WO2021135364A1 - 指令生成方法及装置 - Google Patents

指令生成方法及装置 Download PDF

Info

Publication number
WO2021135364A1
WO2021135364A1 PCT/CN2020/114205 CN2020114205W WO2021135364A1 WO 2021135364 A1 WO2021135364 A1 WO 2021135364A1 CN 2020114205 W CN2020114205 W CN 2020114205W WO 2021135364 A1 WO2021135364 A1 WO 2021135364A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnostic
component
instruction
operating
diagnostic device
Prior art date
Application number
PCT/CN2020/114205
Other languages
English (en)
French (fr)
Inventor
张晶鑫
吴栋杨
李临
Original Assignee
科美诊断技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科美诊断技术股份有限公司 filed Critical 科美诊断技术股份有限公司
Publication of WO2021135364A1 publication Critical patent/WO2021135364A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00712Automatic status testing, e.g. at start-up or periodic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3013Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is an embedded system, i.e. a combination of hardware and software dedicated to perform a certain function in mobile devices, printers, automotive or aircraft systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3089Monitoring arrangements determined by the means or processing involved in sensing the monitored data, e.g. interfaces, connectors, sensors, probes, agents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This application relates to the field of medical technology, in particular to an instruction generation method and device.
  • the various processes of the diagnostic equipment are controlled by manual management. Under normal circumstances, when the diagnostic equipment is in working condition, all the components included in it are in working condition. This situation will cause a certain part to wait. Corresponding inspections will not be performed until the components of the previous process are executed, which leads to idleness of some components, which further leads to waste of power and increases the loss of diagnostic equipment.
  • This application provides an instruction generation method and device to solve the problem that a certain component in the prior art needs to wait for the components of the previous process to execute before performing corresponding detection, which leads to idleness of certain components and further waste of electrical energy. And aggravated the problem of the loss of diagnostic equipment.
  • this application discloses a method for generating instructions, which is applied to a diagnostic device or a terminal connected to the diagnostic device, including:
  • the operating instruction is sent to the diagnostic device, so that the diagnostic device controls the second diagnostic component to switch to a working state according to the operating instruction.
  • the method before acquiring the target operating state information of the first diagnostic component, the method further includes:
  • the operating status information of each component in the diagnostic device is displayed in the preset page.
  • the acquiring target operating status information of the first diagnostic component includes:
  • the target operating status information of the first diagnostic component is acquired.
  • the target operating status information includes the remaining time of the detection item executed by the first diagnostic component, and when the target operating status information satisfies a preset trigger condition, the operating instruction corresponding to the second diagnostic component is generated ,include:
  • this application discloses an instruction generation method, which is applied to a diagnostic device or a terminal connected to the diagnostic device.
  • the diagnostic device includes a plurality of diagnostic components, including:
  • each of the operating instructions is sent to the diagnostic device in turn, so that the diagnostic device controls the switching of the corresponding diagnostic component according to each of the operating instructions To working state.
  • an instruction generation device which is applied to a diagnostic device or a terminal connected to the diagnostic device, including:
  • the first status information acquiring module is configured to acquire target operating status information of the first diagnostic component during the operation of the first diagnostic component;
  • the second component acquisition module is used to acquire a second diagnostic component running after the first diagnostic component
  • An operating instruction generating module configured to generate an operating instruction corresponding to the second diagnostic component when the target operating state information meets a preset trigger condition
  • the operating instruction sending module is configured to send the operating instruction to the diagnostic device, so that the diagnostic device controls the second diagnostic component to switch to a working state according to the operating instruction.
  • it also includes:
  • the preset page generation module is used to generate a preset page
  • the operating status display module is used to display the operating status information of each component in the diagnostic equipment in the preset page when the diagnostic equipment is in a working state.
  • the first state information acquiring module includes:
  • the first status information acquiring sub-module is configured to acquire the target operating status information of the first diagnostic component according to the operating status information of each component displayed in the preset page.
  • the target operating status information includes the remaining time of the detection item executed by the first diagnostic component
  • the operating instruction generating module includes:
  • the running instruction generating sub-module is configured to generate the running instruction of the second diagnostic component when the remaining time is less than the threshold time.
  • the present application discloses an instruction generation device, which is applied to a diagnostic device or a terminal connected to the diagnostic device.
  • the diagnostic device includes a plurality of diagnostic components, including:
  • a plurality of operating instruction generating modules are used to generate operating instructions corresponding to each of the diagnostic components when it is determined that the diagnostic device is about to enter a working state; an execution sequence obtaining module is used to obtain the corresponding execution sequence of each of the diagnostic components;
  • a plurality of operating instruction sending modules are used to send each operating instruction to the diagnostic device in turn according to the execution sequence when the diagnostic device enters the working state, so that the diagnostic device will execute the operating instructions according to each of the operating instructions.
  • the instruction controls the corresponding diagnosis component to switch to the working state.
  • the embodiments of the present application provide an instruction generation method and device.
  • acquiring the target operating status information of the first diagnostic component during the operation of the first diagnostic component acquiring the second diagnostic component running after the first diagnostic component, and generating the second diagnostic component when the target operating status information meets the preset trigger condition
  • the operation instruction corresponding to the second diagnosis component is sent to the diagnosis device, so that the diagnosis device controls the second diagnosis component to switch to the working state according to the operation instruction.
  • the embodiment of the application generates the running instruction of the next diagnostic component in real time according to the running status information of the currently running diagnostic component, avoids the diagnostic component in an idle state, reduces the waste of electric energy and the loss of diagnostic equipment, and, through timely Generating run instructions can ensure the timeliness of the execution of test tasks.
  • FIG. 1 shows a schematic structural diagram of an automatic laser chemiluminescence detector provided by an embodiment of the present application
  • FIG. 2 shows a schematic structural view of the front side of a fully automatic laser chemiluminescence detector provided by an embodiment of the present application after the housing is removed;
  • FIG. 3 shows a schematic structural view of the reverse side of a fully automatic laser chemiluminescence detector provided by an embodiment of the present application after the housing is removed;
  • Figure 4 shows a schematic structural diagram of a slat clamping device provided by an embodiment of the present application
  • Figure 5 shows a flow chart of the steps of an instruction generation method provided by an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the operating state of a fully automatic laser chemiluminescence detector provided by an embodiment of the present application
  • FIG. 7 shows a flowchart of another instruction generation method provided by an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of an instruction generation device provided by an embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of another instruction generation device provided by an embodiment of the present application.
  • Fig. 10 schematically shows a block diagram of a computing processing device for executing the method according to the present invention.
  • Fig. 11 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present invention.
  • the diagnostic equipment in the embodiments of the present application can be described as follows using a fully automatic photo-induced chemiluminescence detector as an example.
  • a fully automatic photo-induced chemiluminescence detector as an example.
  • Figure 1, Figure 2, Figure 3 and Figure 4 the structure of the fully automatic laser chemiluminescence detector The following description is made.
  • the fully automated photo-induced chemiluminescence detector can include: a plate rack module 83, a pushing device 84, a sample addition arm module 4, a sample addition module 85, a sample rack module 86, and temperature The culturing module 87, the reagent module 5, and the detection module 88, wherein the strip 3 on the plate rack module 83 is pushed to the sample adding module 85 by the pushing device 84, and is transferred to the sample adding module 85 through the sample arm module 4 Samples and reagents are added to the reaction cup on the slat, and the slat on the sample adding module 85 is pushed into the incubation module 87 by the pushing device 84, and enters the detection module 88 for detection after the incubation is completed.
  • the plate rack module 83 is installed at the front of the rack 2, the housing 1 is provided outside the rack 2, the turntable is installed behind the plate rack module 83, the incubation module 87 is installed on one side of the turntable, the sample rack module 86 and The reagent modules 5 are respectively located on both sides of the plate rack module 83.
  • the pushing device 84 includes an X-direction pushing mechanism 6 and a Y-direction pushing mechanism 7. The slats on the plate-taking rack module 83 are pushed onto the turntable 19 through the Y-direction pushing mechanism 7 , The slats 3 on the turntable 19 are pushed into the incubation module 87 through the X to the pushing mechanism 6 and enter the detection module 88 for detection after the incubation is completed.
  • the incubation module 87 includes an incubation board 8 and a first sliding mechanism.
  • the incubation board 8 is slidably connected to the frame 2 through the first sliding mechanism.
  • the incubation board 8 is provided with a slat clamping device 90.
