CN104884929A - 自动化的样品处理系统 - Google Patents

自动化的样品处理系统 Download PDF

Info

Publication number
CN104884929A
CN104884929A CN201380057820.8A CN201380057820A CN104884929A CN 104884929 A CN104884929 A CN 104884929A CN 201380057820 A CN201380057820 A CN 201380057820A CN 104884929 A CN104884929 A CN 104884929A
Authority
CN
China
Prior art keywords
sample
processor
route
sub
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380057820.8A
Other languages
English (en)
Other versions
CN104884929B (zh
Inventor
迈克尔·爱柏尔哈德
查尔斯·马第尼斯
凯思琳·佩恩
克里斯托夫·威尔特
贝恩德·魏德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beckman Coulter Inc
Original Assignee
Beckman Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beckman Instruments Inc filed Critical Beckman Instruments Inc
Publication of CN104884929A publication Critical patent/CN104884929A/zh
Application granted granted Critical
Publication of CN104884929B publication Critical patent/CN104884929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N2035/0094Scheduling optimisation; experiment design

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Sorting Of Articles (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Conveyors (AREA)

Abstract

本发明公开了一种方法,所述方法包括:接收与样品容器中的样品相关的指令数据。所述方法包括:由使用工作流管理层的至少一个处理器来生成所述样品的处理计划,和将所述处理计划提供到过程控制层。所述处理计划包括多个可能的路线。所述方法也包括:由使用所述过程控制层的所述至少一个处理器在所述处理计划中的所述多个可能的路线内来选择优化路线,和将所述优化路线提供到中间件控制层。所述至少一个处理器和所述中间件控制层可操作以使得输送系统沿所述选定路线行进。

