CN104854744B - 用于燃料电池的铂单层 - Google Patents

用于燃料电池的铂单层 Download PDF

Info

Publication number
CN104854744B
CN104854744B CN201380033091.2A CN201380033091A CN104854744B CN 104854744 B CN104854744 B CN 104854744B CN 201380033091 A CN201380033091 A CN 201380033091A CN 104854744 B CN104854744 B CN 104854744B
Authority
CN
China
Prior art keywords
platinum
individual layer
fuel cell
copper
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380033091.2A
Other languages
English (en)
Other versions
CN104854744A (zh
Inventor
M·邵
S·莫图帕利
B·默佐圭
L·V·普罗特塞罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of CN104854744A publication Critical patent/CN104854744A/zh
Application granted granted Critical
Publication of CN104854744B publication Critical patent/CN104854744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

一种示例性燃料电池电极形成方法包括用液体铂覆盖铜单层的至少一部分以及置换铜单层以从液体铂形成铂单层。

Description

用于燃料电池的铂单层
背景技术
本公开一般地涉及燃料电池,并且更具体地涉及制造用于燃料电池的铂单层催化剂。
燃料电池堆组件是公知的,并且通常包括多个单独的燃料电池。每个单独的燃料电池包括位于两个电极之间的聚合物电解质膜(PEM)。电极可以是催化剂涂覆基板(CCS)。基板可以是包括碳纤维的气体扩散层。基板分散燃料电池流体,例如氢气和空气。CSS中的一个作为阳极来工作,并且另一个CCS作为阴极来工作。PEM和电极一起组成膜电极组件(MEA)。
CCS可包括沉积在芯上的铂单层。单层(monolayer)为一个原子厚,并且对铂的利用率比商业化的铂纳米催化剂高得多。铂单层的批量生产是困难的。
发明内容
一种示例性的燃料电池电极形成方法,包括用铂溶液覆盖铜单层的至少一部分,以及置换铜单层以形成铂单层。
一种示例性的电极形成组件包括电解电池,该电解电池在置换铜单层时将铂溶液保持抵靠铜单层。
附图说明
通过详细说明会使得所公开示例的各种特征和优点对于本领域技术人员变得明显。下面简要说明该详细说明所附的附图:
图1示出了示例性燃料电池堆组件的示意图。
图2示出了来自图1的燃料电池堆组件的燃料电池的示意图。
图3示出了来自图2的燃料电池的膜电极组件。
图4示出了用于制造图3的膜电极组件的电极的示例性方法的流程。
图5示出了具有铜溶液的示例性的单层形成组件。
图6示出了在一些铜阳离子被还原为金属铜单层之后的图5的单层形成组件。
图7示出了在用铂单层置换铜单层之后的图6的单层形成组件。
图8示出了用以密封图7的铂单层的步骤。
具体实施方式
参照图1至3,示例性燃料电池堆组件10包括布置成堆的多个燃料电池12。压力板14a和14b夹住燃料电池堆组件10的燃料电池12。每个燃料电池12包括位于第一催化剂涂覆基板(CCS)20a和第二CCS 20b之间的膜16。CCS 20a由催化剂层21a和气体扩散层22a组成。CCS 20b由催化剂层21b和气体扩散层22b组成。
板24a抵接第—气体扩散层22a。板24a包括通道(未示出),该通道将诸如氢气的燃料从燃料供给装置28传送到第—气体扩散层22a。燃料通过第—气体扩散层22a移动到催化剂层21a。另一个板24b抵接第二气体扩散层22b。板24b包括通道(未示出),该通道将诸如氧气的氧化剂从氧化剂供给装置32传送到第二气体扩散层22b。氧化剂通过第二气体扩散层22b移动到催化剂层21b。