  • the incubation module 87 includes two incubation plates 8 arranged parallel to each other, which are respectively slidably connected to the frame 2 through a set of first sliding mechanisms.
  • the first sliding mechanism includes a first motor 9 and a first sliding rail 10.
  • the incubation plates 8 is arranged on the first slide rail 10, the first motor 9 is connected to the incubation plate 8 through the first timing belt 11, and the first motor 9 rotates to drive the incubation plate 8 to slide along the first slide rail 10.
  • the incubation is divided into two incubation plates 87, which can achieve different incubation times, and the speed of the rotation of the first motor 9 can determine the speed of the incubation plate 8 to move back and forth, thereby achieving different degrees of shaking and mixing, and the operation is more flexible.
  • the instruction generation method may be applied to a diagnostic device or a terminal connected to the diagnostic device, and specifically may include the following steps:
  • Step 101 During the operation of the first diagnostic component, obtain target operating state information of the first diagnostic component.
  • the terminal can be a mobile electronic device such as a mobile phone, a PAD (Portable Android Device, tablet computer), or a PC (Personal Computer, personal computer) terminal such as a desktop computer and a notebook computer.
  • a mobile electronic device such as a mobile phone, a PAD (Portable Android Device, tablet computer), or a PC (Personal Computer, personal computer) terminal such as a desktop computer and a notebook computer.
  • PAD Portable Android Device, tablet computer
  • PC Personal Computer, personal computer
  • the diagnostic equipment may be equipment used in medical diagnosis or inspection, which includes but is not limited to: a biochemical analyzer, a chemiluminescence immunoassay analyzer, a fluorescence immunoassay analyzer, an immune turbidity analyzer, a biochemical immune integrated machine, and a gene sequencer.
  • a biochemical analyzer e.g., a biochemical analyzer, a chemiluminescence immunoassay analyzer, a fluorescence immunoassay analyzer, an immune turbidity analyzer, a biochemical immune integrated machine, and a gene sequencer.
  • a fully automatic photo-induced chemiluminescence detector is used to describe this embodiment in detail.
  • CAN Controller Area Network
  • the principle of CAN bus is to connect the CAN bus, sensors, controllers and actuators by serial data lines. It is more than just connecting cables in a tree structure. Its communication protocol is equivalent to the data link layer in the ISO/OSI reference model. The network can detect and correct data errors caused by electromagnetic interference during data transmission according to the protocol.
  • the terminal After the terminal establishes a communication connection with the full-automatic photo-induced chemiluminescence detector through the CAN bus or a network cable, data interaction between the terminal and the full-automatic photo-induced chemiluminescence detector can be realized.
  • the first diagnostic component refers to a component on the fully automatic photoinduced chemiluminescence detector.
  • the first diagnostic component can be the plate rack module 83, the pushing device 84, and the sample arm module 4 as shown in FIGS. 1 to 4. Any one of the sample adding module 85, the sample rack module 86, the incubation module 87, the reagent module 5, and the detection module 88 can be specifically determined according to actual conditions, which is not limited in the embodiment of the present application.
  • the target operating status information refers to the current operating status of the first diagnostic component, such as running information, running time information, remaining running time information, etc. Specifically, it can be determined according to business requirements, and the embodiment of this application does not Be restricted.
  • the target operating status information can be acquired by displaying the operating status information of each component on the fully automatic photo-excited chemiluminescence detector in the preset page, and the operating status of the first diagnostic component can be acquired through the preset page.
  • step 101 it may further include:
  • Step A1 Generate a preset page.
  • the preset page refers to the page created on the terminal side for the management and control of each module of the fully automatic photo-induced chemiluminescence detector.
  • the preset page is intended to be tested. Management control of samples.
  • the preset page may be an html page or a web page. Specifically, it may be determined according to business requirements, which is not limited in the embodiment of the present application.
  • step A2 After generating a preset page, step A2 is executed.
  • Step A2 When the diagnostic device is in a working state, display the operating status information of each component in the diagnostic device in the preset page.
  • the target operating status information of the first diagnostic component can be obtained according to the operating status information of each component displayed in the preset page.
  • step 102 is executed.
  • Step 102 Obtain a second diagnostic component running after the first diagnostic component.
  • the second diagnostic component refers to the component of the detector on the fully automatic photo-induced chemiluminescence detector that runs after the first diagnostic component.
  • the components on the fully-automatic photo-induced chemiluminescence detector include component A, component B, and component C , After running part A, running part B, after running part B, running part C, and when the first diagnostic part is part A, then the second diagnostic part is part B; and when the first diagnostic part is part When B, the second diagnostic component is component C.
  • the second diagnostic component running after the first diagnostic component can be acquired.
  • step 103 is executed.
  • Step 103 When the target operating state information meets a preset trigger condition, generate an operating instruction corresponding to the second diagnostic component.
  • the preset trigger condition refers to a condition preset by the business personnel and used to trigger the generation of the operating instruction of the second diagnostic component.
  • the preset trigger condition may be the remaining running time condition of the first diagnostic component. For example, when the remaining running time of the first diagnostic component is 5s, the generation of the running instruction of the second diagnostic component can be triggered.
  • the operating instruction refers to an instruction to activate the second diagnostic component.
  • the operating instruction corresponding to the second diagnostic component may be generated. Specifically, it may be described in detail in conjunction with the following specific implementation manners.
  • the target operating state information includes the remaining time of the detection item executed by the first diagnostic component, and the foregoing step 103 may include:
  • Sub-step B1 when the remaining time is less than a threshold time, generate an operating instruction of the second diagnostic component.
  • the threshold time refers to the threshold corresponding to the remaining running time of the detector component preset by the business personnel.
  • the threshold time can be 5s, 8s, 4s, etc., specifically, it can be determined according to business needs.
  • the application embodiment does not impose restrictions on this.
  • the remaining time of the detection item of the first diagnostic component is acquired, the remaining time is compared with the threshold time.
  • the generation of the operation instruction of the second diagnostic component can be triggered.
  • the page manager of the preset page can click the trigger corresponding to the second diagnostic component Button to generate the operating instruction of the second diagnostic component.
  • step 104 is executed.
  • Step 104 Send the operating instruction to the diagnostic device, so that the diagnostic device controls the second diagnostic component to switch to a working state according to the operating instruction.
  • the operating instruction corresponding to the second diagnostic component can be sent to the fully automatic photo-induced chemiluminescence detector, and the fully-automatic photo-induced chemiluminescence detector controls the second diagnostic component to switch to the working state according to the operating instruction, The next test work is completed by the second diagnostic component.
  • the embodiment of the application generates the operation instruction of the next detector component in real time according to the operation status information of the detector component currently running, avoiding the detector component in the idle state, reducing the waste of electric energy and fully automatic photo-induced chemiluminescence
  • the loss of the detector, and the timeliness of the execution of the test task can be ensured by generating running instructions in time.
  • the target operating state information of the first diagnostic component is acquired during the operation of the first diagnostic component, and the second diagnostic component running after the first diagnostic component is acquired in the target operating state.
  • the information satisfies the preset trigger condition
  • an operating instruction corresponding to the second diagnostic component is generated, and the operating instruction is sent to the diagnostic device, so that the diagnostic device controls the second diagnostic component to switch to a working state according to the operating instruction.
  • the embodiment of the present application generates the running instruction of the next diagnostic component in real time based on the running status information of the currently running diagnostic component, avoids the diagnostic component in an idle state, reduces the waste of electric energy and the loss of diagnostic equipment, and, through timely Generating run instructions can ensure the timeliness of the execution of test tasks.
  • FIG. 7 there is shown a step flow chart of an instruction generation method provided by an embodiment of the present application.
  • the instruction generation method can be applied to a diagnostic device or a terminal connected to the diagnostic device.
  • the diagnostic device may Including multiple diagnostic components, the instruction generation method may specifically include the following steps:
  • Step 201 When it is determined that the diagnostic device is about to enter a working state, generate operating instructions corresponding to each of the diagnostic components.
  • the terminal may be a mobile electronic device such as a mobile phone, a PAD (Portable Android Device, tablet computer), or a PC (Personal Computer) terminal such as a desktop computer and a notebook computer.
  • a mobile electronic device such as a mobile phone, a PAD (Portable Android Device, tablet computer), or a PC (Personal Computer) terminal such as a desktop computer and a notebook computer.
  • PAD Portable Android Device, tablet computer
  • PC Personal Computer
  • the diagnostic equipment may be equipment used in medical diagnosis or inspection, which includes but is not limited to: a biochemical analyzer, a chemiluminescence immunoassay analyzer, a fluorescence immunoassay analyzer, an immune turbidity analyzer, a biochemical immune integrated machine, and a gene sequencer.
  • a biochemical analyzer e.g., a biochemical analyzer, a chemiluminescence immunoassay analyzer, a fluorescence immunoassay analyzer, an immune turbidity analyzer, a biochemical immune integrated machine, and a gene sequencer.
