的固化性树脂的层的工序;将能够注入液体的针体插入固化性树脂内的工序;一边使针体移动,一边借助该针体将液体呈管状注入到该固化性树脂内的工序;将针体从固化性树脂内拔出的工序;以及通过使固化性树脂固化,在被注入了液体的管状的区域形成流路的工序。
在上述制造方法中,流路优选为无接合面、且截面为大致圆形的流路。
在上述制造方法中,优选为还包括将已固化的固化性树脂的一部分切除并将被封入该固化性树脂内的液体抽出的工序。
在上述制造方法中,液体优选为液晶。
另外,一种微流路,其特征在于,是由上述任一种制造方法制造的。
发明的效果
根据本发明,能够以比现有技术少的工序数,制造无接合面也不存在注入口的具有大致圆形截面的微流路。
附图说明
图1的(A)~(C)是用于对微流路的制造方法进行说明的模式图。
图2是示出微流路的制造方法的流程图。
图3的(A)及(B)是示出利用图2的制造方法的实验结果的照片。
图4是用于对图3的(B)所示的流路的形成位置及大小进行说明的模式图。
具体实施方式
以下,参照附图,对微流路的制造方法进行详细地说明。不过,本发明的技术范围并不限定于这些实施方式,请留意权利要求书所记载的发明及其相等的点。
图1的(A)~图1的(C)是用于对微流路的制造方法进行说明的模式图。图2是示出微流路的制造方法的流程图。用图1的(A)~图2对本制造方法的各工序进行说明。
首先,如图1的(A)所示,准备基板1,在基板1上形成未固化的固化性树脂2的层(S1)。由于在未固化的状态下,固化性树脂2具有流动性,所以准备包围周围的框体(未图示),将固化性树脂2注入其内部。固化例如采用丙烯酸树脂或环氧树脂等的紫外线固化树脂,作为固化性树脂2。或者,固化性树脂2也可以是尿素树脂、蜜胺树脂或酚醛树脂等热固化性树脂。此外,在形成直径为数百μm左右的微流路之际,固化性树脂2的厚度d为1000μm左右即可。
接着,能够注入液体的针(针体)3插入到固化性树脂2中(S2)。针3像注射针那样地具有中空向顶端变尖的形状,在顶端有开口部(未图示)。此时,针3插入的深度设为例如固化性树脂2的厚度d的一半左右。此外,也可以采用在顶端附近的侧面设有该开口部的针。
其次,如图1的(B)所示,一边使针3移动,一边借助针3将液体4呈管状注入到固化性树脂2中(S3)。例如,在想要形成直线状的流路的情况下,沿图1的(B)所示的X方向,使针3平行移动。并且,通过一边使针3移动,一边从针3的上部施加压力,从针3的顶端的开口部将液体4注入到固化性树脂2的层内。在固化性树脂2的层内,液体4因表面张力而与X方向垂直的截面变为大致圆形。
作为液体4的例子,可以例举液晶。这里所说的“液晶”是指:具有像液体那样的流动性,且分子的取向像晶体那样的具有一定的规则性的物质。其他,也可以采用与形成的流路的用途相应的液体,作为液体4。不过,根据固化性树脂2的粘度、或固化性树脂2和液体4的密度之差的不同,有时被注入的液体4会浮出树脂层的表面。为此,根据粘度和密度的关系,有必要选择能够呈管状注入到固化性树脂2的内部的液体,作为液体4。
液体4注入结束的话,将针3从固化性树脂2内拔出(S4)。此时,由于固化性树脂2尚未固化,如果将针3拔出的话,因针3而在固化性树脂2中形成的洞孔就会被堵塞。由此,成为将液体4封入固化性树脂2中、配置成管状的状态。
并且,如图1的(C)所示,通过使固化性树脂2固化并将液体4封入固化性树脂2内,将液体4存在的部分设为液体的流路4A(S5)。在将紫外线固化树脂用作为固化性树脂2的情况下,照射紫外线,以使固化性树脂2固化。在将热固化性树脂用作为固化性树脂2的情况下,通过加热使固化性树脂2固化。由此,在被注入了液体4的管状的区域可以形成截面大致为圆形的流路4A。