板24a可包括另外的通道,其将氧化剂传送到燃料电池堆组件10内的另一个燃料电池12的气体扩散层。类似地,板24b可包括另外的通道,其将燃料传送到燃料电池堆组件10内的另一个燃料电池12的气体扩散层。
在本示例中,催化剂层21b包括铂单层催化剂,它被支撑在其他金属上,例如钯、金或它们的合金。阳极催化剂层21a可包括铂催化剂、铂单层催化剂、铂钌合金催化剂或一些其他类型的催化剂层。
现在参照图4并继续参考图2和3,示出了阴极CCS 20b的示例性制造方法50。如果阳极CCS 20a包括铂单层,则方法50也可用于形成阳极CCS 20a。
方法50包括步骤54:在液体铜溶液中通过铜的欠电位沉积(UPD)在涂覆于基板上的芯材料上形成铜单层。
在一个示例中,芯包括被支撑在碳黑上的钯粒子并且铜溶液是0.2M的亚硫酸铜加上0.05M的硫酸。电位保持在0.36V达1小时进行铜沉积。方法50然后在步骤58在开路电位下通过在铜溶液中添加铂溶液而用铂置换铜单层。通过如下反应发生置换:Cu+Pt2+→Pt+Cu2 +。在一个示例中,铂溶液含有1mM的K2PtCl4、0.05M硫酸和0.2M柠檬酸。在步骤58之后,将铂单层保持在芯上。在步骤62,方法50将膜16压配合在铂单层催化剂层上以形成催化剂膜组件。也可以从基板收集铂单层催化剂粉末。在方法50期间,芯可以由气体扩散层支撑,例如气体扩散层22a。
参考图5和6的电极形成组件64,示出了方法50中的步骤54的选定部分的示例。在这个示例中,铜溶液70被保持在电化学电解电池74中。电解电池74由玻璃、特氟龙、塑料或在方法50的条件下稳定的任何其他材料制成。方法50可包括泵82,其迫使铂溶液通过电解电池74的主体、催化剂层21b和气体扩散层22b循环,以避免铂单层的不均匀涂覆。CCS 20b夹在电解电池74和板75之间。板75可包括一些通道,用于铂溶液的环行。在一个示例中,板75由特氟龙制成。
使用已知的涂覆或喷涂方法将芯78涂覆在气体扩散层22b上,以形成催化剂层21b。芯78由钯、铂、金、钯合金、铂合金、金合金或这些的一些组合制成。催化剂层21b也可以包括除了上述任何材料之外的离聚物或任何其它材料。在一个示例中,所述离聚物是全氟聚苯乙烯磺酸(Nafion)。
气体扩散层21b支撑芯78。气体扩散层21b是碳纤维纸,在一个示例中,其被喷涂有形成芯78的材料。
在一些示例中,用处理气体扩散层21b。在其它示例中,不对气体扩散层21b进行处理。可以在气体扩散层21b和芯78之间设置双层(bilayer),例如具有粘合剂的碳黑,以改善水和反应物的管理。
在这个示例中,电化学电解电池组件82用于沉积铜单层和铂单层。电化学电解电池组件82包括恒电位仪86、对电极90和参比电极94。至少接触电极90和参比电极94包括位于铜溶液70内的部分。
在电解电池74中的铜溶液70中的芯78上施加电位,这形成了芯78上的金属铜单层98。通过还原铜溶液70中的一些铜阳离子来形成铜单层98。在该示例中,在铜单层98沉积在芯78上时,气体扩散层20b和芯78被压靠铜溶液70和电解电池74。一个示例包括采用欠电位沉积过程来将铜单层98沉积在芯78上。
CCS在沉积期间充当电化学电解电池组件82的工作电极。了解本领域技术以及本公开优点的人应该理解如何用电化学电解电池组件82沉积铜以形成铜单层98。
图7示出了方法50中的步骤58的选定部分的一个示例。在该示例中,铜溶液70已被从电解电池74除去或与铂溶液102混合。铜单层98(其是金属铜)留在催化剂层21b上并被铂溶液102覆盖。在铜单层98的氧化期间,铜单层90的原子被铂原子替换以形成一个原子厚的金属铂单层106。将反应在此示出:Cu+Pt2+→Pt+Cu2+
图8示出了方法50中的步骤62的选定部分的一个示例。在该示例中,膜110(例如聚合物电解质膜)被压配合在铂单层106上来完成CCS 20b。在一些示例中,该步骤62是热压。
所公开示例的特征包括一种方法,其产生相对均匀的铂单层,由于均匀的铂沉积方法,该铂单层提供了具有相对高的活性和耐久性的催化剂。直接铂沉积不会形成单层,而是会产生铂粒子和厚的铂膜。而且,该方法在制造膜电极组件时避免了铂单层催化剂的油墨混合过程。
前面的描述本质上是示例性的,而不是限制性的。对所公开示例的不必偏离本公开本质的变化和修改对于本领域技术人员可能变得明显。因此,给予本公开的法律保护范围只能通过研究所附权利要求确定。