  • a fully automatic photo-induced chemiluminescence detector is used to describe this embodiment in detail.
  • CAN Controller Area Network
  • the principle of CAN bus is to connect the CAN bus, sensors, controllers and actuators by serial data lines. It is more than just connecting cables in a tree structure. Its communication protocol is equivalent to the data link layer in the ISO/OSI reference model. The network can detect and correct data errors caused by electromagnetic interference during data transmission according to the protocol.
  • the terminal After the terminal establishes a communication connection with the full-automatic photo-induced chemiluminescence detector through the CAN bus or network cable, data interaction between the terminal and the full-auto photo-induced chemiluminescence detector can be realized.
  • the diagnostic component refers to the component used to perform the corresponding operation on the diagnostic equipment.
  • the fully automatic photoinduced chemiluminescence detector includes a plate rack module 83, a pushing device 84, a sample addition arm module 4, a sample addition module 85, and a sample rack.
  • Module 86, incubation module 87, reagent module 5, detection module 88 and other modules, these modules are multiple diagnostic components.
  • the manager of the fully automatic photo-excited chemiluminescence detector can be used to send a notification to the terminal manager that it is about to enter the working state. Send a notification to the terminal manager so that the terminal can determine that the fully automated photo-induced chemiluminescence detector is about to enter the working state.
  • Operating instructions refer to the generated instructions to run each diagnostic component.
  • the operating instructions corresponding to each diagnostic component can be generated.
  • the diagnostic components include: component 1, component 2, component 3, and component 4.
  • the diagnostic equipment When the diagnostic equipment is about to enter the working state, it can generate the running command 1 corresponding to the component 1, the running command 2 corresponding to the component 2, the running command 3 corresponding to the component 3, and the running command 4 corresponding to the component 4 can be generated.
  • a preset page can be generated in advance, and each diagnostic component of the diagnostic device can be drawn in the preset page, and a running command generation button corresponding to the diagnostic component can be added in advance in the preset page ,
  • the page manager triggers the operation instruction generation button, it can trigger the generation of operation instructions corresponding to each diagnostic component.
  • step 202 is executed.
  • Step 202 Obtain the execution sequence corresponding to each of the diagnostic components.
  • the execution sequence refers to the execution sequence of the various diagnostic components after the diagnostic equipment enters the working state.
  • the diagnostic equipment may include the diagnostic component 1, the diagnostic component 2 and the diagnostic component 3.
  • the execution of these diagnostic components The sequence is: diagnostic component 2, diagnostic component 1, and diagnostic component 3.
  • the execution sequence of the multiple diagnosis components on the diagnosis component can be manually added to the preset page, and furthermore, the execution sequence corresponding to each diagnosis component can be found from the preset page.
  • step 203 is executed.
  • Step 203 When the diagnostic device enters the working state, according to the execution sequence, each of the operating instructions is sent to the diagnostic device in turn, so that the diagnostic device controls the corresponding operating instructions according to each of the operating instructions.
  • the diagnostic component is switched to the working state.
  • the operating instructions can be sent to the diagnostic equipment in sequence according to the execution order, so that the diagnostic equipment controls the corresponding diagnostic component to switch to the working state according to the operating instructions.
  • first The operation instruction of the first executed diagnostic component is sent to the diagnostic device to control the first executed diagnostic component to enter the working state; and when the first executed diagnostic component is about to complete, the second executed diagnostic component
  • the operating instructions of the third executed diagnostic component are sent to the diagnostic device to control the second executed diagnostic component to enter the working state; and when the second executed diagnostic component is about to complete, the third executed diagnostic component's operating instruction is sent to the diagnostic device , To control the third-executed diagnostic component to enter the working state; and so on, until all operating instructions are sent to the diagnostic equipment to complete the diagnostic process.
  • the diagnostic components in an idle state can be reduced, and the waste of electrical energy and the loss of diagnostic equipment can be reduced.
  • the instruction generation method provided by the embodiments of the present application generates the operating instructions corresponding to each diagnostic component when it is determined that the diagnostic device is about to enter the working state, and obtains the execution sequence corresponding to each diagnostic component. When the diagnostic device enters the working state, it is based on the execution sequence Each operation instruction is sent to the diagnosis device in turn, so that the diagnosis device controls the corresponding diagnosis component to switch to the working state according to each operation instruction.
  • the diagnostic components in an idle state can be avoided, and the waste of electric energy and the loss of diagnostic equipment can be reduced.
  • the instruction generating device may be applied to a diagnostic device or a terminal connected to the diagnostic device, and specifically may include the following modules:
  • the first status information acquiring module 310 is configured to acquire target operating status information of the first diagnostic component during the operation of the first diagnostic component;
  • the second component acquiring module 320 is configured to acquire a second diagnostic component running after the first diagnostic component
  • the operating instruction generating module 330 is configured to generate an operating instruction corresponding to the second diagnostic component when the target operating state information meets a preset trigger condition;
  • the operating instruction sending module 340 is configured to send the operating instruction to the diagnostic device, so that the diagnostic device controls the second diagnostic component to switch to a working state according to the operating instruction.
  • it also includes:
  • the preset page generation module is used to generate a preset page
  • the operating status display module is used to display the operating status information of each component in the diagnostic equipment in the preset page when the diagnostic equipment is in a working state.
  • the first state information acquiring module 310 includes:
  • the first status information acquiring sub-module is configured to acquire the target operating status information of the first diagnostic component according to the operating status information of each component displayed in the preset page.
  • the target operating status information includes the remaining time of the detection item executed by the first diagnostic component
  • the operating instruction generating module 330 includes:
  • the running instruction generating sub-module is configured to generate the running instruction of the second diagnostic component when the remaining time is less than the threshold time.
  • the instruction generation device acquires the target operating state information of the first diagnostic component during the operation of the first diagnostic component, and acquires the second diagnostic component running after the first diagnostic component, and is in the target operating state.
  • an operating instruction corresponding to the second diagnostic component is generated, and the operating instruction is sent to the diagnostic device, so that the diagnostic device controls the second diagnostic component to switch to a working state according to the operating instruction.
  • the embodiment of the present application generates the running instruction of the next diagnostic component in real time based on the running status information of the currently running diagnostic component, avoids the diagnostic component in an idle state, reduces the waste of electric energy and the loss of diagnostic equipment, and, through timely Generating run instructions can ensure the timeliness of the execution of test tasks.
  • the instruction generating device may be applied to a diagnostic device or a terminal connected to the diagnostic device.
  • the diagnostic device may include multiple diagnostic devices.
  • the instruction The generating device may specifically include the following modules:
  • a plurality of operating instruction generating modules 410 are configured to generate operating instructions corresponding to each of the diagnostic components when it is determined that the diagnostic device is about to enter a working state;
  • the execution sequence obtaining module 420 is configured to obtain the execution sequence corresponding to each of the diagnostic components
  • a plurality of running instruction sending modules 430 are used to send each running instruction to the diagnostic device in turn according to the execution sequence when the diagnostic device enters the working state, so that the diagnostic device will use the The operation instruction controls the corresponding diagnosis component to switch to the working state.
  • the instruction generation device provided by the embodiment of the present application generates the operating instructions corresponding to each diagnostic component when it is determined that the diagnostic equipment is about to enter the working state, and obtains the execution sequence corresponding to each diagnostic component. When the diagnostic equipment enters the working state, it is based on the execution sequence Each operation instruction is sent to the diagnosis device in turn, so that the diagnosis device controls the corresponding diagnosis component to switch to the working state according to each operation instruction.
  • the diagnostic components in an idle state can be avoided, and the waste of electric energy and the loss of diagnostic equipment can be reduced.
  • an embodiment of the present application also provides an electronic device, including: a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a processor executes the program, Implement the above instruction generation method.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the foregoing instruction generation method is implemented.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 10 shows a computing processing device that can implement the method according to the present invention.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 11.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 10.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Medical Informatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种指令生成方法及装置。该方法包括:在第一诊断部件的运行过程中,获取第一诊断部件的目标运行状态信息(101);获取运行于第一诊断部件之后的第二诊断部件(102);在目标运行状态信息满足预设触发条件时,生成第二诊断部件对应的运行指令(103);将运行指令发送至诊断设备,以由诊断设备根据运行指令控制第二诊断部件切换至工作状态(104)。通过根据当前运行的诊断部件的运行状态信息,实时生成下一诊断部件的运行指令,避免了处于闲置状态的诊断部件,减少了电能的浪费及诊断设备的损耗,并且,通过及时生成运行指令能够确保测试任务执行的及时性。