Description

自动化的样品处理系统
相关申请的交叉参考
本申请涉及2012年11月7日提交的标题为“Automated SampleProcessing System”的美国临时专利申请号61/723,736。本申请在此以引用方式全文并入于此用于所有目的。
背景技术
实验室系统的软件配置是已知的。
EP 2 450 711A1中描述了一个公开的分析系统。所述公开的系统包括彼此互动以优化分析系统中的样品处理工作流的样品工作流管理器和仪器管理器,如EP 2 450 711A1的图2中可见。
仪器管理器从用户或LIS(实验室信息系统)接收测试程序,并将命令发送到连接的分析仪或如输送单元的其它连接的自动化设备。样品工作流管理器从连接的分析仪单元接收过程信息,并将预配置的处理路线发送到仪器管理器以处理信息。
美国专利号6,581,012中描述了另一公开的分析系统。本专利所描述的临床实验室系统的公开的软件架构包括用于处理从测试请求到测试结果的工作流的三个层,其示意性地描绘于美国专利号6,581,012的图2中。描述样品排程的另一参考是美国专利号6,721,615。
在用户接口层,用户输入测试程序,所述测试程序被转发到工作流自动化层。工作流自动化层从测试程序生成测试指令并将其转发到物理元素层,以借助于连接的分析仪来进行所请求的测试。分析仪通过对应的SPM(样本处理模块)对象返回测试结果,且在工作流自动化层内,结果被验证,并且如果有效就被转发到用户接口层以光学表示给用户。
虽然所述系统可能是有用的,但是持续需要可提供更好的样品处理优化的系统。例如,由样品容器的仪器管理器创建的处理计划可具有许多不同的潜在路线。样品容器所采取的路线可能不是最优的,从而降低了实验室系统的整体效率。期望改进整体效率,因为实验室系统上经常有超过处理能力的样品需要处理。
本发明的实施例解决这些和其它问题。
发明内容
本发明的实施例针对在诊断实验室环境中,且尤其在具有由样品输送系统连接的多个诊断分析仪的自动化的诊断实验室环境中的改进的样品处理系统。通常,诊断实验室环境包括对病人样品执行离散诊断测试的多个分析仪和制备所述病人样品以进行测试的系统。自动化的诊断实验室包括样品制备系统、多个分析仪和用于在样品制备系统和个别分析仪之间输送病人样品的系统。本发明针对控制样品制备系统的操作和所述系统如何选择、制备并传送病人样品到分析仪的过程控制架构。
在本发明的实施例中,工作流管理层(WML)可生成样品的处理计划。所述处理计划可包括关于需要在样品上运行的过程(例如,免疫测定试验、化学试验等)的信息、关于系统上分析仪的状态(例如,可用性、试剂状态等)的信息和为分析仪上的下游处理做准备所需进行的制备样品的具体步骤。所述处理计划可被提供到过程控制层(PCL),所述过程控制层可独立于WML操作。与至少一个处理器一起工作的PCL可检查等待被处理的所有样品,并可对其进行评估。提取样品的顺序可取决于将在样品上执行的测试,和将被用以处理样品的分析仪(或例如分析仪的其它处理设备)的类型和状态(例如,如果在分析仪或其它处理设备处有将减缓整个过程的样品的任何备份)。
WML可为单一的层,或在一个实施例中为两个单独的层。在这个实施例中,第一层接收关于每个样品上要执行的测试类型的指令,以编制基本分析仪列表来路由所述样品。第二层与用以获得路线的WML的第一层和个别分析仪通信,以确定所述分析仪是否可执行所需的测试,拥有足够的耗材和试剂来进行所述测试并以其他方式操作。这个信息连同路线被传输到PCL。PCL利用所述信息根据各种规则选择合适的病人样品进行处理,从而最大化通过实验室的病人样品的流。
在一些实施例中,首先处理的样品将取决于这些特定的规则。例如,一个规则可为仅首先提取STAT(具有短的周转时间或高处理优先级的样品管)样品,但只在其相比任何其它非STAT样品能更快地处理的情况下如此。系统中每个分析仪前的输入缓冲器可由PCL分析,以确定其是否被装满到添加更多的样品到输入缓冲器将减慢系统的程度。例如,包括STAT样品和非STAT样品的两个样品可能需要被实验室自动化系统处理。STAT样品可能需要经过免疫分析仪A,且PCL可确定存在等待被免疫分析仪A处理的其它样品的队列。另一方面,非STAT样品不需要由免疫分析仪A来处理,而是将由不具有等待处理的样品队列的免疫分析仪B和化学分析仪A来处理。在这种情况下,在选择STAT样品进行处理之前,可选择非STAT样品进行处理,以整体考虑到系统的限制而最大化处理速度和实验室自动化系统的利用。此外,也可将样品制备系统制备每个样品以供下游分析仪进行处理所需步骤的数量和类型纳入选择样品的考虑,以最大化通过整个实验室系统的流。
在本发明的实施例中,在WML和实验室自动化系统以及可控制的实验室设备之间可能有恒定的通信,所述实验室自动化系统包括PCL和连接和非连接的分析仪,所述可控制的实验室设备被包含在样品制备系统中,例如所包括的离心机、移液器等。WML可不断地接收关于连接和非连接的分析仪的状态(例如,分析仪可操作、不可操作、忙碌、空闲等),或其它可控制的实验室设备的更新,且可不断地将处理计划和分析仪状态信息提供到PCL。使用该信息,PCL可独立操作,以生成依赖于所述样品的路线的病人样品的排程,所述排程可优化通过实验室自动化系统和其它可控制的实验室设备的样品的处理。
在本发明的实施例中,处理样品的时间,即从处理开始的时间到样品被分析仪分析之后的时间,可被特征化为两个时间段。第一时间段(时段A)可为通过实验室自动化系统的样品制备系统处理样品的速度,其中制备样品以进行分析。第二时间段(时段B)可为处理所制备的样品以在所需分析仪上确定测试结果所需要的剩余时间。本发明的实施例可用以有效地最小化第一时间段(时段A)和第二时间段(时段B)的总和。
本发明的一个实施例针对一种方法,包括:由至少一个处理器使用工作流管理层来生成样品容器(例如,样品管)中样品的处理或路线计划,和将所述路线计划提供到过程控制层(PCL)。所述路线计划包括可呈给定顺序的处理指令的列表。所述方法也包括由使用过程控制层的至少一个处理器根据路线计划且根据样品制备系统的可用性和样品的优先级来确定通过样品制备系统且到所需分析仪中的每一个的优化路线,使用过程控制层(PCL),和使用优化路线来处理样品。
本发明的另一实施例针对一种计算机装置,包括至少一个处理器,和存储器设备,所述存储器设备存储可由至少一个处理器执行的多个软件部件。所述多个软件部件包括:工作流管理层,其可操作以生成包括呈给定顺序的处理步骤列表的处理计划;和处理器控制层,其可操作以确定优化路线。
本发明的另一实施例针对一种系统,包括多个样品处理子系统,和计算机装置。所述计算机装置包括至少一个处理器,和存储器设备,所述存储器设备存储可由至少一个处理器执行的多个软件部件。所述多个软件部件包括工作流管理层,其可操作以生成处理计划;和处理器控制层,其可操作以选择优化路线。
本发明的另一实施例针对一种自动化的样品处理系统,包括工作流管理控制器,所述工作流管理控制器包括第一处理器,和第一计算机可读介质,所述第一计算机可读介质包括工作流管理层。所述系统也包括LAS控制器,其耦接到工作流管理控制器且为实验室自动化系统的一部分,所述LAS控制器包括第二处理器,和第二计算机可读介质,所述第二计算机可读介质包括过程控制层和中间控制层。
本发明的另一实施例针对一种方法,包括:由工作流管理控制器来将待处理的样品的指令数据提供到耦接到工作流管理控制器的LAS控制器,所述工作流管理控制器包括第一处理器,和第一计算机可读介质,所述第一计算机可读介质包括工作流管理层,所述LAS控制器为实验室自动化系统的一部分,且包括第二处理器,和第二计算机可读介质,所述第二计算机可读介质包括过程控制层和中间控制层。所述方法也可包括由LAS控制器来执行指令数据。
本发明的另一实施例针对一种方法,包括:由使用过程控制层的至少一个处理器将路线段提供到中间控制层。所述方法也包括:由至少一个处理器和中间控制层来生成指令以控制路线段的子系统或路线段的子组件容器的操作,其中子组件容器控制与子组件容器相关的多个子组件。所述方法也包括由设备控制层来执行指令。在一些实施例中,中间控制层(MCL)还可从PCL接收路线段以进行处理,且这些路线段还可由MCL来优化。在本发明的实施例中,MCL可独立于PCL和WML操作。
本发明的另一实施例针对一种系统,包括计算机装置,所述计算机装置包括至少一个处理器,和存储器设备,所述存储器设备存储可由至少一个处理器执行的多个软件部件。所述软件部件包括过程控制层,其配置为使用至少一个处理器将路线段提供到中间控制层;中间控制层,其配置为使用至少一个处理器生成指令以控制路线段的子系统或路线段的子组件容器的操作。所述子组件容器控制与子组件容器相关的多个子组件。所述系统也包括设备控制层,其配置为使用至少一个处理器来执行指令。
在又一实施例中,WML由两个单独的控制层形成。这些层可使用单个处理器,或两个或更多个不同的处理器来执行。第一层接收关于将在病人样品上执行的测试的类型的指令。该第一层然后编制限定执行所述测试所需的分析仪的类型的所述样品的路线计划。所述路线计划只识别分析仪的类型,而非将执行所述测试的指定分析仪。第二控制层提供与样品制备系统和个别分析仪的连续通信。该第二控制层查询制备系统和分析仪以确定这些单元中每一个的状态。这个状态包括每个系统或分析仪的可用性、每个系统或分析仪处必要试剂和耗材的量,和每个系统或分析仪的维护和/或质量类型状态。该第二层将关于制备系统和分析仪的状态的信息连同样品路线信息提供到PCL,PCL然后利用所述信息来编制通过实验室系统的个别样品的排程。根据这个实施例,第一WML层可由被称为中间件的物品涵盖,其中第二层为当前未用于实验室自动化系统中的附加的处理层。
下文中更详细地描述了本发明的这些和其它实施例。
附图说明
图1A是根据本发明的一个实施例的高阶管理架构的方框图。
图1B是根据本发明的一个实施例的管理架构的方框图。
图1C示出了说明根据本发明的一个实施例的自动化的样品处理系统的一些部件的方框图。
图2A示出了根据本发明的一个实施例的定向非循环图。
图2B示出了说明根据本发明的一个实施例的方法的流程图。
图3示出了各种级别接口的图。
图4示出了计算机装置的方框图。
具体实施方式
本发明的实施例针对用于在临床实验室中管理病人样品的工作流的改进的样品工作流管理架构。在讨论本发明的实施例之前,讨论一些术语可能会有帮助。
如本文所使用,“指令数据”可包括关于样品容器和/或样品容器中的样品可被如何处理的信息。在一些实施例中,指令数据可包括由用户或装置提供到实验室信息系统的更高级别的指令。在其它实施例中,指令数据可代表用于处理样品或样品容器的指令,其中该指令被从一个软件模块传递到另一个软件模块。
“输送系统”可包括可用以输送样品容器的任何合适的硬件。示例性输送系统可包括托架、轨道、皮带、夹持器等中的一个或多个。
“样品容器数据”可代表特征化样品容器和/或容器内样品的数据。样品容器数据可包括,例如管上的帽的颜色、管的尺寸或形状、管上的标识符(例如,管上的标签上的条形码)等。样品容器数据可包括识别样品(例如,来自特定的人的血液、尿液等)和/或将如何处理样品(例如,正常处理、短周期等)的数据。在一些实施例中,当输送样品容器时,样品容器的重量和/或样品容器中样品的液面可由机器人夹持器来确定。与此相关的进一步细节可在2011年11月7日提交的美国临时专利申请号61/556,667、2012年3月28日提交的美国临时专利申请号61/616,994,和2012年8月6日提交的美国临时专利申请号61/680,066,以及2012年11月7日提交的PCT/US2012/063931中找到,所述专利申请在此以引用方式全文并入于此用于所有目的。
“设备命令”可包括由控制特定子系统或子系统中子组件的设备控制层来执行的指令。所述设备命令可涉及状态(例如,开或关)、操作速度等。
在一组样品容器的上下文中的“区域”可包括将被类似处理(例如,全部将被离心)且/或具有类似特性(例如,全部为血液样品)的容器组。
“子系统”可包括可执行指定功能的仪器或仪器的集合。子系统的实例包括回盖器、封口机、离心机,和等分器。
“子组件”可为子系统的一部分。每个子系统可包括一个或多个子组件。例如,“输出”子系统可包括夹持器和许多拉拔器。在这个实例中,夹持器可看作子组件。
“子组件容器”可包括控制两个或更多个子组件的指定分组的软件模块。所述两个或更多个子组件可为不同子系统的部分。
“存储器设备”可为可存储电子数据的任何合适的设备。合适的存储器设备可包括存储指令的计算机可读介质,所述指令可由处理器执行来实施期望的方法。存储器设备的实例可包括一个或多个存储器芯片、磁盘驱动器等。所述存储器设备可使用任何合适的电、光和/或磁操作模式来操作。
“处理器”可代表任何合适的一个或多个数据计算设备。处理器可包括协同工作以实现期望的功能的一个或多个微处理器。
