CN104935272A - 基于cmos器件实现的跨导增强型低压跨导放大器 - Google Patents

基于cmos器件实现的跨导增强型低压跨导放大器 Download PDF

Info

Publication number
CN104935272A
CN104935272A CN201510413566.1A CN201510413566A CN104935272A CN 104935272 A CN104935272 A CN 104935272A CN 201510413566 A CN201510413566 A CN 201510413566A CN 104935272 A CN104935272 A CN 104935272A
Authority
CN
China
Prior art keywords
enhancement mode
current
voltage
current mirror
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510413566.1A
Other languages
English (en)
Inventor
项辉宇
孙超
李婷婷
杨洋
李鹤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Technology and Business University
Original Assignee
Beijing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Technology and Business University filed Critical Beijing Technology and Business University
Priority to CN201510413566.1A priority Critical patent/CN104935272A/zh
Publication of CN104935272A publication Critical patent/CN104935272A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了属于模拟集成电路设计领域的一种基于CMOS器件实现的跨导增强型低压跨导放大器,其包括一组PMOS管组成的差分输入对,将输入电压信号转换成电流信号;一组NMOS管组成的正反馈二极管,通过正反馈的形式增强跨导;两组高速电流镜,将增强后的小信号电流进行复制;由NMOS和PMOS管组成的输出级,提供输出阻抗和驱动能力。该跨导增强型低压跨导放大器具有在低电压下工作的能力,和原始放大器相比具有提升至少两倍带宽的能力,能节省一半功耗,并且低频增益也有相应的增强效果。本发明基于CMOS器件实现的跨导增强型低压跨导放大器具有很好的实用前景,能应用在多种电路模块中,如信号放大电路,AD/DA等电路。