Description

指令生成方法及装置
本申请要求在2019年12月31日提交中国专利局、申请号为201911423208.3、发明名称为“指令生成方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医学技术领域,特别是涉及一种指令生成方法及装置。
背景技术
随着诊断设备的不断应用,能够实现样本测试结果的准确性和检测高效性。
目前,诊断设备的各个流程均是由人工管理控制的,而通常情况下,在诊断设备处于工作状态的情况下,其包含的各个部件均处于工作状态,这种情况会导致某个部件需要等待上一个流程的部件执行完之后才会执行相应的检测,导致某些部件的闲置,进一步导致电能的浪费,并加重了诊断设备的损耗。
发明内容
本申请提供一种指令生成方法及装置,以解决现有技术中某个部件需要等待上一个流程的部件执行完之后才会执行相应的检测,导致某些部件的闲置,进一步导致电能的浪费,并加重了诊断设备的损耗的问题。
为了解决上述问题,本申请公开了一种指令生成方法,应用于诊断设备或与诊断设备连接的终端,包括:
在第一诊断部件的运行过程中,获取所述第一诊断部件的目标运行状态信息;
获取运行于所述第一诊断部件之后的第二诊断部件;
在所述目标运行状态信息满足预设触发条件时,生成所述第二诊断部件对应的运行指令;
将所述运行指令发送至所述诊断设备,以由所述诊断设备根据所述运行指令控制所述第二诊断部件切换至工作状态。
可选地,在所述获取所述第一诊断部件的目标运行状态信息之前,还包括:
生成一预置页面;
在所述诊断设备处于工作状态的情况下,将所述诊断设备中各个部件的运行状态信息显示于所述预置页面内。
可选地,所述获取所述第一诊断部件的目标运行状态信息,包括:
根据所述预置页面内显示的所述各个部件的运行状态信息,获取所述第一诊断部件的目标运行状态信息。
可选地,目标运行状态信息包括所述第一诊断部件执行的检测项的剩余时间,所述在所述目标运行状态信息满足预设触发条件时,生成所述第二诊断部件对应的运行指令,包括:
在所述剩余时间小于阈值时间时,生成所述第二诊断部件的运行指令。
为了解决上述技术问题,本申请公开了一种指令生成方法,应用于诊断设备或与诊断设备连接的终端,所述诊断设备包括多个诊断部件,包括:
在确定所述诊断设备即将进入工作状态时,生成各所述诊断部件对应的运行指令;
获取各所述诊断部件对应的执行顺序;
在所述诊断设备进入工作状态时,根据所述执行顺序,依次将各所述运行指令发送至所述诊断设备,以由所述诊断设备根据各所述运行指令控制对应的所述诊断部件切换至工作状态。
为了解决上述问题,本申请公开了一种指令生成装置,应用于诊断设备或与诊断设备连接的终端,包括:
第一状态信息获取模块,用于在第一诊断部件的运行过程中,获取所述第一诊断部件的目标运行状态信息;
第二部件获取模块,用于获取运行于所述第一诊断部件之后的第二诊断部件;
运行指令生成模块,用于在所述目标运行状态信息满足预设触发条件时,生成所述第二诊断部件对应的运行指令;
运行指令发送模块,用于将所述运行指令发送至所述诊断设备,以由所述诊断设备根据所述运行指令控制所述第二诊断部件切换至工作状态。
可选地,还包括:
预置页面生成模块,用于生成一预置页面;
运行状态显示模块,用于在所述诊断设备处于工作状态的情况下,将所述诊断设备中各个部件的运行状态信息显示于所述预置页面内。
可选地,所述第一状态信息获取模块包括:
第一状态信息获取子模块,用于根据所述预置页面内显示的所述各个部件的运行状态信息,获取所述第一诊断部件的目标运行状态信息。
可选地,目标运行状态信息包括所述第一诊断部件执行的检测项的剩余时间,所述运行指令生成模块包括:
运行指令生成子模块,用于在所述剩余时间小于阈值时间时,生成所述第二诊断部件的运行指令。
为了解决上述问题,本申请公开了一种指令生成装置,应用于诊断设备或与诊断设备连接的终端,所述诊断设备包括多个诊断部件,包括:
多个运行指令生成模块,用于在确定所述诊断设备即将进入工作状态时,生成各所述诊断部件对应的运行指令;执行顺序获取模块,用于获取各所述诊断部件对应的执行顺序;
多个运行指令发送模块,用于在所述诊断设备进入工作状态时,根据所述执行顺序,依次将各所述运行指令发送至所述诊断设备,以由所述诊断设备根据各所述运行指令控制对应的所述诊断部件切换至工作状态。
与现有技术相比,本申请包括以下优点:本申请实施例提供了一种指令生成方法及装置。通过在第一诊断部件的运行过程中,获取第一诊断部件的目标运行状态信息,获取运行于第一诊断部件之后的第二诊断部件,在目标运行状态信息满足预设触发条件时,生成第二诊断部件对应的运行指令,将运行指令发送至诊断设备,以由诊断设备根据运行指令控制所述第二诊断部件切换至工作状态。本申请实施例通过根据当前运行的诊断部件的运行状态信息,实时生成下一诊断部件的运行指令,避免了处于闲置状态的诊断部件,减少了电能的浪费及诊断设备的损耗,并且,通过及时生成运行指令能够确保测试任务执行的及时性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例提供的一种全自动激光化学发光检测仪的结构示意图;
图2示出了本申请实施例提供的一种全自动激光化学发光检测仪去除外壳后正面的结构示意图;
图3示出了本申请实施例提供的一种全自动激光化学发光检测仪去除外壳后反面的结构示意图;
图4示出了本申请实施例提供的一种板条夹紧装置的结构示意图;
图5示出了本申请实施例提供的一种指令生成方法的步骤流程图;
图6示出了本申请实施例提供的一种全自动激光化学发光检测仪的运行状态的示意图;
图7示出了本申请实施例提供的另一种指令生成方法的步骤流程图;
图8示出了本申请实施例提供的一种指令生成装置的结构示意图;
图9示出了本申请实施例提供的另一种指令生成装置的结构示意图;
图10示意性地示出了用于执行根据本发明的方法的计算处理设备的框图;以及
图11示意性地示出了用于保持或者携带实现根据本发明的方法的程序代码的存储单元。
具体实施例
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
本申请实施例中的诊断设备可以以全自动光激化学发光检测仪为例进行如下描述,接下来,结合图1、图2、图3和图4,对全自动激光化学发光检测仪的结构进行如下描述。
如图1、2、3和4所示,全自动光激化学发光检测仪可以包括:取板架模块83、推送装置84、加样臂模块4、加样模块85、样本架模块86、温育 模块87、试剂模块5和检测模块88,其中,取板架模块83上的板条3通过推送装置84推送到加样模块85上,通过加样臂模块4向位于加样模块85上的板条上的反应杯内加入样本和试剂,加样模块85上的板条通过推送装置84推送进入温育模块87,在温育结束之后进入检测模块88检测。
取板架模块83设于机架2的前部,在机架2外部设有外壳1,转盘设于取板架模块83的后方,温育模块87设于转盘一侧,样本架模块86和试剂模块5分别位于取板架模块83的两侧,推送装置84包括X向推送机构6和Y向推送机构7,取板架模块83上的板条通过Y向推送机构7推送到转盘19上,转盘19上的板条3通过X向推送机构6推送进入温育模块87,在温育结束之后进入检测模块88检测。
温育模块87包括温育板8和第一滑行机构,温育板8通过第一滑行机构与机架2滑动连接,温育板8上设有板条夹紧装置90。