“处理计划”可包括关于需要在样品上运行的过程的信息。所述信息可包括关于可用于执行期望的测试的分析仪的当前数量及其状态的信息,且所述信息也可包括处理步骤和/或可用以处理样品的子系统的列表。例如,处理计划可包括关于样品将被定向到的样品制备系统中的具体子系统(例如,等分器、离心机等)的信息。在一些实施例中,处理计划不指定可用以处理样品的确切子系统。例如,如果实验室自动化系统包括三个离心机A、B和C,那么处理计划可只是指示用以处理样品的一个步骤是离心,且可能不指定使用哪个特定离心机。在另一实例中,如果实验室自动化系统包括三个离心机A、B和C,那么处理计划可只是指示样品可能仅由离心机A或B来处理,因为离心机C可能关闭或暂时被占用或以其它方式不可用。过程控制层然后可使用所述测试计划,并通过分析过程来决定离心机A和B中哪一个是处理样品以最大化样品的速度的最佳选择。
“路线”可代表样品可采用以通过实验室自动化系统的路径。所述路径可包括在指定的时间以指定顺序通过子系统的指定集合的处理。例如,如果实验室自动化系统包括离心机A和B、去盖器A和B,和等分器A和B,那么路线的实例可为通过离心机A、去盖器B,然后等分器B来处理样品。
“段”可包括路线的一部分。段可包括单个子系统类型或两个或更多个子系统类型而非路线需要的所有子系统类型之间的路径。例如,如果路线包括离心机A、去盖器B,和等分器B,那么路线段可包括去盖器B和等分器B。在另一实例中,路线段可只是包括等分器B。
在本发明的实施例中,管理架构与实验室信息系统(LIS)相连接且充当LIS和临床实验室之间的中间物。LIS或用户向管理架构提供用于处理样品的测试程序。基于这些测试程序,管理架构生成实验室人员或实验室自动化系统(LAS)的工作流或管指令(也被称为处理计划)。在查询时,管理架构也向实验室中任何连接的(或“自动化的”)或非连接的(或“单独的”)分析仪提供测试程序。2011年11月7日提交的美国临时专利申请号61/556,667和2012年3月28日提交的美国临时专利申请号61/616,994中描述了示例性LAS,所述专利申请在此以引用方式全文并入于此用于所有目的。
当LAS或单个分析仪处理样品时,样品相关结果在管理架构内被处理。对于LAS而言,结果包括管数据,所述管数据包括对应于在样品上执行的周围分析处理的样品状态更新。如本文所使用,“周围分析”可代表可包括“预分析”处理和“后分析”处理的处理。对于单个分析仪而言,结果可包括测试结果。在接收到这些测试结果之后,管理架构可对测试结果执行另外的分析,且如果需要就更新样品的工作流。在验证测试结果之后,管理架构将测试结果转发到LIS或用户。
图1A是根据本发明的一个实施例的高阶管理架构的方框图。图1A示出了与工作流管理器部分14相连接的用户接口部分12。用户接口部分12可为与例如实验室技术员的用户互动的部分。其可为实验室信息系统(LIS)的一部分。工作流管理器部分14可管理各种LAS的工作流。其可包括下文进一步详细描述的工作流管理层。
工作流管理器部分14与仪器管理器16相连接,仪器管理器16与子系统部分18相连接。仪器管理器部分16可包括下文进一步详细描述的过程控制层。子系统部分18可包括一个或多个子系统(例如,离心机、去盖器等)。仪器管理器部分16也可包括中间控制层和设备控制层。
在本发明的实施例中,工作流管理部分14可生成可变/灵活性处理计划,而仪器管理器部分16根据所述可变/灵活性处理计划来排程过程。本发明的实施例允许生成包括多个可能路线的灵活性或可变处理计划。过程的排程可与可变/灵活性处理计划的生成解耦。
图1B示出根据本发明的一个实施例的管理架构100的方框图。管理架构100可管理至少三个层级,即实验室级50、仪器级60和子系统级70,的数据,其中每个层级负责其各自的特定数据集。这些层可呈被存储在存储器和/或计算机可读介质上且与驻留在一个或多个计算机装置上的一个或多个处理器(例如,数据处理器)协作的软件部件的形式。例如,所有三个层50、60、70可驻留在具有一个或多个处理器(例如,微处理器)的一个计算装置上的计算机可读介质上。或者,这三个层50、60、70可驻留在三个计算机可读介质上,所述三个计算机可读介质驻留在三个可操作计算装置上,每个可操作计算装置具有一个或多个处理器(例如,微处理器)。在一些实施例中,工作流管理层50(b)驻留在第一计算装置(例如,第一服务器计算机)中,而过程控制层60(a)和中间控制层70(a)驻留在第二计算装置(例如,第二服务器计算机)中。第一和第二计算装置可彼此通信,但可彼此独立地运行。第二计算装置可为LAS 80的一部分。
在实验室级50,管理架构100可负责管理整个实验室上的配置数据。在实验室环境中,管理架构100通常管理一个或多个LAS,和多个连接的分析仪60(b)和非连接的分析仪60(c)所需的信息。
在本发明的实施例中,LAS 80可包括过程控制层60(a)、中间控制层70(a)、设备控制层70(b),和设备固件70(c)。当使用单个工作流管理层50(b)时,本发明的实施例也可包括许多LAS,和一个或多个连接的分析仪60(b)和非连接的分析仪60(c)。
在这个级别可配置在多个自动生产线上常见的实验室级50数据项目。具体说来,配置数据可包括至少LAS输入区域信息、样品容器(管)类型信息,和工作流管理信息。
LAS输入区域信息包括关于LAS输入区域内拉拔器的机架和机架保持架板的配置和指令到不同机架或机架区域的映射的信息。这些可被定义为实验室级数据项目,因为可在不同的LAS上使用相同的LAS输入区域配置。
样品容器(管)类型信息包括管类型、帽类型,和实验室中将使用的帽颜色的配置。LAS可在处理这些管类型之前对准这些管类型。
工作流管理信息(例如,指令数据)包含样品处理规则,管理架构100可使用所述样品处理规则来生成样品管的处理计划。在具有多个LAS的大型临床实验室中,样品处理规则可能在LAS之间发生变化。在这种情况下,管理架构100可能能够为每个LAS生成合适的处理计划。
在实验室级生成的配置数据可被存储在管理架构数据库中。管理架构数据库可存在于工作流管理层50(b)中,或在任何其它合适的位置。因此,数据可在整个实验室可用。
管理架构100也可包括图形规则引擎(未示出),其可被称为管理架构100的规则编辑器。图形规则引擎可存在于工作流管理层50(b)中,或在任何其它合适的位置。规则编辑器向用户提供定义管理实验室工作流的一套规则的能力。规则可被分为两大类:用于验证测试结果的规则;和用于处理样品的规则。
用于验证测试结果的规则指定测试结果可如何由管理架构100来自动验证。作为自动验证结果的一部分,可提供规则,使得需要时可执行例如重新运行样品、添加样品处理步骤,或稀释样品的另外的处理以获得可接受的结果。如果结果仍然是不确定的,那么可提供规则,使得实验室操作员可保持样品以进行检查。
用于处理样品的工作指令基于从LIS 50(a)接收的测试程序来指定样品可能需要的周围分析处理。样品的周围分析处理包括但不限于离心、液面感测、去盖、等分和回盖。周围分析处理也包括将样品管发送到连接的分析仪、输出托盘,和档案或存储设施。
在仪器级60,管理架构100管理仪器的具体信息,所述仪器的具体信息包括LAS硬件配置(也称为“站点网络”)、工作流指令,和/或处理计划,和具体工作指令的子组件(也称为路线段)的虚拟表示。另外,管理架构100收集并管理统计数据、日志文件和各种子系统配置。
站点网络可为由站点节点(缓冲、处理和输送)和连接所述节点的边缘组成的图。站点网络可表示LAS的物理布局,且可用以实际上使各种硬件配置抽象化。
在子系统级70,管理架构100管理由LAS内个别子系统和子组件的教导产生的数据。每个子系统和其中对应的子组件可具有许多机器人对齐点、阈值,和需要配置的其它设备特定的数据。例如,在安装时,在待处理的样品被放置到系统上之前,例如输入站、离心机、去盖器等的个别自动化子系统可在使用前被教导(例如,教导子系统它们在整个系统中的位置)或对齐。在教导阶段生成的数据可被存储在配置数据文件中。配置数据文件可被保持在子系统级70,因为数据只适用于特定的子系统。管理架构100不必关心或甚至不必知道子系统级70的具体数据。为了备份/恢复的目的,数据文件可被压缩并发送到管理架构100中合适的数据库进行存储。当恢复时,子系统级70可要求管理架构100在进行恢复之前下载备份压缩文件。
如从以上讨论可明显看出,在管理架构100的架构级内,软件可被进一步组织有软件部件层。分层软件允许将功能进一步分解为更细的粒度。分层结构中可暗示层次。这些层可呈被存储在存储器和/或计算机可读介质上且与驻留在一个或多个计算机装置上的一个或多个处理器(例如,数据处理器)协作的软件部件的形式。
在本发明的一些实施例中,管理架构100包括四个控制层,其中每个级别负责控制临床实验室中的具体过程。所述控制层包括工作流管理层(WML)50(b)、过程控制层(PCL)60(a)、中间控制层(MCL)70(a),和设备控制层70(b)。
WML 50(b)对于用户可为顶层或顶视图,利用其规则引擎中指定以确定将在样品上运行的处理计划的样品处理规则。对于具有多个LAS线的实验室,WML 50(b)可允许每个线具有不同的工作流管理方案,且可同时管理多个活动的工作流。此外,WML 50(b)可处理关键的软件特征,包括LIS接口50(a)、质量控制(QC)、结果管理、样品追踪、备份和恢复、仪器状态、测试排序、配置、在线帮助、用户认证,和仪器发现(初始搜索在系统的初始化阶段运行,以识别连接的子系统)。如图所示,LIS接口50(a)可将测试程序提供到WML 50(b),且可从WML 50(b)接收测试结果。
WML 50(b)可存储所有LAS和连接的设备用以处理样品的实验室级50信息(配置数据)。在启动时,WML 50(b)可将配置数据传递到PCL 60(a),并向PCL 50(a)通知启动后配置数据的任何另外的变化。
在操作期间,WML 50(b)生成单个样品容器的处理计划,并将这个处理计划提供到PCL 60(a)。WML 50(b)可包括启用其功能的若干不同的软件部件。
如图1B所示,WML 50(b)可与连接的分析仪60(b)和非连接的分析仪60(c)通信。测试程序可被提供(例如,传输)到分析仪60(b)、60(c),且测试结果和其它分析仪状态信息可被提供回WML 50(b)。关于各种分析仪60(b)、60(c)的状态的信息可从WML 50(b)被提供到PCL 60(a),且这个信息可被PCL 60(a)用以生成最优路线(例如,采用样品的优先级、分析仪的可用性,和系统中子组件和子部件的状态的路线),以最大化实验室自动化系统80的处理能力和速度。
本发明的实施例可使用工作流管理控制器和/或LAS控制器来实现本文描述的功能。工作流管理控制器可为被设计以处理实验室中所有连接和非连接的分析仪的数据和工作流管理的服务器计算机。工作流管理控制器保持模型和使用数据库来留存所述模型。其可运行实验室信息系统50(b)和工作流管理层50(b)。
LAS控制器(未示出)允许仪器作为独立的计算机来运行以防工作流管理控制器发生故障。因此,其可为与工作流管理控制器计算机分开的服务器计算机,且其可包括过程控制层60(a)和中间控制层70(a)。设备管理器可处理与例如LIS 50(a)、遗留分析仪,和其它系统的外部系统的通信。检查客户端(例如,在工作流管理层50(b)中)可将信息提供到用户,并允许用户向模型提供输入。检查客户端与模型协作,但模型的所有变化可由工作流管理控制器的异步请求来执行。
本发明的实施例可包括一种自动化的样品处理系统,所述自动化的样品处理系统包括工作流管理控制器,所述工作流管理控制器包括第一处理器,和第一计算机可读介质,所述第一计算机可读介质包括工作流管理层,和耦接到工作流管理控制器的一个或多个LAS控制器。每个LAS控制器包括另一处理器,和另一计算机可读介质,所述计算机可读介质包括过程控制层和中间控制层。
图1C示出了说明根据本发明的一个实施例的自动化的样品处理系统的一些硬件部件的方框图。系统包括操作工作流管理层50(b)的工作流管理控制器806。工作流管理控制器806可被耦接到客户终端804,客户终端804可由用户用来将数据输入系统并从系统获得数据。
工作流管理控制器806可被耦接到操作第一过程控制层60(a)-1和第一中间控制层70(a)-1的第一LAS控制器808(a)。工作流管理控制器806也可被耦接到操作第二过程控制层60(a)-2和第二中间控制层70(a)-2的第二LAS控制器808(b)。第一LAS控制器808(a)和第二LAS控制器808(b)可包括第一和第二处理器,和与这些处理器相关的第一和第二计算机可读介质(用于存储上述软件层)。
第一LAS控制器808(a)可与包括至少第一子系统820(a)和第二子系统820(b)的多个第一子系统通信。第二LAS控制器808(b)可与包括至少第三子系统820(c)和第四子系统820(d)的多个第一子系统通信。
虽然示出了两个LAS控制器,但是本发明的实施例可包括两个以上的LAS控制器。另外,虽然每个LAS控制器示出了两个子系统,但是两个以上的子系统可与每个LAS控制器相关。