此外,根据液体4的种类的不同,使固化性树脂2固化时,有时液体4会渗入到树脂层中,流路4A变成空腔。在使固化性树脂2固化后仍有液体4残留在流路4A内的情况下而需要空腔的流路时,也可以将固化的固化性树脂的一部分切除,把封入在固化性树脂2内的液体4抽出。由此,可以得到空腔的流路。
根据以上说明的本制造方法,即使不对具有半圆形的截面的流路进行贴合,也可以形成截面为大致圆形的流路。为此,采用本制造方法的话,能够以与不包含本结构的现有的制造方法相比较少的工序,形成具有无接合面且平滑的内壁的圆形流路。另外,因为流路形成时不存在开口部,所以能够形成不存在注入口的封闭流路。
另外,如上所述,由于表面张力的作用,被注入到固化性树脂2的层内的液体4的、与液体4延伸的方向垂直的截面成为大致圆形。由此,最终得到的流路的截面也成为既无凹陷也无尖锐部分的大致圆形。此外,上述的“大致圆形”是指:没有像矩形那样地尖锐突出的部分,最大直径和最小直径之差相对于最大直径的比率例如为10%以下的形状。
在生物传感器或μTAS(Total Analysis System,全分析系统)等生物关联系统中,例如为了更准确地再现血管等生物体内构造的举动,优选为与实际的生物体构造接近的圆形流路。利用本制造方法得到的流路也能够用于那样的生物关联系统。
另外,在需要充填有液体的状态的流路的情况下,采用不包含本结构的制造方法的话,在形成空腔的流路之后,必须向其内部注入液体。另一方面,采用本制造方法的话,由于以在内部包含液体的状态下形成流路,所以流路的形成和液体的充填可以由一道工序来进行。为此,采用本制造方法的话,能够以与不包含本结构的制造方法相比少的工序,来形成充填有液体的状态的流路。
另外,也可以通过使封入流路内部的液体流出来形成空腔的流路,在使液体流出之后还可以注入别的液体。为此,对所形成的流路的内部,不论固化性树脂2的粘度及固化性树脂2和液体4的密度差,能够充填任意的液体。
实施例
使用丙烯酸树脂,作为固化性树脂;使用默克公司制造的P型液晶的MLC-7018及MDA-003461,作为被注入的液体,按照图2的制造方法进行了形成流路的实验。图3的(A)及图3的(B)是示出利用图2的制造方法的实验结果的照片。图3的(A)是从上方看到的分别注入(分配)有上述2种P型液晶14的状态下的丙烯酸树脂12的照片。图3的(B)是通过紫外线照射使丙烯酸树脂12固化后拍摄的流路4A的截面照片。在该实验中,在丙烯酸树脂12的内部,将P型液晶14分配成相互平行的2根直线形状。
图4是用于对图3的(B)所示的流路4A的形成位置及大小进行说明的模式图。在上述实验中,将丙烯酸树脂12的厚度形成为1000μm的层状,在该丙烯酸树脂12中,将针3插入到500μm的深度。然后,使针3沿丙烯酸树脂12的面方向以20mm/秒的速度一边进行直线状地移动,一边施加10kPa的分配压,对P型液晶14进行分配,以使截面成为直径200μm的圆形。
通过将针3拔出之后使丙烯酸树脂12进行紫外线固化,可以得到具有如图3的(B)所示的截面的流路4A。在图3的(B)中,也一并示出了流路4A的截面轮廓。该截面的最大直径与最小直径之差为20μm左右,最大直径与最小直径之差相对于截面的最大直径的比率收敛于百分之几左右。这样,利用本制造方法,形成截面为大致圆形的流路4A的情形得以确认。
符号说明
1 基板
2 固化性树脂
3 针
4 液体
4A 流路。