温育模块87包括两个相互平行设置的温育板8,分别通过一套第一滑行机构与机架2滑动连接,第一滑行机构包括第一电机9和第一滑轨10,温育板8设于第一滑轨10上,第一电机9通过第一同步带11与温育板8相连接,第一电机9转动进而带动温育板8沿着第一滑轨10滑动。
温育分两个温育板87分别进行,可以实现分别温育不同时间,并且第一电机9转动的快慢可以决定温育板8来回移动的速度,进而实现不同程度的震荡混匀,操作更加灵活多变。
接下来,结合具体实施例,针对本申请提供的指令生成方法进行详细描述。
参照图5,示出了本申请实施例提供的一种指令生成方法的步骤流程图,该指令生成方法可以应用于诊断设备或与诊断设备连接的终端,具体可以包括如下步骤:
步骤101:在第一诊断部件的运行过程中,获取所述第一诊断部件的目标运行状态信息。
在本申请实施例中,终端可以为手机、PAD(Portable Android Device,平板电脑)等移动电子设备,也可以为台式电脑、笔记本电脑等PC(Personal  Computer,个人计算机)端,具体地,可以根据业务需求而定,本申请实施例对此不加以限制。
诊断设备可以为医疗诊断或检验时使用的设备,其包括但不限于:生化分析仪、化学发光免疫分析仪、荧光免疫分析仪、免疫比浊分析仪、生化免疫一体机和基因测序仪。本申请中采用全自动光激化学发光检测仪对本实施例进行详细说明。
在终端与全自动光激化学发光检测仪之间预先建立有通信连接,具体地,终端可以通过控制器局域网络总线(Controller Area Network,CAN)或网线与全自动光激化学发光检测仪连接通信连接,CAN总线原理是通过CAN总线、传感器、控制器和执行器由串行数据线连接起来。它不仅仅是将电缆按树形结构连接起来,其通信协议相当于ISO/OSI参考模型中的数据链路层,网络可根据协议探测和纠正数据传输过程中因电磁干扰而产生的数据错误。
在终端与全自动光激化学发光检测仪通过CAN总线或网线建立通信连接之后,可以实现终端与全自动光激化学发光检测仪之间的数据交互。
第一诊断部件是指全自动光激化学发光检测仪上的一个部件,第一诊断部件可以为如图1~4上所示的取板架模块83、推送装置84、加样臂模块4、加样模块85、样本架模块86、温育模块87、试剂模块5和检测模块88等模块中的任一种,具体地,可以根据实际情况而定,本申请实施例对此不加以限制。
目标运行状态信息是指第一诊断部件的当前运行状态,如正在运行的信息、运行耗时信息、剩余运行时间信息等等,具体地,可以根据业务需求而定,本申请实施例对此不加以限制。
目标运行状态信息的获取方式可以为在预置页面内显示有全自动光激化学发光检测仪上的各个部件的运行状态信息,通过预置页面可以获取到第一诊断部件的运行状态。
在本申请的一种具体实现方式中,在上述步骤101之前,还可以包括:
步骤A1:生成一预置页面。
在本申请实施例中,预置页面是指在终端侧创建的用于对全自动光激 化学发光检测仪的各个模块进行管理控制的页面,在本申请中,预置页面旨在实现对待测试样本的管理控制。
预置页面可以为一个html页面,也可以为一个web页面,具体地,可以根据业务需求而定,本申请实施例对此不加以限制。
在生成一预置页面之后,执行步骤A2。
步骤A2:在所述诊断设备处于工作状态的情况下,将所述诊断设备中各个部件的运行状态信息显示于所述预置页面内。
在需要对全自动光激化学发光检测仪上的待测试样本进行后台管理控制时,可以预先在终端侧创建一个预置页面,进而,可以将全自动光激化学发光检测仪各部件的运行状态信息显示于预置页面内,如图6所示,可以将样本架模块、温育模块、试剂模块等显示于预置页面内,可以显示各部件的运行所需温度等状态信息,也可以显示各部件的运行耗时信息、剩余运行时间信息等(图中未示出)。
可以理解地,上述示例理解本申请实施例的技术方案而列举的示例,不作为对本申请实施例的唯一限制。
在将各部件的运行状态信息显示于预置页面内之后,可以根据预置页面内显示的各个部件的运行状态信息,获取到第一诊断部件的目标运行状态信息。
在第一诊断部件的运行过程中,获取到第一诊断部件的目标运行状态信息之后,执行步骤102。
步骤102:获取运行于所述第一诊断部件之后的第二诊断部件。
第二诊断部件是指全自动光激化学发光检测仪上,运行于第一诊断部件之后的检测仪部件,例如,全自动光激化学发光检测仪上的部件包括部件A、部件B和部件C,在运行部件A之后,运行部件B,在运行部件B之后,则运行部件C,而在第一诊断部件为部件A时,则第二诊断部件为部件B;而在第一诊断部件为部件B时,则第二诊断部件为部件C。
可以理解地,上述示例仅是为了更好地理解本申请实施例的技术方案而列举的示例,不作为对本申请实施例的唯一限制。
在第一诊断部件的运行过程中,可以获取运行于第一诊断部件之后的 第二诊断部件。
在获取第二诊断部件之后,执行步骤103。
步骤103:在所述目标运行状态信息满足预设触发条件时,生成所述第二诊断部件对应的运行指令。
预设触发条件是指由业务人员预先设置的,用于触发生成第二诊断部件的运行指令的条件。
预设触发条件可以为第一诊断部件的运行剩余时间条件,例如,在第一诊断部件的运行剩余时间为5s时,可以触发生成第二诊断部件的运行指令。
运行指令是指启动第二诊断部件的指令。
在目标运行状态信息满足预设触发条件时,可以生成第二诊断部件对应的运行指令,具体地,可以结合下述具体实现方式进行详细描述。
在本申请的一种具体实现方式中,目标运行状态信息包括所述第一诊断部件执行的检测项的剩余时间,上述步骤103可以包括:
子步骤B1:在所述剩余时间小于阈值时间时,生成所述第二诊断部件的运行指令。
在本申请实施例中,阈值时间是指由业务人员预先设置的检测仪部件运行剩余时间所对应的阈值,阈值时间可以为5s、8s、4s等,具体地,可以根据业务需求而定,本申请实施例对此不加以限制。
在获取第一诊断部件的检测项的剩余时间时,将剩余时间与阈值时间进行比较。
在剩余时间小于阈值时间时,则可以触发生成第二诊断部件的运行指令。
在预置页面内可以预先设置全自动光激化学发光检测仪各部件的运行指令触发按钮,在需要启动第二诊断部件时,预置页面的页面管理人员可以通过点击第二诊断部件对应的触发按钮,以生成第二诊断部件的运行指令。
当然,不仅限于此,在具体实现过程中,还可以采用其它方式生成第二诊断部件的运行指令,具体地,可以根据业务需求而定,本申请实施例 对此不加以限制。
在生成第二诊断部件对应的运行指令之后,执行步骤104。
步骤104:将所述运行指令发送至所述诊断设备,以由所述诊断设备根据所述运行指令控制所述第二诊断部件切换至工作状态。
在生成第二诊断部件对应的运行指令之后,则可以将运行指令发送至全自动光激化学发光检测仪,由全自动光激化学发光检测仪根据运行指令控制第二诊断部件切换至工作状态,以由第二诊断部件完成下一步的测试工作。
本申请实施例通过根据当前运行的检测仪部件的运行状态信息,实时生成下一检测仪部件的运行指令,避免了处于闲置状态的检测仪部件,减少了电能的浪费及全自动光激化学发光检测仪的损耗,并且,通过及时生成运行指令能够确保测试任务执行的及时性。