如图所示,图1B中的硬件配置具有许多优点。例如,如果工作流管理控制器806发生故障,那么这不会影响第一LAS控制器808(a)和/或第二LAS控制器808(b)的操作。即使工作流管理控制器806发生故障,LAS控制器仍可向子系统提供工作指令以处理样品。
再次参照图1B,管理架构100的WML 50(b)可负责基于其规则引擎中定义的一套样品处理规则来生成样品管的处理计划。在PCL 60(a)接收到样品管到达的通知之后,WML 50(b)将特定样品管的这个处理计划提交到PCL 60(a)。此外,如果管状态或系统状态的变化影响原始处理计划,那么可能期望重新生成现有处理计划。在一些实施例中,处理计划可被描绘为包括节点和路线的图,其中每个节点包含向PCL通知样品期望的处理的指令。指令可代表子系统的在样品上执行的动作。例如,指令“离心”指示样品被在离心机子系统上离心。以下列表包含LAS支持的示例性指令:离心、去盖、抽吸、标注、分发、回盖、分类或存储等。
通常,处理计划包含需要对样品执行的过程的列表。如果在执行处理计划中存在可执行一个或多个过程的多个子系统,就会存在可采样以实现处理计划的多个潜在路线。这可被图形表示为例如图2A所示的定向非循环图。在本发明的其它实施例中可使用其它类型的表示。如图2A的非循环图所示,根据本发明的一个实施例的处理计划是灵活性且可变的,因为不同样品可由子系统的不同组合来处理。选择的子系统的集合可基于若干因素来确定。
如图2A所示,处理计划200可具有样品管的起点202,且样品管然后可被离心204。在离心后,管可传递到去盖器206。在去盖器206后,处理计划200可指示样品管可传递到第一免疫测定系统208或第二免疫测定系统210。示例性免疫测定系统可包括来自Beckman Coulter,Inc的DxI免疫测定系统。免疫测定系统可包括样品制备站、等分站等。在由第一免疫测定系统208和第二免疫测定系统210中一个处理之后,样品然后可传递到第一分析仪212和第二分析仪214中的一个。示例性分析仪可包括来自BeckmanCoulter,Inc的AU 680系列分析仪。在由第一分析仪212或第二分析仪214处理之后,样品管可传递到回盖器216然后到临时存储单元218。当然,根据本发明的实施例,处理计划中可能存在另外的处理节点。在这个特定的实例中,存在有样品可采用以被处理的四个潜在路线。PCL 60(a)选择的特定路线可为产生通过实验室自动化系统80的最快处理的路线。在这方面,实验室自动化系统80内的PCL 60(a)可独立于WML 50(b)操作,因为其确定了通过实验室自动化系统80的最优路线。
再次参照图1A和图2A,PCL排程器60(a)可负责分析处理计划然后选择样品的最优路线,以满足周转时间(TAT)或吞吐量需求。当样品管在用于处理的处理计划的每个子系统停止时,可生成新的样品管信息。例如,在离心处理204之后,MCL 70(a)可更新样品管信息中的自旋态并将更新的信息转发到PCL 60(a),而PCL 60(a)将管信息转发到WML 50(b)以用于持久性。使用这个反馈(例如,管信息),WML 50(b)可不断地更新并优化处理计划,而PCL 60(c)可不断地更新其关于样品的最优路线计划的决定。不同于传统的系统(可能以静态的方式操作),根据本发明的实施例的系统架构以最大化实验室自动化系统的处理速度和利用率的方式来动态地操作。
如图1B所示,WML 50(b)可将包括处理计划的管指令提供到PCL 60(a),并可从PCL 60(a)接收测试结果。PCL 60(a)还可将管路线信息提供到MCL 70(a)并从MCL 70(a)接收管数据。
MCL 70(a)可向PCL 60(a)通知子系统状态(即,联机、脱机、可用、不可用)的变化,PCL 60(a)使用这个信息来向WML 50(b)通知与受影响的子系统相关的指令的可用性。对于LAS上的单个子系统,如果子系统变得不可用,那么PCL 60(a)可向WML 50(b)通知与所述子系统相关的指令也不可用。如果LAS上的所述子系统中的一个以上为可用,那么由于第二子系统的可用性,损失一个子系统可能不会影响指令的可用性。基于指令可用性,WML 50(b)将具有合适的信息来创建或修改处理计划。
总体而言,WML 50(b)可持续其下方其它控制层的整个寿命。样品工作流管理、处理计划、管信息等可在WML 50(b)和PCL 60(a)之间被发送和接收(在适当情况下,其又将相关数据中继到MCL 70(a)等)。WML 50(b)可生成处理计划,所述处理计划指示PCL 60(a)生成其用以指示MCL 70(a)的排程、路线和路线段。MCL 70(a)然后命令DCL 70(b)移动合适的硬件部件来执行管的路由。
在一些实施例中,MCL 70(a)还可优化其接收的路线段。例如,路线段可包括子系统,所述子系统还可包括许多子组件,且这些子组件的操作或选择可由MCL 70(a)来优化。说明性地,路线段可包括指令“离心机”。离心机可包括子组件,所述子组件包括离心机、离心机机器人、适配器夹持器,和梭子。MCL 70(a)还可选择特定的离心机机器人、梭子或适配器夹持器,以实现尽可能最快的处理。MCL 70(a)也可将特定的指令提供到DCL 70(b)(其可将指令提供到特定的设备固件70(c))以控制特定子组件的操作。
在这整个处理链中,当一层将处理转移到下面的层时,其可继续处理其它动作,与在下层发生的处理同时进行。
PCL 60(a)排程器使用站点网络和处理计划来确定最优路线,然后相应地排程所述路线以满足系统目标,例如当生成路线排程时最小化TAT同时最大化样品吞吐量。在一些情况下,在多个处理站点可用以满足WML指令的情况下,PCL 60(a)可执行负载平衡以优化这些站点的利用。
另外,PCL 60(a)可负责分解从WML 50(b)提交的高阶处理计划并生成由MCL 70(a)控制的设备的更详细的路线段。为此,PCL 60(a)并入这些处理站点的状态(例如,输送时间、等待队列、废物处理水平、可消耗的水平等)以获得一个或多个路线段给MCL 70(a)。PCL 60(a)通过用来自站点网络图的站点节点来增量WML 50(b)处理计划(例如,用输送和缓冲站点来表示处理站点)来建立路线段。最终路线段包括样品管需要越过的站点节点的列表,其中每个站点节点代表将对样品管执行的动作。
中间控制层(MCL)70(a)控制LAS子系统和子系统内子组件的状态。硬件子组件可重复使用来建立更复杂的子系统。例如,称为“输出”的子系统可包括如管龙门架机器人和拉拔器的子组件。
在一些实施例中,MCL 70(a)可使用“子组件容器”的概念以分组共用共有资源的子组件。本发明的一些实施例针对一种方法,包括由中间控制层来将指令提供到子组件容器。子组件容器控制与子组件容器相关的多个子组件。该方法也包括由子组件容器来执行指令。多个子组件包括两个或更多个不同子系统的部分。
说明性地,共用共有机械臂的两个子组件可被放置到容器中,使得容器可协调机械臂在两个子组件之间的移动。由于容器在某种意义上是子组件群组周围的“包裹材”,所以物理通信是与容器进行的,即使消息原本是发给特定子系统的。子组件容器托管所有使用的子组件控制器,且在某种意义上自治,其可实现PCL 60(a)请求。这意味着子组件容器可将管从一个站点节点移到另一个站点节点,且其可根据路线段中请求的指令来执行过程步骤。子组件容器可提供另外的服务以协调托管的子组件控制器,如避免碰撞任何硬件运动或初始化所有子组件以确保子系统的一致和无差错状态。
在一些实施例中,尤其对于具有复杂结构的子组件容器(所述容器中包裹的多个子组件),由PCL 60(a)提供到MCL 70(a)的路线段并非由PCL60(a)来详细排程。MCL 70(a)具有另外的排程能力以优化子组件容器的路线段。其具有与子组件容器相关的部分站点网络的知识,且以与PCL 60(a)对处理计划进行的方式类似的方式来优化路线段。排程器中的这个分层结构使得系统能够以比使用以单个步骤优化路线的单个排程实例的系统更快和更精确的方式来排程处理。
MCL 70(a)从PCL 60(a)接收路线段,并将路线段映射到其发送到DCL 70(b)的设备命令,并且其基于这个路线段自治地处理管,而无需与PCL 60(a)互动。特别地,路线排程在PCL 60(a)处被划分为若干(重叠)路线段,以容纳各种子组件容器(因此路线段可为路线排程的一部分)。路线段包含这个子组件容器的所有必要的节点。PCL将路线段发送到合适的子组件容器。路线段可在管或另一类型的容器物理到达子组件容器之前可用,以避免通信时间开销。
MCL 70(a)将样品状态提供到PCL 60(a),以指示例如管越过站点网络图时的进展或错误。离开子组件容器的管可超出合适的MCL 70(a)子系统的范围。
管理架构100提供使一个PCL 60(a)与多个MCL 70(a)通信的灵活性。这种一对多的关系可调整大小以匹配实验室中各种硬件配置。管信息可在当需要处理管时被传送到MCL 70(a),且当处理完成或当关于管的任何数据已改变时被传送回PCL 60(a)。
包括尖端、帽等的废物和耗材状态的硬件子系统的状态可被传送到PCL60(a)。可被包括的其它子系统状态包括子系统的状态;运行、初始化、暂停或错误。另外,处理控制消息可被传送以协调子系统,从而确保TAT和系统吞吐量利用要求。
DCL 70(b)可为控制LAS中硬件部件的硬件控制层。DCL 70(b)提供MCL 70(a)的通信接口、包装专用协议和不同设备使用的不同接口。其可被设计为模块化系统,所述模块化系统可通过添加特定的接口单元来进行扩展并以符合IEC 61131-3标准的编程语言来实施任何协议和工作流。
DCL 70(b)可从MCL 70(a)接收低阶命令,并使用专用协议和不同设备使用的不同接口来提供对硬件的直接控制。DCL 70(b)执行命令、控制硬件,并用命令结果(例如,致动器位置、传感器数据等)响应于MCL 70(a)。DCL 70(b)也提供命令并从设备固件70(c)接收命令结果。
如图1B所示,设备固件70(c)可通过交换握手命令和其它类型的命令或消息来与连接的分析仪60(b)通信。
在一些实施例中,LAS部件可彼此异步地控制。除非由DCL 70(b)来特别指挥,否则它们可能空闲。这可能是由从上层发送的命令所造成的。在DCL 70(b)中可解决与硬件部件的同步,以防止碰撞(例如,在机器人动作可能彼此重叠的情况下,机器人动作需要被同步),或其它机械干扰。否则,硬件可能都被彼此同时控制,即,一个硬件部件在开始其操作前不需要等待任何其它硬件部件。
在一个实施例中,DCL 70(b)提供两个通用DCL-分析仪接口,一个用于直接运输采样(DTS)分析仪,另一个用于基于机架的分析仪(RBU)。这些通用接口保护MCL 70(a)、PCL 60(a)和WML 50(b)以免分析仪硬件改变。DTS子组件容器可负责载体的锁定和释放。通用DCL-DTS分析仪接口可处理与所有可能的DTS分析仪的管握手。在DTS子组件容器锁定载体之后,DCL 70(b)可让分析仪抽吸。之后,分析仪告知DCL 70(b)抽吸过程完成。DTS子组件容器然后可释放载体。RBU子组件容器负责将管从输送系统输送到机架,反之亦然。RBU-分析仪接口可处理机架握手。当机架准备馈入分析仪时,DCL 70(b)告知分析仪。当机架准备从分析仪输送到RBU时,分析仪告知DCL 70(b)。
除DCL 70(b)(不与站点图的抽象节点一起工作)之外,所有软件级(WML、PCL、MCL)可具有不同粒度级别的站点网络图的不同视图。
在本发明的实施例中,WML(即,路线计划程序)可具有站点图的宏观视图。例如,在一些情况下,只有站点图的“主要”节点/站点对工作流管理器层为可见。WML知道这些“主要”节点之间的连接(边缘),且知道可在这些节点之间沿哪些方向传送样品。所述传送不需要关于时间的信息。
在本发明的实施例中,PCL(即,排程器)可具有站点网络图的更详细视图。PCL可查看比WML多的节点。例如,在一些实施例中,输送节点对PCL可以为可见,但对WML为不可见。PCL也可知道这些节点之间的边缘,及所允许的方向。PCL也知道在这些节点之间移动样品所需要的时间。
在本发明的实施例中,MCL可控制子系统(例如,去盖器模块或离心机模块)的活动。只有各自的子系统节点对MCL为可见,但MCL可比PCL具有甚至更详细的所述子系统节点的视图。例如,可能对PCL或WML为不可见的另外对MCL为可见的节点可为子系统内输送车道的转向器。
示例性过程流
本发明的一些实施例针对方法。在一个实施例中,方法包括接收与样品容器中样品相关的指令数据;由使用工作流管理层的至少一个处理器来生成样品的处理计划;将处理计划提供到过程控制层。过程控制层和至少一个处理器使用处理计划来确定优化路线。优化路线被提供到中间控制层,其中所述至少一个处理器和中间控制层可操作以使得输送系统沿选定路线输送样品容器。
使用图1(a)中管理架构的数据流的顺序可结合临床工作流来描述。图2B中示出工作流的步骤。本发明的实施例不限于图2B中描述的处理步骤,且在本发明的实施例中,可省略或添加一个或多个步骤。