Claims (17)

1.一种燃料电池电极形成方法,包括:
用铂溶液覆盖由燃料电池电极的气体扩散层支撑的铜单层的至少一部分;以及
通过将所述铜单层暴露于铂溶液并利用泵迫使所述铂溶液通过所述气体扩散层以置换所述铜单层以从所述铂溶液形成铂单层。
2.如权利要求1所述的燃料电池电极形成方法,包括将膜压配合到铂单层催化剂层。
3.如权利要求2所述的燃料电池电极形成方法,其中,所述膜包括聚合物电解质膜。
4.如权利要求1所述的燃料电池电极形成方法,其中,所述铂单层是至少一个原子厚。
5.如权利要求1所述的燃料电池电极形成方法,其中,所述铜单层是一个原子厚。
6.如权利要求1所述的燃料电池电极形成方法,包括在置换之前将铜单层沉积在芯材料上。
7.如权利要求6所述的燃料电池电极形成方法,包括在沉积之前用芯材料涂覆基板。
8.如权利要求7所述的燃料电池电极形成方法,其中,所述基板是气体扩散层。
9.如权利要求8所述的燃料电池电极形成方法,其中,所述气体扩散层是碳纸。
10.如权利要求9所述的燃料电池电极形成方法,其中,所述碳纸经过亲水性或疏水性处理。
11.如权利要求8所述的燃料电池电极形成方法,其中,所述气体扩散层具有双层。
12.如权利要求6所述的燃料电池电极形成方法,其中,所述芯包括钯、铂、金、钌、铑、铱、锇、铼、银以及它们的合金中的至少一种。
13.如权利要求6所述的燃料电池电极形成方法,其中,所述芯与质子传导性离聚物混合。
14.一种电极形成组件,包括:
芯,
支撑所述芯的气体扩散层,
电池,其构造成保持铂溶液和铜溶液,所述铜溶液在所述芯上形成铜单层而所述铂溶液在所述铜单层暴露于所述铂溶液时以铂单层置换所述铜单层,以及
泵,其构造成迫使所述铂溶液通过所述气体扩散层。
15.如权利要求14所述的电极形成组件,其中,所述铜单层是一个原子厚。
16.如权利要求14所述的电极形成组件,其中,氧化所述铜单层形成了铂单层。
17.如权利要求14所述的电极形成组件,其中,所述芯包括钯、铂、金、钌、铑、铱、锇、铼、银以及它们的合金中的至少一种。
CN201380033091.2A 2012-06-22 2013-06-16 用于燃料电池的铂单层 Active CN104854744B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/530,201 US9484580B2 (en) 2012-06-22 2012-06-22 Platinum monolayer for fuel cell
US13/530201 2012-06-22
PCT/US2013/046047 WO2013192056A1 (en) 2012-06-22 2013-06-16 Platinum monolayer for fuel cell

Publications (2)