Claims (5)

1.一种微流路的制造方法,其特征在于,包括:
在基板上形成未固化的固化性树脂的层的工序;
将能够注入液体的针体插入所述固化性树脂内的工序;
一边使所述针体移动,一边借助该针体将液体呈管状注入到该固化性树脂内的工序;
将所述针体从所述固化性树脂内拔出的工序;以及
通过使所述固化性树脂固化,在被注入了所述液体的管状的区域形成流路的工序。
2.根据权利要求1所述的制造方法,其特征在于,
在所述流路上无接合面,在所述流路的截面上没有尖锐突出的部分,且最大直径与最小直径之差相对于所述截面的最大直径的比率为10%以下。
3.根据权利要求1或2所述的制造方法,其特征在于,
还包括将已固化的所述固化性树脂的一部分切除并将被封入该固化性树脂内的所述液体抽出的工序。
4.根据权利要求1或2所述的制造方法,其特征在于,
所述液体是液晶。
5.一种微流路,其特征在于,
所述微流路通过权利要求1~4中的任一项所述的制造方法来制造。
CN201380068579.9A 2012-12-28 2013-12-18 微流路的制造方法及微流路 Expired - Fee Related CN104955768B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012288628 2012-12-28
JP2012-288628 2012-12-28
PCT/JP2013/083951 WO2014103842A1 (ja) 2012-12-28 2013-12-18 マイクロ流路の製造方法およびマイクロ流路

Publications (2)

Publication Number Publication Date
CN104955768A CN104955768A (zh) 2015-09-30
CN104955768B true CN104955768B (zh) 2016-11-09

Family

ID=51020929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380068579.9A Expired - Fee Related CN104955768B (zh) 2012-12-28 2013-12-18 微流路的制造方法及微流路

Country Status (5)

Country Link
US (1) US9725307B2 (zh)
EP (1) EP2939976B1 (zh)
JP (1) JP6138159B2 (zh)
CN (1) CN104955768B (zh)
WO (1) WO2014103842A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8156273B2 (en) * 2007-05-10 2012-04-10 Freescale Semiconductor, Inc. Method and system for controlling transmission and execution of commands in an integrated circuit device
GB2556751B (en) 2015-07-27 2022-07-27 Univ Pennsylvania Systems and methods for immobilizing extracelluar matrix material on organ on chip, multilayer microfluids microdevices, and three-dimensional cell culture
USD838864S1 (en) * 2016-09-07 2019-01-22 EMULATE, Inc. Opaque microfluidic chip without pressure features for use with a fluid perfusion module
CN112155828A (zh) * 2020-10-12 2021-01-01 吕修波 注射成型式骨折断肢固定装置
KR102594790B1 (ko) * 2022-01-10 2023-10-30 동의대학교 산학협력단 광경화성 폴리머 재료의 3차원 마이크로 채널 제작을 위한 버블 보조 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311697A (ja) * 2002-02-19 2003-11-05 Sumitomo Bakelite Co Ltd 中空デバイス及びその製造方法並びに中空デバイスを有する反応装置
JP2007216086A (ja) * 2006-02-14 2007-08-30 National Institute Of Advanced Industrial & Technology 混合器の作製方法
CN101157435A (zh) * 2007-11-20 2008-04-09 东南大学 圆片级mems微流道的制造方法
JP2010228174A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 微細樹脂構造体の製造方法、その製造方法により製造された微細樹脂構造体、光導波路、マイクロレンズ、マイクロレンズアレイ、及びマイクロ流体デバイス
CN101999078A (zh) * 2008-04-11 2011-03-30 柯尼卡美能达精密光学株式会社 微芯片及微芯片的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI296711B (en) * 2005-10-11 2008-05-11 Ind Tech Res Inst Biochip with microchannels
JP5565299B2 (ja) 2010-12-24 2014-08-06 住友ベークライト株式会社 マイクロ流路デバイスの製造方法
WO2013002013A1 (ja) 2011-06-27 2013-01-03 学校法人 慶應義塾 光導波路及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311697A (ja) * 2002-02-19 2003-11-05 Sumitomo Bakelite Co Ltd 中空デバイス及びその製造方法並びに中空デバイスを有する反応装置
JP2007216086A (ja) * 2006-02-14 2007-08-30 National Institute Of Advanced Industrial & Technology 混合器の作製方法
CN101157435A (zh) * 2007-11-20 2008-04-09 东南大学 圆片级mems微流道的制造方法
CN101999078A (zh) * 2008-04-11 2011-03-30 柯尼卡美能达精密光学株式会社 微芯片及微芯片的制造方法
JP2010228174A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 微細樹脂構造体の製造方法、その製造方法により製造された微細樹脂構造体、光導波路、マイクロレンズ、マイクロレンズアレイ、及びマイクロ流体デバイス