在步骤701,医疗或实验室人员将样品的测试程序输入实验室信息系统50(a)或工作流管理层50(b)。测试程序可指示待处理的样品的类型(例如,血液)和/或管的类型(例如,试管)、期望的分析的类型,和/或样品的优先级(例如,STAT或短的周转时间)。
在步骤702,实验室信息系统50(a)将测试程序下载到工作流管理层50(b)。在本发明的其它实施例中,工作流管理层50(b)可将测试程序的查询发送到实验室信息系统50(b)(步骤703)。
在步骤704,具有样品的机架通过输入拉拔器被装载到实验室自动化系统上。在从机架取回样品之后,实验室自动化系统向工作流管理层50(b)通知样品的到达。
在步骤705,工作流管理层50(b)用样品所需的处理指令来指示过程控制层60(a)。例如,工作流管理层50(b)可生成处理计划并将处理计划提供到过程控制层60(a)。
在步骤706,过程控制层60(a)确定哪些自动化硬件子系统(即,哪个路线)可最好地满足处理指令,以满足样品的周转时间同时最大化样品吞吐量。过程控制层60(a)可用以确定哪些自动化子系统可最好地满足处理指令的信息可包括分析仪或其它仪器的可用性、所述仪器上耗材的可用性、各种仪器上的备份等。
在步骤707,过程控制层60(a)向中间控制层70(a)提供样品的路由指令。
在步骤708,中间控制层70(a)将路由指令映射到设备命令并将命令发送到设备控制层70(b)。
在步骤709,设备控制层70(b)执行命令、控制硬件,并用命令结果(例如,致动器位置、传感器数据等)响应于中间控制层70(a)。
在步骤710,中间控制层70(a)更新样品的管状态数据并将数据转发到过程控制层60(a)。这个管状态数据可由过程控制层60(a)用以优化从工作流管理层50(b)接收的后续处理计划中的路线。
在步骤711,过程控制层60(a)将管状态数据转发到工作流管理层50(b)。
在步骤711之后,样品容器可被提供到分析仪60(b)、60(c),所述分析仪可被连接到或不被连接到LAS 80。
在步骤712,对于连接的分析仪60(b),样品被直接路由到分析仪。对于独立的分析仪60(c),样品被路由到托盘。实验室人员卸载这些托盘并将样品手动装载到合适的分析仪。
在步骤713,一个或多个分析仪60(b)、60(c)处理样品。分析仪60(b)、60(c)将测试结果发送到工作流管理层50(b)。
在步骤714,工作流管理层50(b)验证测试结果。
在步骤715,一旦被验证,工作流管理层50(b)就将测试结果转发到实验室信息系统50(a)并将样品完成消息转发到过程控制层60(a),从而可存储完成的样品。
在步骤716,实验室信息系统50(a)将验证的测试结果发布给医疗或实验室人员。
图形用户界面(GUI)
管理架构100的图形用户界面(GUI)可使用LAS系统的常用控制台。大多数仪器可具有附加的对应图形显示,称为帧-GUI,因为它们被物理地连接到硬件帧。
GUI概念适合于上文详细阐述的级别概念。对于每个级别(实验室级50、仪器级60和子系统级70),某一功能范围可用以保证可用性和安全性、优异的操控性、灵活性和整合能力。对于安全问题,用户权限限定对接口配置的访问。在顶部级别,GUI可提供具有定义的信息的实验室概述,以对任何变化作出反应并启动自发的行为。其它级别根据其在实验室-仪器-子系统层次中的位置来配置。
通过具有从例如笔记本计算机的移动设备访问任何子系统、仪器或中心实验室概述的可能性,可将特殊的作用分配到服务级。图3示出不同级别。如图3所示,实验室级502可包括实验室概述部分502(a),实验室概述部分502(a)可下钻到实验室级502(b)或显示标签信息502(c)。实验室级502(b)也可访问实验室配置502(d)。实验室概述502(a)也可访问仪器级504中的仪器级接口504(b)。仪器级接口504(b)可访问仪器概述接口504(a),仪器概述接口504(a)可访问仪器配置接口504(c)和子系统级506中的子系统级接口506(a)。子系统级接口506(a)可访问子系统配置接口506(b)。
在实验室级502,GUI架构可提供可帮助用户与实验室级502上的系统相连接的至少两个设计元件。它们可包括TV屏幕客户端和检查客户端。
这个级别502只提供控制层的用户级访问。TV屏幕客户端可能仅显示连接到WML 50(b)的设备。TV屏幕客户端可显示实验室的概述,例如连接到WML 50(b)的仪器的状态、可被过滤以仅显示那些感兴趣的样品状态,和仪器错误消息。
检查客户端可对于控制层的所有访问级别开放。检查客户端允许访问实验室的实验室级视图。从检查客户端来看,有可能配置TV客户端。另外,这里可查看错误消息或其它警报,和连接到WML 50(b)的每个仪器的状态。检查客户端可具有配置向导来设置实验室环境并将链接提供到物理仪器。这里,用户接口可在仪器和子系统级下钻到查看状态。
虽然实验室级502涉及所有连接和非连接的仪器和连接到WML 50(b)的LAS,但是在一些实施例中,仪器级504仅可涉及一个特定的LAS。GUI架构提供了帮助用户与仪器级60上的系统相连接的两个设计元件,即仪器客户端和服务客户端。
仪器客户端允许每个用户访问级来管理来自仪器级504的LAS。这个客户端被用作PCL的GUI。仪器客户端充当PCL的远程用户接口,从而允许用户查看状态并进行配置改变。PCL需要将关于错误、子系统状态、耗材等的状态信息提供到仪器客户端,且仪器客户端可将命令发送到PCL,以暂停子系统、从错误恢复并修改配置设置。在一些情况下,PCL和仪器客户端可驻留在相同的计算装置上,但可在不同过程中运行。
这个级别允许向下导览以查看子系统级506的只读视图。它还允许显示与是LAS的部分的特定子系统相关的状态信息和任何仪器错误消息。它还执行仪器日常操作,执行仪器级504上的错误恢复、仪器级初始化、仪器配置任务,以及备份和恢复操作。
服务客户端提供服务和在每个LAS级上服务功能的超级用户访问。服务客户端可在服务笔记本计算机或其它计算设备上运行。
这个级别允许向下导览以查看子系统级506的只读视图。它还允许显示与是LAS的部分的特定子系统相关的状态信息和任何仪器错误消息。它还执行仪器日常操作、仪器级504上的错误恢复、仪器级初始化、仪器配置任务,和备份/恢复操作。
这个级别将负责LAS上的每个个别子系统。子系统用户接口可显示当错误发生时子系统的状态以及错误信息,且可能显示错误恢复视频以协助恢复过程。用户可使用子系统用户接口来执行一些基本的子系统配置任务,例如在输入或输出端修改现用基帧配置。
GUI架构提供了帮助用户与子系统级上的系统相连接的两个设计元件,即帧客户端和服务客户端。
帧客户端特定于被请求以进行显示的特定子系统。对于每个帧客户端,可能有所有帧客户端之间共用的GUI的部分。这个共性可在共同帧客户端内被分组,且非共用部分将为子系统特定的帧客户端的一部分。
帧客户端可显示当前子系统、当前子系统状态、警报条件和用户需要注意的子系统上的位置。帧客户端也可显示子系统上的管的耗材或废物状态。
服务客户端可允许服务或管理用户执行以下服务类型的功能:(1)仪器命令功能——启动、停止子系统、初始化子系统;(2)开/关拉拔器;(3)交换机架;(4)更换耗材或去除废物;(5)执行错误恢复;(6)执行子系统配置;(7)执行系统教导功能;(8)校直程序;(9)备份/恢复功能;(10)子系统的维修程序;(11)诊断特征;(12)系统练习功能;和(13)性能验证测试。
在管理架构系统中,错误和操作事件被概括为“事件”。管理架构利用单个机制来处理事件、事件警报对象(EAO),而不管事件是系统错误还是操作事件。
LAS或分析仪遇到的一些事件是真正的错误(例如,机器人运动误差、载体被卡住等),而一些事件是操作事件且是系统正常操作的一部分(例如,处置去盖器废物、卸载满的托盘、再填充等分尖端)而不是错误。操作事件的行为类似于错误,使得用户需要被通知事件。用户可能需要另外的指令来从操作事件恢复。一旦完成从操作事件的恢复,在GUI上显示的对应通知需要被清除。
事件警报对象包含事件或警报数据,且被用作实验室、仪器和子系统级之间的输送机制。它将指定将在哪个级显示警报和错误恢复将在哪里执行。以下章节描述了管理架构的每个架构级的错误恢复的行为。
在这个级可查看所有实验室或样品事件。在这个级显示的事件/错误通知将指示哪个级将执行错误恢复。对于基于样品的错误,如果管的处理由于错误或事件而有问题的话,WML可生成处理计划以可能地将样品路由到错误的位置。而且,要求WML生成新的处理计划的错误条件将被转发到WML。新的处理计划然后将被向下发送到仪器级。
对于基于非样品的错误,WML的故障或WML和仪器级之间的通信的故障将使得样品被固持在它们所在的位置,或完成它们在其中运行的分析仪上的处理然后被固持在当前子系统,直到与WML的连接被重新建立。如果没有重新建立连接(即,在某个给定的超时之后),仪器级可指示子系统级如果可能的话就完成路线段,否则将管路由到错误位置。
自动化特定的事件将从这个级可见。在这个级显示的事件/错误通知可指示哪个级别可执行错误恢复。
对于基于样品的错误,管状态信息消息可被发送到WML,以指示防止其满足当前处理计划的错误或事件已发生。同时,WML然后将发送新的处理计划以将管路由到错误位置或别的新目的地。仪器级也可显示不需要生成处理计划的错误的由子系统级生成的错误通知。
对于基于非样品的错误,故障是关于仪器级或关于仪器级和子系统级之间的通信。样品将在当前子系统上完成当前处理。一旦连接被重新建立,管状态信息就被发送到仪器级,仪器级将所述信息转发到WML上。如果当前处理计划令人满意就使用当前处理计划,或者生成新的处理计划。然后正常执行处理计划。如果没有重新建立连接,那么样品在当前子系统上等待。
子系统特定的事件将在子系统级上可见。在这个级显示的事件/错误通知将指示哪个级别将执行错误恢复。
对于基于样品的错误,如果MCL检测到样品管的防止样品管被路由的错误(因为它由于某种原因不能满足,或者管是未知的或在意外的位置),那么MCL将生成将通过仪器级被发送到WML的管状态信息消息。WML然后可生成新的处理计划以将管路由到新的目的地或路由到错误的位置。如果有不涉及样品的路由的错误,那么子系统级将通知仪器级,仪器级又将通知用户。仪器级也可在必要时暂停LAS。
对于基于非样品的错误,如果子系统重新启动,那么它会将缓存的消息发送到仪器级。可处理具有已知状态的样品。仪器级可将每个样品的管状态信息消息发送到WML。如果接收到新的处理计划,那么可处理所述新的处理计划。否则,可使用当前处理计划。另外,子系统客户端可向用户提示是继续处理样品还是将其发送到SIQ(问题样品)。继续处理将生成指示成功完成的管状态信息消息。将其发送到SIQ的步骤将发送指示完成具有错误的管状态信息消息。如果样品由于任何原因被发送到SIQ缓冲器,那么指示原因的消息被发送到WML,所述原因例如“体积太小而不能离心”或“条码不可读”等。
图4是可存在于被配置以执行根据本发明的一些实施例的方法或操作的计算装置中的元件的方框图。图4中的元件可用于图1A、1B、1C等所示的任何部件中。图4中所示的子系统通过系统总线575互连。示出了另外的子系统,例如打印机574、键盘578、固定磁盘579、耦接到显示适配器582的显示器576,和其它子系统。耦接到I/O控制器571的外围设备和输入/输出(I/O)设备可通过本领域中已知的任何数量的手段(例如串行端口577)连接至计算系统。例如,可使用串行端口577或外部接口581来将计算设备连接至例如互联网的广域网、鼠标输入设备,或扫描仪。通过系统总线575实现的互连允许编程的中央处理器573(例如,微处理器,CPU等)与每个子系统通信并且控制可存储于系统存储器572或固定磁盘579中的指令的执行,以及信息在子系统之间的交换。系统存储器572和/或固定磁盘579可实现为计算机可读介质。
本申请中所述的软件部件或功能中的任一者可以软件代码的形式实现,所述代码将由处理器使用任何合适的计算机语言(例如Java、C++或Perl)并使用例如常规的或面向对象的技术执行。所述软件代码可以作为一系列指令或命令存储在计算机可读介质上,例如随机存取存储器(RAM)、只读存储器(ROM)、例如硬盘驱动器或软盘的磁介质、或例如CD-ROM的光学介质上。任何这种计算机可读介质可驻留在单个计算装置之上或之内,并且可存在于系统或网络内的不同计算装置之上或之内。
上述具体实施方式是示例性而非限制性的。在回顾本公开时,本发明的多种变型对于本领域的技术人员而言将是显而易见的。因此,本发明的范围不应当根据上述具体实施方式确定,而是应当根据待审权利要求连同它们的完整范围或等同形式来确定。
在不脱离本发明范围的前提下,来自任何实施例的一个或多个特征可以与任何其他实施例的一个或多个特征相结合。
除非有明确相反的指示,否则“一个”、“一种”或“所述”的表述旨在意指“一个(种)或多个(种)”。
上文提及的所有专利、专利申请、出版物和说明书以引用方式全文并入于此用于所有目的。未承认它们中的任一者为现有技术。