Description

基于CMOS器件实现的跨导增强型低压跨导放大器
技术领域
本发明属于模拟集成电路设计领域,特别涉及一种基于CMOS器件实现的跨导增强型低压跨导放大器。
背景技术
近年来移动手持电子设备得到飞速发展,如手机,平板电脑,智能穿戴设备等等,人们希望这些电子设备具有优良的性能和持久的续航能力,以适应越来越苛刻的应用要求。而在大部分电子设备中,集成电路芯片是一个主要的耗电模块。所以在芯片设计中,低功耗设计技术越来越重要,低功耗芯片一直是学术界和工业界的研究重点。
在模拟集成电路设计领域中,放大器是一个很重要的电路模块,绝大部分的模拟电路都需要使用放大器,同时放大器又是一个主要的消耗功耗的模块。在放大器中,为了保证一定的驱动能力,放大器必须具有一定的带宽要求,而放大器的跨导直接决定了带宽大小。在一些高速电路中,如高速信号的前置放大电路,高速AD/DA中,需要大带宽的放大器,而放大器的大带宽性能往往是以很大的电流为代价得到的,因此消耗很大的功耗。
另一方面,集成电路工艺已经发展到了超深亚微米阶段,随着特征尺寸的不断减小,电路的供电电压也不断降低。供电电压的降低给模拟集成电路设计带来一系列的难点。供电电压的减小导致高增益电路技术的使用受到限制且管子本征增益减小,使得低压下电路增益提升困难;其次信号动态范围下降,为了增加信噪比势必要求更好的噪声性能,从而增加电路功耗。
综上应用背景和工艺限制两方面因素,可知先进工艺下的低功耗技术是研究的难点和重点。
一种经典的低压对称式跨导放大器如图1所示,该放大器采用PMOS差分对,用电流镜对小信号电流进行放大。由于采用单管作为输出级,所以具有很好的输出电压动态范围,适合在低供电电压下工作。但是该电路存在跨导不足和输出阻抗受限的缺点:
1.由单管产生的跨导小,不能满足大带宽要求;
2.输出阻抗小,导致放大器增益不高,先进工艺下难超过40dB;
3.电流利用效率低,功耗大。
发明内容
本发明的目的是为克服已有技术的不足之处,提出一种基于CMOS器件实现的跨导增强型低压跨导放大器。其特征在于,所述基于CMOS器件实现的跨导增强型低压跨导放大器包括输入差分对,正反馈跨导增强级,高速电流镜和输出级四大部分。
所述的输入差分对由PMOS管M1和M2组成。所述的正反馈跨导增强级由NMOS管M11和M12组成,M13为M11和M12提供稳定的电流;所述高速电流镜由NMOS管M3和M4,M5和M6以及电阻R1和R2组成;所述输出级由M4和M7,M6和M8组成。
M1和M2的源极分别和M9和M10的漏极连接,M9和M10的栅极被偏置到固定电压以提供稳定电流;M1和M2的漏极分别与电流镜管M3和M5的漏级连接,M3和M5的栅极、漏级与电阻R1和R2相连成二极管形式,形成高速电流镜;M11和M12的漏级和栅极以交叉的形式连接,并且与M1和M9、M2和M10相连,M11和M12的源极与M13的漏级相连,M13的栅极被偏置到固定电压以提供稳定电流;M4和M6的栅极分别与M3和M5的漏极以及电阻R1和R2相连,M4和M6漏级分别与M7和M8的漏级相连;M7的栅极和漏级相连成二极管形式,M7和M8的栅极相连成电流镜形式。
所述基于CMOS器件实现的跨导增强型低压跨导放大器,其输入信号经过输入差分对M1和M2转换成小信号电流。由于M11和M12分流且交叉耦合,A点驱动M1的源极,B点驱动M2的源极,即进行第二次驱动。AB两点驱动所形成的小信号电流与栅驱动形成的小信号电流叠加,形成更大的小信号电流。正向端形成的小信号电流经过高速电流镜M3和M4复制,然后经过电流镜M7和M8再次复制到输出端;反向端形成的小信号电流经过高速电流镜M5和M6复制到输出端,与正向端的小信号电流叠加,叠加后的小信号电流作用在输出阻抗上,形成输出电压。
所述基于CMOS器件实现的跨导增强型低压跨导放大器中,PMOS管M1和M2尺寸一致,NMOS管M11和M12尺寸一致,PMOS管M7和M8尺寸一致,NMOS管M3和M5尺寸一致,NMOS管M4和M6尺寸一致,电阻R1和R2的尺寸一致。
所述基于CMOS器件实现的跨导增强型低压跨导放大器中,M9和M10的栅电压VB1,由偏置电路通过电流镜提供;M13的栅电压VB2,由偏置电路通过电流镜提供。
本发明的基于CMOS器件实现的跨导增强型低压跨导放大器与传统设计方案相比具有以下几个明显的优点:
1.在不增加电流情况下,实现了至少2倍的跨导提升效果;
2.在不增加电流情况下,放大器带宽至少提升2倍,低频增益至少提升6dB;
3.同等带宽要求下,至少能节省一半的功耗;
4.采用标准CMOS工艺实现,易于集成,成本低。
附图说明
图1为传统的低压对称式跨导放大器。
图2为本发明的基于CMOS器件实现的跨导增强型低压跨导放大器电路图。
图3为传统低压对称式跨导放大器与本发明的基于CMOS器件实现的跨导增强型低压跨导放大器的频率响应对比图。
具体实施方式
本发明提出的基于CMOS器件实现的跨导增强型低压跨导放大器,其一种具体实施方式采用标准CMOS工艺实现。如图2所示,其特征在于,所述基于CMOS器件实现的跨导增强型低压跨导放大器包括输入差分对,正反馈跨导增强级,高速电流镜和输出级四大部分。
所述的输入差分对由PMOS管M1和M2组成。所述的正反馈跨导增强级由NMOS管M11和M12组成,M13为M11和M12提供稳定的电流;所述高速电流镜由NMOS管M3和M4,M5和M6以及电阻R1和R2组成;所述输出级由M4和M7,M6和M8组成。
M1和M2的源极分别和M9和M10的漏极连接,M9和M10的栅极被偏置到固定电压以提供稳定电流;M1和M2的漏极分别与电流镜管M3和M5的漏级连接,M3和M5的栅极、漏级与电阻R1和R2相连成二极管形式,形成高速电流镜;M11和M12的漏级和栅极以交叉的形式连接,并且与M1和M9、M2和M10相连,M11和M12的源极与M13的漏级相连,M13的栅极被偏置到固定电压以提供稳定电流;M4和M6的栅极分别与M3和M5的漏极以及电阻R1和R2相连,M4和M6漏级分别与M7和M8的漏级相连;M7的栅极和漏级相连成二极管形式,M7和M8的栅极相连成电流镜形式。
所述基于CMOS器件实现的跨导增强型低压跨导放大器,其输入信号经过输入差分对M1和M2转换成小信号电流。由于M11和M12分流且交叉耦合,A点驱动M1的源极,B点驱动M2的源极,即进行第二次驱动。AB两点驱动所形成的小信号电流与栅驱动形成的小信号电流叠加,形成更大的小信号电流。正向端形成的小信号电流经过高速电流镜M3和M4复制,然后经过电流镜M7和M8再次复制到输出端;反向端形成的小信号电流经过高速电流镜M5和M6复制到输出端,与正向端的小信号电流叠加,叠加后的小信号电流作用在输出阻抗上,形成输出电压。
所述基于CMOS器件实现的跨导增强型低压跨导放大器中,PMOS管M1和M2尺寸一致,NMOS管M11和M12尺寸一致,PMOS管M7和M8尺寸一致,NMOS管M3和M5尺寸一致,NMOS管M4和M6尺寸一致,电阻R1和R2的尺寸一致。
所述基于CMOS器件实现的跨导增强型低压跨导放大器中,M9和M10的栅电压VB1,由偏置电路通过电流镜提供;M13的栅电压VB2,由偏置电路通过电流镜提供。
所述基于CMOS器件实现的跨导增强型低压跨导放大器,采用标准180nm CMOS工艺设计,其工作电压为1V,消耗功耗60μW。图3是传统的低压对称式跨导放大器与本发明的基于CMOS器件实现的跨导增强型低压跨导放大器的频率响应对比图,两个放大器消耗相同的功耗。据图可知,与传统的低压对称式跨导放大器,本发明的基于CMOS器件实现的跨导增强型低压跨导放大器低频增益增加了9.8dB,带宽扩大了2倍,从6.2MHz扩大到12.6MHz。这是跨导提升带来的有益效果。