Publication Number Publication Date
CN104854744A CN104854744A (zh) 2015-08-19
CN104854744B true CN104854744B (zh) 2017-12-01

Family

ID=49769244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380033091.2A Active CN104854744B (zh) 2012-06-22 2013-06-16 用于燃料电池的铂单层

Country Status (6)

Country Link
US (1) US9484580B2 (zh)
EP (1) EP2865034B1 (zh)
JP (1) JP6298459B2 (zh)
KR (1) KR101965930B1 (zh)
CN (1) CN104854744B (zh)
WO (1) WO2013192056A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612643B (zh) * 2013-07-19 2018-06-26 奥迪股份公司 用于核-壳催化剂处理的方法和系统
JP6075305B2 (ja) * 2014-02-14 2017-02-08 トヨタ自動車株式会社 コアシェル触媒粒子の製造方法
WO2018049067A1 (en) 2016-09-08 2018-03-15 The Board Of Trustees Of The Leland Stanford Junior University Atomic layer deposition with passivation treatment
KR20200132598A (ko) * 2019-05-17 2020-11-25 고려대학교 세종산학협력단 백금 단원자 막 및 그의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039398A (en) * 1975-08-15 1977-08-02 Daiichi Denshi Kogyo Kabushiki Kaisha Method and apparatus for electrolytic treatment
CN101379639A (zh) * 2005-08-01 2009-03-04 布鲁克哈文科学协会 铂纳米颗粒核上具有金单层的电催化剂及其应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457986A (en) * 1982-12-30 1984-07-03 International Business Machines Corporation Use of underpotential deposited layers of metals on foreign metal substrates as catalysts for electrolytic cells
KR100512262B1 (ko) 2003-06-04 2005-09-05 주식회사 협진아이엔씨 연료전지용 전극의 확산층
US7691780B2 (en) 2004-12-22 2010-04-06 Brookhaven Science Associates, Llc Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
JP2007141477A (ja) * 2005-11-15 2007-06-07 Hitachi Ltd 触媒材料及びそれを用いた電解質膜−電極接合体と燃料電池
EP1961841B1 (de) * 2007-02-21 2013-04-10 SolviCore GmbH & Co KG Verfahren zur elektrochemischen Abscheidung von Katalysatorpartikeln auf kohlefaserhaltigen Substraten sowie Vorrichtung dafür
US7964506B1 (en) * 2008-03-06 2011-06-21 Novellus Systems, Inc. Two step copper electroplating process with anneal for uniform across wafer deposition and void free filling on ruthenium coated wafers
US8404613B2 (en) 2008-10-21 2013-03-26 Brookhaven Science Associates, Llc Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures
US8921260B2 (en) 2010-02-12 2014-12-30 Ballard Power Systems Inc. Platinum monolayer on hollow, porous nanoparticles with high surface areas and method of making
DE112010005260T5 (de) 2010-02-12 2013-05-02 Utc Power Corporation Platin-Monoschicht auf Legierungs-Nanopartikeln mit hoher Oberflächenfläche und Herstellungsverfahren
US8317910B2 (en) 2010-03-22 2012-11-27 Unity Semiconductor Corporation Immersion platinum plating solution
JP5672752B2 (ja) * 2010-04-07 2015-02-18 トヨタ自動車株式会社 カーボン担持コアシェル型触媒微粒子の製造方法、当該製造方法により得られるコアシェル型触媒微粒子を用いた触媒インクの製造方法
JP5573438B2 (ja) * 2010-07-09 2014-08-20 トヨタ自動車株式会社 コアシェル型触媒微粒子の製造方法
JP5758609B2 (ja) * 2010-11-05 2015-08-05 公立大学法人大阪府立大学 コアシェル粒子の製造方法
JP5676334B2 (ja) * 2011-03-28 2015-02-25 株式会社東芝 層状触媒層、膜電極接合体、および電気化学セル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039398A (en) * 1975-08-15 1977-08-02 Daiichi Denshi Kogyo Kabushiki Kaisha Method and apparatus for electrolytic treatment
CN101379639A (zh) * 2005-08-01 2009-03-04 布鲁克哈文科学协会 铂纳米颗粒核上具有金单层的电催化剂及其应用