Claims (31)

1.一种方法,包括:
由使用工作流管理层的至少一个处理器来生成样品容器中的样品的处理计划;
将所述处理计划提供到过程控制层;
由使用所述过程控制层的所述至少一个处理器来确定与所述处理计划一致的优化路线;和
使用所述优化路线来处理所述样品。
2.根据权利要求1所述的方法,其中所述优化路线包含多个不同的样品处理子系统。
3.根据前述权利要求中任一项所述的方法,还包括:通过实验室信息系统接收指令数据和将所述指令数据提供到所述工作流管理层,其中所述工作流管理层包括至少两个子层。
4.根据前述权利要求中任一项所述的方法,其中所述优化路线包含多个不同的样品处理子系统,所述不同的样品处理子系统选自由以下组成的组:分析仪、等分器、机器人、输入站、输出站、去盖器、回盖器、夹持器单元、管检查单元(TIU)、LLD、和离心机。
5.根据前述权利要求中任一项所述的方法,还包括:
由所述过程控制层来将所述优化路线的至少一部分提供到中间控制层,其中所述至少一个处理器和所述中间控制层可操作以使得所述样品由所述优化路线中指定的子系统来处理;和
由所述处理器和所述中间控制层来将设备命令提供到设备控制层。
6.根据前述权利要求中任一项所述的方法,还包括:
由所述工作流管理层来接收来自用以生成所述处理计划的一个或多个分析仪的信息。
7.一种计算机装置,包括:
至少一个处理器;和
存储器设备,其存储可由所述至少一个处理器执行的多个软件部件,所述多个软件部件包括:
工作流管理层,其可操作以生成包括多个路线的处理计划;和
处理器控制层,其可操作以在所述多个路线中选择优化路线。
8.根据权利要求7所述的计算机装置,还包括:
设备控制层;和
中间控制层,其可操作以从所述过程控制层接收所述优化路线并将命令提供到所述设备控制层。
9.根据权利要求7-8中任一项所述的计算机装置,其中所述过程控制层可操作以从所述中间控制层接收样品容器数据。
10.一种系统,包括:
多个样品处理子系统;和
计算机装置,所述计算机装置包括:
至少一个处理器,和
存储器设备,其存储可由所述至少一个处理器执行的多个软件部件,所述多个软件部件包括:
工作流管理层,其可操作以生成处理计划,和
处理器控制层,其可操作以使用所述处理计划来选择优化路线。
11.根据权利要求10所述的系统,还包括:
中间控制层,其可操作以从所述过程控制层接收所述优化路线的至少一部分并将命令提供到设备控制层。
12.一种自动化的样品处理系统,包括:
工作流管理控制器,其包括第一处理器,和第一计算机可读介质,所述第一计算机可读介质包括工作流管理层;和
LAS控制器,其耦接到所述工作流管理控制器且为实验室自动化系统的一部分,所述LAS控制器包括第二处理器,和第二计算机可读介质,所述第二计算机可读介质包括过程控制层和中间控制层。
13.根据权利要求12所述的自动化的样品处理系统,其中所述LAS控制器为第一LAS控制器且所述实验室自动化系统为第一实验室自动化系统,且其中所述自动化的样品处理系统包括耦接到所述工作流管理控制器的与第二实验室自动化系统相关的第二LAS控制器。
14.根据权利要求12所述的自动化的样品处理系统,其中所述LAS控制器和所述工作流管理控制器配置为彼此独立地操作。
15.一种方法,包括:
由工作流管理控制器来将待处理的样品的指令数据提供到耦接到所述工作流管理控制器的LAS控制器,所述工作流管理控制器包括第一处理器,和第一计算机可读介质,所述第一计算机可读介质包括工作流管理层,所述LAS控制器为实验室自动化系统的一部分,且包括第二处理器,和第二计算机可读介质,所述第二计算机可读介质包括过程控制层和中间控制层;和
由所述LAS控制器来执行所述指令数据。
16.根据权利要求15所述的方法,其中所述指令数据包括用于待处理的所述样品的处理计划。
17.根据权利要求16所述的方法,其中所述处理计划指定将在所述样品上运行的一个或多个测试。
18.根据权利要求16所述的方法,其中所述LAS控制器为第一LAS控制器,所述实验室自动化系统为第一实验室自动化系统,所述指令数据为第一指令数据,并且其中所述方法还包括:
由所述工作流管理控制器来将待处理样品的第二指令数据提供到耦接到所述工作流管理控制器的第二LAS控制器,所述第二LAS控制器为第二实验室自动化系统的一部分,且包括第三处理器,和第三计算机可读介质,所述第三计算机可读介质包括第三过程控制层和第三中间控制层;和
由所述第二LAS控制器来执行所述第二指令数据。
19.根据权利要求18所述的方法,其中所述第一LAS控制器和所述第二LAS控制器彼此独立地操作。
20.一种方法,包括:
由使用过程控制层的至少一个处理器来将路线段提供到中间控制层;
由所述至少一个处理器和所述中间控制层来生成指令以控制所述路线段的子系统或所述路线段的子组件容器的操作,其中所述子组件容器控制与所述子组件容器相关的多个子组件;和
由设备控制层来执行所述指令。
21.根据权利要求20所述的方法,其中所述路线段是由所述过程控制层生成的优化路线的一部分。
22.根据权利要求20-21中任一项所述的方法,其中所述子组件容器独立于所述过程控制层操作,以控制所述多个子组件。
23.根据权利要求20-22中任一项所述的方法,其中所述多个子组件包括两个或更多个不同子系统的部分。
24.一种系统,包括:
计算机装置,所述计算机装置包括至少一个处理器,和存储器设备,所述存储器设备存储可由所述至少一个处理器执行的多个软件部件,所述多个软件部件包括:
过程控制层,其配置为使用所述至少一个处理器来将路线段提供到中间控制层,
中间控制层,其配置为使用所述至少一个处理器来生成指令以控制所述路线段的子系统或所述路线段的子组件容器的操作,其中所述子组件容器控制与所述子组件容器相关的多个子组件,和
设备控制层,其配置为使用所述至少一个处理器来执行所述指令。
25.根据权利要求24所述的系统,还包括:
所述多个子组件。
26.根据权利要求24-25中任一项所述的系统,其中所述系统是实验室自动化系统。
27.根据权利要求24-26中任一项所述的系统,其中所述存储器设备存储所述过程控制层。
28.根据权利要求24-27中任一项所述的系统,其中所述子组件容器独立于其它子组件容器操作。
29.根据权利要求24-28中任一项所述的系统,其中所述多个子组件包括两个或更多个不同子系统的部分。
30.一种方法,包括:
由使用工作流管理器的至少一个处理器来生成样品容器中的样品的处理计划;
将所述处理计划提供到仪器管理器;
由使用所述仪器管理器的所述至少一个处理器来确定与使用所述过程控制层的所述处理计划一致的优化路线;和
使用所述优化路线来处理所述样品。
31.一种计算机装置,包括:
至少一个处理器;和
存储器设备,其存储可由所述至少一个处理器执行的多个软件部件,所述多个软件部件包括:
工作流管理器,其可操作以生成包括多个路线的处理计划;和
仪器管理器,其可操作以在所述多个路线中选择优化路线。
CN201380057820.8A 2012-11-07 2013-11-07 自动化的样品处理系统 Active CN104884929B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261723736P 2012-11-07 2012-11-07
US61/723,736 2012-11-07
PCT/US2013/068886 WO2014074684A2 (en) 2012-11-07 2013-11-07 Automated sample processing system