本申请实施例提供的指令生成方法,通过在第一诊断部件的运行过程中,获取第一诊断部件的目标运行状态信息,获取运行于第一诊断部件之后的第二诊断部件,在目标运行状态信息满足预设触发条件时,生成第二诊断部件对应的运行指令,将运行指令发送至诊断设备,以由诊断设备根据运行指令控制所述第二诊断部件切换至工作状态。本申请实施例通过根据当前运行的诊断部件的运行状态信息,实时生成下一诊断部件的运行指令,避免了处于闲置状态的诊断部件,减少了电能的浪费及诊断设备的损耗,并且,通过及时生成运行指令能够确保测试任务执行的及时性。
参照图7,示出了本申请实施例提供的一种指令生成方法的步骤流程图,如图7所示,该指令生成方法可以应用于诊断设备或与诊断设备连接的终端,该诊断设备可以包括多个诊断部件,指令生成方法具体可以包括如下步骤:
步骤201:在确定所述诊断设备即将进入工作状态时,生成各所述诊断部件对应的运行指令。
在本申请实施例中,终端可以为手机、PAD(Portable Android Device,平板电脑)等移动电子设备,也可以为台式电脑、笔记本电脑等PC(Personal  Computer,个人计算机)端,具体地,可以根据业务需求而定,本申请实施例对此不加以限制。
诊断设备可以为医疗诊断或检验时使用的设备,其包括但不限于:生化分析仪、化学发光免疫分析仪、荧光免疫分析仪、免疫比浊分析仪、生化免疫一体机和基因测序仪。本申请中采用全自动光激化学发光检测仪对本实施例进行详细说明。
在终端与全自动光激化学发光检测仪之间预先建立有通信连接,具体地,终端可以通过控制器局域网络总线(Controller Area Network,CAN)或网线与全自动光激化学发光检测仪连接通信连接,CAN总线原理是通过CAN总线、传感器、控制器和执行器由串行数据线连接起来。它不仅仅是将电缆按树形结构连接起来,其通信协议相当于ISO/OSI参考模型中的数据链路层,网络可根据协议探测和纠正数据传输过程中因电磁干扰而产生的数据错误。
在终端与全自动光激化学发光检测仪通过CAN总线或网线建立通信连接之后,可以实现终端与全自动光激化学发光检测仪之间的数据交互。
诊断部件是指诊断设备上的用于执行相应操作的部件,例如,全自动光激化学发光检测仪包括取板架模块83、推送装置84、加样臂模块4、加样模块85、样本架模块86、温育模块87、试剂模块5和检测模块88等模块,这些模块即为多个诊断部件。
在具体实现中,可以通过全自动光激化学发光检测仪的管理人员向终端管理人员发送即将进入工作状态的通知,例如,在检测仪管理人员将要启动全自动光激化学发光检测仪时,可以向终端管理人员发送通知,以使终端确定全自动光激化学发光检测仪即将进入工作状态。
当然,不限于此,在实际应用中,还可以采用其它方式确定全自动光激化学发光检测仪是否即将进入工作状态,具体地,可以根据业务需求而定,本申请实施例对此不加以限制。
运行指令是指生成的运行各诊断部件对应的指令,在确定诊断设备即将进入工作状态时,可以生成各诊断部件对应的运行指令,例如,诊断部件包括:部件1、部件2、部件3和部件4,在诊断设备即将进入工作状态 时,可以生成部件1对应的运行指令1,生成部件2对应的运行指令2,生成部件3对应的运行指令3,生成部件4对应的运行指令4。
可以理解地,上述示例仅是为了更好地理解本申请实施例的技术方案而列举的示例,不作为对本申请实施例的唯一限制。
当然,在本实施例中,可以预先生成一个预置页面,并将诊断设备的各诊断部件绘制于预置页面内,并且,在预置页面内可以预先添加个诊断部件对应的运行指令生成按钮,在页面管理人员触发运行指令生成按钮时,即可触发生成各诊断部件对应的运行指令。
在确定诊断设备即将进入工作状态时,生成各诊断部件对应的运行指令之后,执行步骤202。
步骤202:获取各所述诊断部件对应的执行顺序。
执行顺序是指诊断设备进入工作状态之后,各个诊断部件的执行的顺序,例如,诊断设备可以包括诊断部件1、诊断部件2和诊断部件3,在诊断设备进入工作状态后,这些诊断部件的执行顺序依次为:诊断部件2、诊断部件1和诊断部件3。
在具体实现中,可以将诊断部件上的多个诊断部件的执行顺序人工添加于预置页面内,进而,可以从预置页面查找到各诊断部件对应的执行顺序。当然,也可以由人工根据诊断设备的说明书确定各诊断部件的执行顺序,并将各诊断部件的执行顺序保存于预置文件中,进而,可以从预置文件中获取各诊断部件的执行顺序。
在获取各诊断部件的执行顺序之后,执行步骤203。
步骤203:在所述诊断设备进入工作状态时,根据所述执行顺序,依次将各所述运行指令发送至所述诊断设备,以由所述诊断设备根据各所述运行指令控制对应的所述诊断部件切换至工作状态。
在诊断设备进入工作状态时,可以根据执行顺序依次将各运行指令发送至诊断设备,以由诊断设备根据各运行指令控制对应的诊断部件切换至工作状态,具体地,可以根据执行顺序,先将第一个执行的诊断部件的运行指令发送至诊断设备,以控制第一个执行的诊断部件进入工作状态;而在第一个执行的诊断部件即将执行完成时,将第二个执行的诊断部件的运 行指令发送至诊断设备,以控制第二个执行的诊断部件进入工作状态;而在第二个执行的诊断部件即将执行完成时,将第三个执行的诊断部件的运行指令发送至诊断设备,以控制第三执行的诊断部件进入工作状态;以此类推,直至将所有的运行指令发送至诊断设备,完成诊断流程。
本申请通过预先生成各诊断部件的运行指令,并依次执行各运行指令,能够减少处于闲置状态的诊断部件,减少电能的浪费及诊断设备的损耗。
本申请实施例提供的指令生成方法,通过在确定诊断设备即将进入工作状态时,生成各诊断部件对应的运行指令,获取各诊断部件对应的执行顺序,在诊断设备进入工作状态时,根据执行顺序依次将各运行指令发送至诊断设备,以由诊断设备根据各运行指令控制对应的诊断部件切换至工作状态。本申请实施例通过预先生成各诊断部件的运行指令,并依次执行各运行指令,可以避免处于闲置状态的诊断部件,减少电能的浪费及诊断设备的损耗。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
参照图8,示出了本申请实施例提供的一种指令生成装置的结构示意图,该指令生成装置可以应用于诊断设备或与诊断设备连接的终端,具体可以包括如下模块:
第一状态信息获取模块310,用于在第一诊断部件的运行过程中,获取所述第一诊断部件的目标运行状态信息;
第二部件获取模块320,用于获取运行于所述第一诊断部件之后的第二诊断部件;
运行指令生成模块330,用于在所述目标运行状态信息满足预设触发条 件时,生成所述第二诊断部件对应的运行指令;
运行指令发送模块340,用于将所述运行指令发送至所述诊断设备,以由所述诊断设备根据所述运行指令控制所述第二诊断部件切换至工作状态。
可选地,还包括:
预置页面生成模块,用于生成一预置页面;
运行状态显示模块,用于在所述诊断设备处于工作状态的情况下,将所述诊断设备中各个部件的运行状态信息显示于所述预置页面内。
可选地,所述第一状态信息获取模块310包括:
第一状态信息获取子模块,用于根据所述预置页面内显示的所述各个部件的运行状态信息,获取所述第一诊断部件的目标运行状态信息。
可选地,目标运行状态信息包括所述第一诊断部件执行的检测项的剩余时间,所述运行指令生成模块330包括:
运行指令生成子模块,用于在所述剩余时间小于阈值时间时,生成所述第二诊断部件的运行指令。