Claims (3)

1.一种基于CMOS器件实现的跨导增强型低压跨导放大器,其特征在于,所述基于CMOS器件实现的跨导增强型低压跨导放大器包括输入差分对,正反馈跨导增强级,高速电流镜和输出级四大部分,
所述的输入差分对由PMOS管M1和M2组成,
所述的正反馈跨导增强级由NMOS管M11和M12组成,M13为M11和M12提供稳定的电流;所述高速电流镜由NMOS管M3和M4,M5和M6以及电阻R1和R2组成;所述输出级由M4和M7,M6和M8组成,
M1和M2的源极分别和M9和M10的漏极连接,M9和M10的栅极被偏置到固定电压以提供稳定电流;M1和M2的漏极分别与电流镜管M3和M5的漏级连接,M3和M5的栅极、漏级与电阻R1和R2相连成二极管形式,形成高速电流镜;M11和M12的漏级和栅极以交叉的形式连接,并且与M1和M9、M2和M10相连,M11和M12的源极与M13的漏级相连,M13的栅极被偏置到固定电压以提供稳定电流;M4和M6的栅极分别与M3和M5的漏极以及电阻R1和R2相连,M4和M6漏级分别与M7和M8的漏级相连;M7的栅极和漏级相连成二极管形式,M7和M8的栅极相连成电流镜形式,
所述基于CMOS器件实现的跨导增强型低压跨导放大器,其输入信号经过输入差分对M1和M2转换成小信号电流,
由于M11和M12分流且交叉耦合,A点驱动M1的源极,B点驱动M2的源极,即进行第二次驱动,
AB两点驱动所形成的小信号电流与栅驱动形成的小信号电流叠加,形成更大的小信号电流,正向端形成的小信号电流经过高速电流镜M3和M4复制,然后经过电流镜M7和M8再次复制到输出端;反向端形成的小信号电流经过高速电流镜M5和M6复制到输出端,与正向端的小信号电流叠加,叠加后的小信号电流作用在输出阻抗上,形成输出电压。
2.根据权利要求1所述基于CMOS器件实现的跨导增强型低压跨导放大器中,PMOS管M1和M2尺寸一致,NMOS管M11和M12尺寸一致,PMOS管M7和M8尺寸一致,NMOS管M3和M5尺寸一致,NMOS管M4和M6尺寸一致,电阻R1和R2的尺寸一致。
3.根据权利要求1所述基于CMOS器件实现的跨导增强型低压跨导放大器中,M9和M10的栅电压VB1,由偏置电路通过电流镜提供;M13的栅电压VB2,由偏置电路通过电流镜提供。
CN201510413566.1A 2015-07-15 2015-07-15 基于cmos器件实现的跨导增强型低压跨导放大器 Pending CN104935272A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510413566.1A CN104935272A (zh) 2015-07-15 2015-07-15 基于cmos器件实现的跨导增强型低压跨导放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510413566.1A CN104935272A (zh) 2015-07-15 2015-07-15 基于cmos器件实现的跨导增强型低压跨导放大器

Publications (1)

Publication Number Publication Date
CN104935272A true CN104935272A (zh) 2015-09-23

Family

ID=54122277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510413566.1A Pending CN104935272A (zh) 2015-07-15 2015-07-15 基于cmos器件实现的跨导增强型低压跨导放大器

Country Status (1)