Also Published As

Publication number Publication date
JP6138159B2 (ja) 2017-05-31
EP2939976A4 (en) 2016-10-12
EP2939976A1 (en) 2015-11-04
US20150329354A1 (en) 2015-11-19
EP2939976B1 (en) 2017-10-18
US9725307B2 (en) 2017-08-08
WO2014103842A1 (ja) 2014-07-03
CN104955768A (zh) 2015-09-30
JPWO2014103842A1 (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
CN104955768B (zh) 微流路的制造方法及微流路
EP3023151B1 (en) Method for generating a localised fluid flow circulation zone and corresponding pipette
DE112011104891B4 (de) 3D-Mikrofluid-Vorrichtungen auf der Grundlage von durchbrochenen thermoplastischen Elastomer-Membranen
Huang et al. The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices
Wang et al. Fabrication of monodisperse toroidal particles by polymer solidification in microfluidics
Cha et al. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles
Lee et al. Microfabricated sampling probes for in vivo monitoring of neurotransmitters
Wang et al. Mixing enhancement of a passive microfluidic mixer containing triangle baffles
JP5937114B2 (ja) 標的を刺激すると考えられる分子の濃度プロファイルを制御するためのマイクロ流体システム
Kang et al. Capillarity guided patterning of microliquids
EP2261718B1 (de) Verfahren zur Herstellung einer Probenkammer
CN106140037A (zh) 一种浸润性引导的微胶囊的制备方法及其应用
CN104307097A (zh) 一种柔性基底金属微针阵列的制作方法
KR101486413B1 (ko) 마이크로 포스트를 이용한 미세유동 칩 및 그 제조방법
Luo et al. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing-and zoning-controlled vat photopolymerization
DE102010038445A1 (de) Verfahren zur Herstellung eines mikrofluidischen Systems
Silva et al. Stick–slip water penetration into capillaries coated with swelling hydrogel
EP2525225B1 (de) Vorrichtung und Verfahren zur Untersuchung der Differenzierung von Zellen
Salmon et al. Facile engineering and interfacing of styrenic block copolymers devices for low‐cost, multipurpose microfluidic applications
Hunziker et al. Construction of programmable interconnected 3D microfluidic networks
Vecchione et al. Confined gelatin dehydration as a viable route to go beyond micromilling resolution and miniaturize biological assays
Koyata et al. Sealless 3-D microfluidic channel fabrication by sacrificial caramel template direct-patterning
CN102897710A (zh) 一种pdms微流体器件中通孔结构的制作方法
Chun et al. Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles
Gao et al. Mold Embossing-Based Soft Lithography for Fabrication of Complex Non-rectangular Channels

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Japan Tokyo Tozai Tokyo city Tanashi town six chome 1 No. 12

Patentee after: CITIZEN WATCH Co.,Ltd.

Patentee after: Kelo University

Address before: Japan Tokyo Tozai Tokyo city Tanashi town six chome 1 No. 12

Patentee before: CITIZEN HOLDINGS Co.,Ltd.

Patentee before: Kelo University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161109

Termination date: 20211218