本申请实施例提供的指令生成装置,通过在第一诊断部件的运行过程中,获取第一诊断部件的目标运行状态信息,获取运行于第一诊断部件之后的第二诊断部件,在目标运行状态信息满足预设触发条件时,生成第二诊断部件对应的运行指令,将运行指令发送至诊断设备,以由诊断设备根据运行指令控制所述第二诊断部件切换至工作状态。本申请实施例通过根据当前运行的诊断部件的运行状态信息,实时生成下一诊断部件的运行指令,避免了处于闲置状态的诊断部件,减少了电能的浪费及诊断设备的损耗,并且,通过及时生成运行指令能够确保测试任务执行的及时性。
参照图9,示出了本申请实施例提供的一种指令生成装置的结构示意图,该指令生成装置可以应用于诊断设备或与诊断设备连接的终端,诊断设备可以包括多个诊断设备,该指令生成装置具体可以包括如下模块:
多个运行指令生成模块410,用于在确定所述诊断设备即将进入工作状态时,生成各所述诊断部件对应的运行指令;
执行顺序获取模块420,用于获取各所述诊断部件对应的执行顺序;
多个运行指令发送模块430,用于在所述诊断设备进入工作状态时,根据所述执行顺序,依次将各所述运行指令发送至所述诊断设备,以由所述诊断设备根据各所述运行指令控制对应的所述诊断部件切换至工作状态。
本申请实施例提供的指令生成装置,通过在确定诊断设备即将进入工作状态时,生成各诊断部件对应的运行指令,获取各诊断部件对应的执行顺序,在诊断设备进入工作状态时,根据执行顺序依次将各运行指令发送至诊断设备,以由诊断设备根据各运行指令控制对应的诊断部件切换至工作状态。本申请实施例通过预先生成各诊断部件的运行指令,并依次执行各运行指令,可以避免处于闲置状态的诊断部件,减少电能的浪费及诊断设备的损耗。
另外地,本申请实施例还提供了一种电子设备,包括:处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现上述指令生成方法。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述指令生成方法。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、 商品或者设备中还存在另外的相同要素。
以上对本申请所提供的一种指令生成方法和一种指令生成装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图10示出了可以实现根据本发明的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的 方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图11所述的便携式或者固定存储单元。该存储单元可以具有与图10的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种指令生成方法,应用于诊断设备或与所述诊断设备连接的终端,其特征在于,包括:
    在第一诊断部件的运行过程中,获取所述第一诊断部件的目标运行状态信息;
    获取运行于所述第一诊断部件之后的第二诊断部件;
    在所述目标运行状态信息满足预设触发条件时,生成所述第二诊断部件对应的运行指令;
    将所述运行指令发送至所述诊断设备,以由所述诊断设备根据所述运行指令控制所述第二诊断部件切换至工作状态。
  2. 根据权利要求1所述的方法,其特征在于,在所述获取所述第一诊断部件的目标运行状态信息之前,还包括:
    生成预置页面;
    在所述诊断设备处于工作状态的情况下,将所述诊断设备中各个部件的运行状态信息显示于所述预置页面内。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述第一诊断部件的目标运行状态信息,包括:
    根据所述预置页面内显示的所述各个部件的运行状态信息,获取所述第一诊断部件的目标运行状态信息。
  4. 根据权利要求1所述的方法,其特征在于,所述目标运行状态信息包括所述第一诊断部件执行的检测项的剩余时间,所述在所述目标运行状态信息满足预设触发条件时,生成所述第二诊断部件对应的运行指令,包括:
    在所述剩余时间小于阈值时间时,生成所述第二诊断部件的运行指令。
  5. 一种指令生成方法,应用于诊断设备或与所述诊断设备连接的终端,所述诊断设备包括多个诊断部件,其特征在于,包括:
    在确定所述诊断设备即将进入工作状态时,生成各所述诊断部件对应的运行指令;
    获取各所述诊断部件对应的执行顺序;
    在所述诊断设备进入工作状态时,根据所述执行顺序,依次将各 所述运行指令发送至所述诊断设备,以由所述诊断设备根据各所述运行指令控制对应的所述诊断部件切换至工作状态。
  6. 一种指令生成装置,应用于诊断设备或与所述诊断设备连接的终端,其特征在于,包括:
    第一状态信息获取模块,用于在第一诊断部件的运行过程中,获取所述第一诊断部件的目标运行状态信息;
    第二部件获取模块,用于获取运行于所述第一诊断部件之后的第二诊断部件;
    运行指令生成模块,用于在所述目标运行状态信息满足预设触发条件时,生成所述第二诊断部件对应的运行指令;
    运行指令发送模块,用于将所述运行指令发送至所述诊断设备,以由所述诊断设备根据所述运行指令控制所述第二诊断部件切换至工作状态。
  7. 根据权利要求6所述的装置,其特征在于,还包括:
    预置页面生成模块,用于生成预置页面;
    运行状态显示模块,用于在所述诊断设备处于工作状态的情况下,将所述诊断设备中各个部件的运行状态信息显示于所述预置页面内。
  8. 根据权利要求7所述的装置,其特征在于,所述第一状态信息获取模块包括:
    第一状态信息获取子模块,用于根据所述预置页面内显示的所述各个部件的运行状态信息,获取所述第一诊断部件的目标运行状态信息。
  9. 根据权利要求6所述的装置,其特征在于,所述目标运行状态信息包括所述第一诊断部件执行的检测项的剩余时间,所述运行指令生成模块包括:
    运行指令生成子模块,用于在所述剩余时间小于阈值时间时,生成所述第二诊断部件的运行指令。
  10. 一种指令生成装置,应用于诊断设备或与所述诊断设备连接的终端,所述诊断设备包括多个诊断部件,其特征在于,包括:
    多个运行指令生成模块,用于在确定所述诊断设备即将进入工作状态时,生成各所述诊断部件对应的运行指令;
    执行顺序获取模块,用于获取各所述诊断部件对应的执行顺序;
    多个运行指令发送模块,用于在所述诊断设备进入工作状态时,根据所述执行顺序,依次将各所述运行指令发送至所述诊断设备,以由所述诊断设备根据各所述运行指令控制对应的所述诊断部件切换至工作状态。
  11. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中的任一个所述的指令生成方法。
  12. 一种计算机可读介质,其中存储了如权利要求11所述的计算机程序。
PCT/CN2020/114205 2019-12-31 2020-09-09 指令生成方法及装置 WO2021135364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911423208.3 2019-12-31
CN201911423208.3A CN113125782A (zh) 2019-12-31 2019-12-31 指令生成方法及装置