Country Link
CN (1) CN104935272A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059505A (zh) * 2016-06-20 2016-10-26 东南大学 一种低噪声高输出电阻的跨导放大器
CN108352815A (zh) * 2015-10-29 2018-07-31 三菱电机株式会社 跨导放大器和移相器
CN112436811A (zh) * 2020-10-13 2021-03-02 华南理工大学 一种基于金属氧化物tft的运算放大器、芯片及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146179A (en) * 1991-11-29 1992-09-08 Carnegie Mellon University Fully differential operational amplifier having frequency dependent impedance division
US20040056716A1 (en) * 2002-09-23 2004-03-25 Meng-Jer Wey High-speed output transconductance amplifier capable of operating at different voltage levels
CN101917168A (zh) * 2010-06-30 2010-12-15 西安电子科技大学 用于有源功率因数校正器中的高转换速率跨导放大器
CN102045035A (zh) * 2010-11-24 2011-05-04 东南大学 一种低功耗宽带高增益高摆率单级运算跨导放大器
CN104158496A (zh) * 2014-08-15 2014-11-19 东南大学 以正反馈跨阻放大级为负载的25%占空比无源混频器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146179A (en) * 1991-11-29 1992-09-08 Carnegie Mellon University Fully differential operational amplifier having frequency dependent impedance division
US20040056716A1 (en) * 2002-09-23 2004-03-25 Meng-Jer Wey High-speed output transconductance amplifier capable of operating at different voltage levels
CN101917168A (zh) * 2010-06-30 2010-12-15 西安电子科技大学 用于有源功率因数校正器中的高转换速率跨导放大器
CN102045035A (zh) * 2010-11-24 2011-05-04 东南大学 一种低功耗宽带高增益高摆率单级运算跨导放大器
CN104158496A (zh) * 2014-08-15 2014-11-19 东南大学 以正反馈跨阻放大级为负载的25%占空比无源混频器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352815A (zh) * 2015-10-29 2018-07-31 三菱电机株式会社 跨导放大器和移相器
CN108352815B (zh) * 2015-10-29 2022-03-25 三菱电机株式会社 跨导放大器和移相器
CN106059505A (zh) * 2016-06-20 2016-10-26 东南大学 一种低噪声高输出电阻的跨导放大器
CN106059505B (zh) * 2016-06-20 2019-03-12 东南大学 一种低噪声高输出电阻的跨导放大器
CN112436811A (zh) * 2020-10-13 2021-03-02 华南理工大学 一种基于金属氧化物tft的运算放大器、芯片及方法
CN112436811B (zh) * 2020-10-13 2021-06-08 华南理工大学 一种基于金属氧化物tft的运算放大器、芯片及方法

Similar Documents

Publication Publication Date Title
CN101917168B (zh) 用于有源功率因数校正器中的高转换速率跨导放大器
CN107104641B (zh) 同时实现低功耗和低噪声的神经信号单端放大器
CN108334153A (zh) 一种电流镜电路
CN104935272A (zh) 基于cmos器件实现的跨导增强型低压跨导放大器
CN109274340B (zh) 一种宽带限幅放大器电路
CN105227142A (zh) 一种低压折叠式共源共栅跨导放大器
Toledo et al. A 300mv-supply, 2nw-power, 80pf-load cmos digital-based ota for iot interfaces
CN102006022B (zh) 基于cmos工艺的低压运算放大器
CN102158188B (zh) 采用mos器件实现的低功耗带宽倍增运算放大器
CN104092390B (zh) 一种超低压高效输入自供电整流器电路
CN106559042A (zh) 应用于低电压下的低噪声放大器
Hsieh et al. A 0.6-V 336-μW 5-GHz LNA using a low-voltage and gain-enhancement architecture
CN209297190U (zh) 一种低压降镜像电流源电路
CN108667434B (zh) 一种低电压低输出阻抗跨阻放大器
CN201035440Y (zh) 电流镜
CN102176660B (zh) 采用mos器件实现的宽带低功耗轨到轨放大器
CN102176661A (zh) 基于mos器件的宽带低功耗斩波稳定轨到轨放大器
CN100566135C (zh) 中频模拟/混频信号应用的有源差分双转单电路
Singh et al. Design and analysis of CMOS folded cascode OTA using Gm/ID technique
CN103049026B (zh) 一种电流偏置电路
CN102142816B (zh) 基于mos器件的宽带低功耗电流回收斩波稳定放大器
CN104579315A (zh) 同时实现高增益和宽输出摆幅的c类反相器
Choudhary et al. Design of Schmitt Trigger Using DTMOS Technology for Low power Consumption
CN204810238U (zh) 一种自偏置cmos差分放大器及一种积分器
Anbarasan et al. Design of gain enhanced and power efficient Op-Amp for ADC/DAC and medical applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150923

WD01 Invention patent application deemed withdrawn after publication