Publications (2)

Publication Number Publication Date
CN104884929A true CN104884929A (zh) 2015-09-02
CN104884929B CN104884929B (zh) 2019-12-17

Family

ID=49627110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380057820.8A Active CN104884929B (zh) 2012-11-07 2013-11-07 自动化的样品处理系统

Country Status (8)

Country Link
US (2) US11454574B2 (zh)
EP (1) EP2917729B1 (zh)
JP (1) JP6470690B2 (zh)
KR (1) KR102184071B1 (zh)
CN (1) CN104884929B (zh)
BR (1) BR112015010349A2 (zh)
IN (1) IN2015DN03201A (zh)
WO (1) WO2014074684A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106874656A (zh) * 2017-01-16 2017-06-20 长春迪瑞医疗科技股份有限公司 一种基于实验室自动化系统的样本重测方法及系统
CN107860931A (zh) * 2016-09-21 2018-03-30 豪夫迈·罗氏有限公司 用于实验室设备的自动排程器
CN108388246A (zh) * 2018-01-19 2018-08-10 中山大学 一种试验样品智能运输精确感控装置
CN109154588A (zh) * 2016-05-17 2019-01-04 自动化合作关系(剑桥)有限公司 自动化生物过程开发
WO2020244201A1 (zh) * 2019-06-05 2020-12-10 深圳市亚辉龙生物科技股份有限公司 分析仪自动化对接方法、装置、计算机设备和存储介质
CN112734189A (zh) * 2020-12-30 2021-04-30 深圳晶泰科技有限公司 实验工作流模型建立方法
WO2021135364A1 (zh) * 2019-12-31 2021-07-08 科美诊断技术股份有限公司 指令生成方法及装置
CN114139852A (zh) * 2021-10-19 2022-03-04 中国核电工程有限公司 一种分析实验室信息管理系统及乏燃料后处理系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884929B (zh) 2012-11-07 2019-12-17 贝克曼考尔特公司 自动化的样品处理系统
US9367974B1 (en) * 2014-04-07 2016-06-14 Rockwell Collins, Inc. Systems and methods for implementing network connectivity awareness, monitoring and notification in distributed access control
JP6628368B2 (ja) 2014-05-06 2020-01-08 ベックマン コールター, インコーポレイテッド サイトネットワークを形成するための方法及びシステム
JP2017528829A (ja) * 2014-09-03 2017-09-28 ベックマン コールター, インコーポレイテッド 診断機器、方法及び装置用の統合コンソール環境
EP3195166A4 (en) * 2014-09-15 2018-03-28 Leica Biosystems Melbourne Pty Ltd Instrument management system
EP3451253A1 (en) 2017-09-01 2019-03-06 F. Hoffmann-La Roche AG Method for operating a laboratory system
GB2567487A (en) * 2017-10-16 2019-04-17 Stratec Biomedical Ag Path control in a laboratory automation system
EP3537159B1 (en) 2018-03-07 2022-08-31 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3618072A1 (en) 2018-08-29 2020-03-04 F. Hoffmann-La Roche AG Laboratory system for analyzing biological samples
WO2020124157A1 (en) * 2018-12-20 2020-06-25 Leica Biosystems Melbourne Pty Ltd Method and system for generating a schedule of activities for an automated laboratory system
WO2020163137A1 (en) * 2019-02-04 2020-08-13 Beckman Coulter, Inc. Laboratory instrument, network and method for communicating data
US11656903B2 (en) * 2019-06-25 2023-05-23 Intel Corporation Methods and apparatus to optimize workflows
US20210174942A1 (en) * 2019-12-04 2021-06-10 Idexx Laboratories, Inc. Systems, Devices, and Methods for Managing Operation of Diagnostic Testing Instruments
EP4040442A1 (en) * 2021-02-09 2022-08-10 F. Hoffmann-La Roche AG Laboratory data management system
WO2023138863A1 (en) 2022-01-20 2023-07-27 Roche Diagnostics Gmbh Method for operating laboratory system and laboratory system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234869A (zh) * 1997-06-16 1999-11-10 迪亚格诺斯提卡斯塔戈公司 连续或不连续地自动分析容器中的样品的方法
CN101918848A (zh) * 2007-11-30 2010-12-15 英派克埃彼有限公司 用来自动地识别、输送、及寻址生物材料样品的系统
WO2012012779A2 (en) * 2010-07-23 2012-01-26 Beckman Coulter Inc. System and method including analytical units
US20120109531A1 (en) * 2010-11-03 2012-05-03 Roche Diagnostics Operations, Inc. Analysis system for analyzing biological samples