Publications (1)

Publication Number Publication Date
WO2021135364A1 true WO2021135364A1 (zh) 2021-07-08

Family

ID=76687077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114205 WO2021135364A1 (zh) 2019-12-31 2020-09-09 指令生成方法及装置

Country Status (2)

Country Link
CN (1) CN113125782A (zh)
WO (1) WO2021135364A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449037A (zh) * 2023-06-16 2023-07-18 成都瀚辰光翼生物工程有限公司 一种用于生物检测的流程状态控制方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088446A (en) * 1976-05-25 1978-05-09 Bodenseewerk Perkin-Elmer & Co., Gmbh Method and apparatus for cleansing residue from a sample transfer probe
CN104272083A (zh) * 2012-02-24 2015-01-07 英士查诺尔有限公司 用于预处理细胞的系统、设备和装置
CN104884929A (zh) * 2012-11-07 2015-09-02 贝克曼考尔特公司 自动化的样品处理系统
CN205910201U (zh) * 2016-05-04 2017-01-25 广州一步医疗科技有限公司 样品分析装置及全自动免疫荧光分析仪
CN205941526U (zh) * 2016-08-12 2017-02-08 周四新 一种水质监测设备
CN107090407A (zh) * 2017-05-27 2017-08-25 安徽天泽医疗器械有限责任公司 一种高通量基因精准临床诊断系统和方法
CN107287109A (zh) * 2017-07-25 2017-10-24 浙江大学 微生物培养箱的自动检测系统及带该系统的微生物培养箱
CN107894419A (zh) * 2017-12-29 2018-04-10 南京艾龙信息科技有限公司 一种原粮害虫检测装置和方法
CN108089019A (zh) * 2016-11-22 2018-05-29 包埋剂技术美国股份有限公司 载玻片管理系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088446A (en) * 1976-05-25 1978-05-09 Bodenseewerk Perkin-Elmer & Co., Gmbh Method and apparatus for cleansing residue from a sample transfer probe
CN104272083A (zh) * 2012-02-24 2015-01-07 英士查诺尔有限公司 用于预处理细胞的系统、设备和装置
CN104884929A (zh) * 2012-11-07 2015-09-02 贝克曼考尔特公司 自动化的样品处理系统
CN205910201U (zh) * 2016-05-04 2017-01-25 广州一步医疗科技有限公司 样品分析装置及全自动免疫荧光分析仪
CN205941526U (zh) * 2016-08-12 2017-02-08 周四新 一种水质监测设备
CN108089019A (zh) * 2016-11-22 2018-05-29 包埋剂技术美国股份有限公司 载玻片管理系统
CN107090407A (zh) * 2017-05-27 2017-08-25 安徽天泽医疗器械有限责任公司 一种高通量基因精准临床诊断系统和方法
CN107287109A (zh) * 2017-07-25 2017-10-24 浙江大学 微生物培养箱的自动检测系统及带该系统的微生物培养箱
CN107894419A (zh) * 2017-12-29 2018-04-10 南京艾龙信息科技有限公司 一种原粮害虫检测装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449037A (zh) * 2023-06-16 2023-07-18 成都瀚辰光翼生物工程有限公司 一种用于生物检测的流程状态控制方法及装置
CN116449037B (zh) * 2023-06-16 2023-09-12 成都瀚辰光翼生物工程有限公司 一种用于生物检测的流程状态控制方法及装置

Also Published As

Publication number Publication date
CN113125782A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2021135367A1 (zh) 样本测试项的排布方法及装置
WO2021135364A1 (zh) 指令生成方法及装置
WO2021135366A1 (zh) 样本测试项的排布方法及装置
WO2021135365A1 (zh) 测试结果确定方法及装置
CN110290557B (zh) 一种加载应用内页面标签的方法与设备
CN110806958A (zh) 一种监控方法、监控装置、存储介质及电子设备
WO2021135362A1 (zh) 样本测试项的排布方法及装置
JP7255827B2 (ja) テストスクリプトレコーディング時の時間選択の方法及び装置
CN109766271A (zh) 混合应用自动化测试方法、装置、电子设备及存储介质
US11861214B2 (en) Memory device forensics and preparation
CN106168932B (zh) 一种Flash控制方法及装置
CN115422091B (zh) 一种固件调试方法及装置、电子设备、存储介质
CN104834586A (zh) 安卓界面自动化测试方法、装置及系统
CN114745313A (zh) 终端远程测试方法、装置、电子设备和可读介质
CN110321205B (zh) 一种在宿主程序中管理寄宿程序的方法与设备
CN113125767A (zh) 样本测试项的添加方法及装置
CN113125772A (zh) 运行状态信息显示方法及装置
Mohammad et al. Use of computer simulation to study impact of increasing routine test volume on turnaround times of STAT samples on ci8200 integrated chemistry and immunoassay analyzer
CN111424033A (zh) 一种核酸提取方法、装置、系统、控制设备及存储介质
CN110602162A (zh) 终端取证方法、装置、设备和存储介质
CN103686774A (zh) 一种一控多的无线网络测试方法
US20210285947A1 (en) Multianalyte assay cartridges and system that uses the same
CN109344087B (zh) 一种设备的多端同步调试方法、系统、存储介质及处理器
CN101441594A (zh) 计算机硬件装置测试方法
CN110780787B (zh) 一种执行任务调度的方法与设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910431

Country of ref document: EP

Kind code of ref document: A1