Also Published As

Publication number Publication date
US9484580B2 (en) 2016-11-01
US20130340915A1 (en) 2013-12-26
WO2013192056A1 (en) 2013-12-27
EP2865034B1 (en) 2018-08-08
JP6298459B2 (ja) 2018-03-20
EP2865034A1 (en) 2015-04-29
KR20150032713A (ko) 2015-03-27
KR101965930B1 (ko) 2019-04-04
JP2015525458A (ja) 2015-09-03
EP2865034A4 (en) 2016-03-16
CN104854744A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
CN105734606B (zh) 一种spe水电解用超薄膜电极的结构及其制备和应用
Kang et al. Discovering and demonstrating a novel high-performing 2D-patterned electrode for proton-exchange membrane water electrolysis devices
CN104854744B (zh) 用于燃料电池的铂单层
CN105655610B (zh) 一种阴离子交换膜上附着的超薄催化层及其制备和应用
US8927177B2 (en) Methods for preparing carbon black sheet with metallic nanoparticle thin layer by electrophoresis deposition and membrane electrode assembly (MEA) for proton exchange membrane fuel cell
CN106252670B (zh) 使用加有晶种的电极借助核壳催化剂对高性能燃料电池电极的卷对卷制造
US10233550B2 (en) Porous electrode for proton-exchange membrane
Oh et al. Activity and stability of Ir-based gas diffusion electrode for proton exchange membrane water electrolyzer
KR20180025275A (ko) 부식방지 기체 확산층 및 그 제조방법과 이를 구비한 막전극접합체
US20140287347A1 (en) Method for fabricating a membrane-electrode assembly
Wang et al. Carbon-free nanoporous gold based membrane electrocatalysts for fuel cells
Ding et al. Highly porous iridium thin electrodes with low loading and improved reaction kinetics for hydrogen generation in PEM electrolyzer cells
US20160233523A1 (en) Fuel cell separator, fuel cell, and manufacturing method of fuel cell separator
CA3034790A1 (en) Tin-based catalysts, the preparation thereof, and fuel cells using the same
US9252431B2 (en) Fuel cell catalyst with metal oxide/phosphate support structure and method of manufacturing same
US9401512B2 (en) Method for manufacturing an electrode/proton-exchange membrane assembly
Modibedi et al. The electrochemical atomic layer deposition of Pt and Pd nanoparticles on Ni foam for the electro-oxidation of alcohols
CN113337844B (zh) 电解水膜电极及其制备方法、制氢装置
CN103628102A (zh) 电镀液、Pt-Ru催化剂膜及其制备方法和膜燃料电池
Kim et al. Carbon‐Neutralized Direct Methanol Fuel Cell Using Bifunctional (Methanol Oxidation/CO2 Reduction) Electrodes
Hamze et al. Galvanic replacement of Pt by Cu to synthesize highly active and durable Pt@ Cu/C anode as oxygen evolution reaction catalyst
US20120121994A1 (en) Membrane And Catalyst Composite For Membrane Electrode Assembly
US10541425B2 (en) Method and system for core-shell catalyst processing
Mirzaei et al. Preparation of a Modified Electrode Using Electrodeposition of Cu Followed by Galvanic Replacement of Ag: Application for Electrocatalytic Oxidation of Ethylen Glychol
KR20140034544A (ko) 연료전지 막-전극 접합체 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160219

Address after: Germany Ingolstadt

Applicant after: Audi AG

Address before: Canadian British Columbia

Applicant before: Ballard Power Systems

GR01 Patent grant
GR01 Patent grant