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8822739D0 (en) 1988-09-28 1988-11-23 Zyqad Ltd Improvements in/relating to knowledge engineering
US5737498A (en) * 1995-07-11 1998-04-07 Beckman Instruments, Inc. Process automation method and apparatus
WO1998012654A2 (de) 1996-09-18 1998-03-26 Siemens Aktiengesellschaft Verfahren zur optimierten plazierung technischer komponenten in einer vorgebbaren topologie, durch einen rechner
US6546364B1 (en) * 1998-12-18 2003-04-08 Impresse Corporation Method and apparatus for creating adaptive workflows
US6581012B1 (en) * 1999-07-30 2003-06-17 Coulter International Corp. Automated laboratory software architecture
US7937655B2 (en) * 2000-12-22 2011-05-03 Oracle International Corporation Workflows with associated processes
ES2333697T3 (es) * 2001-04-05 2010-02-26 Inpeco Ip Ltd. Metodo para la gestion de sistemas de celula de trabajo basado en un sistema de gestion de la automatizacion.
US6871108B2 (en) * 2002-11-19 2005-03-22 Qssolutions, Inc. System and method for creating a representation of an assembly
US20040103073A1 (en) * 2002-11-21 2004-05-27 Blake M. Brian System for and method of using component-based development and web tools to support a distributed data management system
US7850912B2 (en) 2003-05-14 2010-12-14 Dako Denmark A/S Method and apparatus for automated pre-treatment and processing of biological samples
JP4554897B2 (ja) * 2003-07-15 2010-09-29 シスメックス株式会社 分析システム
US20080235055A1 (en) * 2003-07-17 2008-09-25 Scott Mattingly Laboratory instrumentation information management and control network
US7860727B2 (en) * 2003-07-17 2010-12-28 Ventana Medical Systems, Inc. Laboratory instrumentation information management and control network
EP1607809B1 (en) * 2004-06-07 2008-03-12 ABB Research Ltd Method of generating optimal control problems for industrial processes
WO2007123879A2 (en) * 2006-04-17 2007-11-01 Mayo Foundation For Medical Education And Research Automated systems for handling specimens for laboratory diagnostics and associating relevant information
US20080113440A1 (en) 2006-10-06 2008-05-15 Leica Biosystems Melbourne Pty Ltd Method and Apparatus for Tissue Sample Processing
JP5481122B2 (ja) 2009-07-28 2014-04-23 株式会社日立ハイテクノロジーズ 遠心分離装置
CN102822678B (zh) * 2010-03-30 2015-06-10 希森美康株式会社 样本分析装置及样本分析系统
JP5432816B2 (ja) * 2010-05-14 2014-03-05 株式会社日立ハイテクノロジーズ 自動分析システムおよび装置管理サーバ
US9116746B2 (en) * 2010-12-17 2015-08-25 Verizon Patent And Licensing Inc. Workflows and presets for workflows
US9651570B2 (en) 2010-12-28 2017-05-16 Hitachi High-Technologies Corporation Automatic centrifuge, pre-analysis system with automatic centrifuge and the control techniques of that system
US9910054B2 (en) * 2011-11-07 2018-03-06 Beckman Coulter, Inc. System and method for processing samples
KR20140092377A (ko) * 2011-11-07 2014-07-23 베크만 컬터, 인코포레이티드 분취기 시스템 및 작업흐름
US20120324454A1 (en) * 2012-05-04 2012-12-20 Concurix Corporation Control Flow Graph Driven Operating System
US10254299B2 (en) * 2012-10-11 2019-04-09 Siemens Healthcare Diagnostics Inc. Multiple slot place and pick carrier
CN104884929B (zh) 2012-11-07 2019-12-17 贝克曼考尔特公司 自动化的样品处理系统
JP6628368B2 (ja) 2014-05-06 2020-01-08 ベックマン コールター, インコーポレイテッド サイトネットワークを形成するための方法及びシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234869A (zh) * 1997-06-16 1999-11-10 迪亚格诺斯提卡斯塔戈公司 连续或不连续地自动分析容器中的样品的方法
CN101918848A (zh) * 2007-11-30 2010-12-15 英派克埃彼有限公司 用来自动地识别、输送、及寻址生物材料样品的系统
WO2012012779A2 (en) * 2010-07-23 2012-01-26 Beckman Coulter Inc. System and method including analytical units
US20120109531A1 (en) * 2010-11-03 2012-05-03 Roche Diagnostics Operations, Inc. Analysis system for analyzing biological samples

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154588A (zh) * 2016-05-17 2019-01-04 自动化合作关系(剑桥)有限公司 自动化生物过程开发
CN107860931A (zh) * 2016-09-21 2018-03-30 豪夫迈·罗氏有限公司 用于实验室设备的自动排程器
CN106874656A (zh) * 2017-01-16 2017-06-20 长春迪瑞医疗科技股份有限公司 一种基于实验室自动化系统的样本重测方法及系统
CN106874656B (zh) * 2017-01-16 2019-11-01 迪瑞医疗科技股份有限公司 一种基于实验室自动化系统的样本重测方法及系统
CN108388246A (zh) * 2018-01-19 2018-08-10 中山大学 一种试验样品智能运输精确感控装置
WO2020244201A1 (zh) * 2019-06-05 2020-12-10 深圳市亚辉龙生物科技股份有限公司 分析仪自动化对接方法、装置、计算机设备和存储介质
WO2021135364A1 (zh) * 2019-12-31 2021-07-08 科美诊断技术股份有限公司 指令生成方法及装置
CN112734189A (zh) * 2020-12-30 2021-04-30 深圳晶泰科技有限公司 实验工作流模型建立方法
CN114139852A (zh) * 2021-10-19 2022-03-04 中国核电工程有限公司 一种分析实验室信息管理系统及乏燃料后处理系统

Also Published As

Publication number Publication date
JP2015533428A (ja) 2015-11-24
KR20150082284A (ko) 2015-07-15
WO2014074684A3 (en) 2014-07-03
JP6470690B2 (ja) 2019-02-13
US20220074825A1 (en) 2022-03-10
EP2917729B1 (en) 2019-03-13
US20140129172A1 (en) 2014-05-08
KR102184071B1 (ko) 2020-11-27
BR112015010349A2 (pt) 2017-07-11
CN104884929B (zh) 2019-12-17
WO2014074684A2 (en) 2014-05-15
US11454574B2 (en) 2022-09-27
EP2917729A2 (en) 2015-09-16
EP2917729A4 (en) 2015-12-09
IN2015DN03201A (zh) 2015-10-02

Similar Documents

Publication Publication Date Title
CN104884929A (zh) 自动化的样品处理系统
CN102317911B (zh) 管理任务执行
Cho et al. Intelligent workstation controller for computer-integrated manufacturing: problems and models
Anosike et al. An agent-based approach for integrating manufacturing operations
Raileanu et al. Edge computing in industrial IoT framework for cloud-based manufacturing control
KR20170002539A (ko) 사이트 네트워크를 형성하기 위한 방법 및 시스템
JP2015517670A (ja) 検査診断用分散型自動化装置
Wang et al. Task offloading in cloud-edge collaboration-based cyber physical machine tool
CN111745636B (zh) 机器人控制方法及控制系统、存储介质及电子设备
Borangiu et al. Smart manufacturing control with cloud-embedded digital twins
CN109791481A (zh) 应用开发环境提供系统、应用开发环境提供方法、信息处理装置及计算机可读取的非易失性的存储介质
Zhong et al. Dynamic Lines of Collaboration
Son et al. Design of warehouse control system for real time management
Ryu et al. Dynamic restructuring process for self-reconfiguration in the fractal manufacturing system
Jo et al. Design and implementation of cpps and edge computing architecture based on opc ua server
Mathews et al. Industrial applications of a modular software architecture for line-less assembly systems based on interoperable digital twins
Wasserman ARTI-based holonic control implementation for a manufacturing system using the BASE architecture
Alexakos et al. Production process adaptation to IoT triggered manufacturing resource failure events
Neubert et al. Architecture for a Combined Mobile Robot and Human Operator Transportation Solution for the Hierarchical Life Science Automation.
Cheung et al. HSCF: a holonic shop floor control framework for flexible manufacturing systems
Sanoff et al. Integrated information processing for production scheduling and control
Alemão Dynamic Scheduling for Maintenance Tasks Allocation supported by Genetic Algorithms
Neubert et al. Intelligent Labware Transportation Solution for the Hierarchical Life Science Automation
Stoll et al. Intelligent Labware Transportation Solution for the Hierarchical Life Science Automation
WO2022229677A1 (en) Method and system for allocating an agv vehicle in a plant location

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant