CN104852022B - 一种锂离子电池负极材料及其制备方法 - Google Patents

一种锂离子电池负极材料及其制备方法 Download PDF

Info

Publication number
CN104852022B
CN104852022B CN201510138473.2A CN201510138473A CN104852022B CN 104852022 B CN104852022 B CN 104852022B CN 201510138473 A CN201510138473 A CN 201510138473A CN 104852022 B CN104852022 B CN 104852022B
Authority
CN
China
Prior art keywords
tin dioxide
conductive nano
nano crystalline
redox graphene
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510138473.2A
Other languages
English (en)
Other versions
CN104852022A (zh
Inventor
施利毅
袁帅
毕越
王帅
徐海平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201510138473.2A priority Critical patent/CN104852022B/zh
Publication of CN104852022A publication Critical patent/CN104852022A/zh
Application granted granted Critical
Publication of CN104852022B publication Critical patent/CN104852022B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂离子电池负极材料及其制备方法。二氧化锡基导电纳米晶颗粒在还原氧化石墨烯片层表面均匀负载,还原氧化石墨烯片的层数为1~5层,二氧化锡基导电纳米晶为W、F、Mo、Nb、Ta、Cr中的一种或几种掺杂的SnO2,异质原子的掺杂含量为0.01~20 at%。还原氧化石墨烯和二氧化锡基导电纳米晶的质量比为1∶0.1~10。负载的纳米晶大小为7~30 nm、方块电阻为20~60Ω/□。本发明制备的导电纳米晶/还原氧化石墨烯复合材料,克服了以往复合材料中界面电阻大、内阻高、石墨烯片层堆叠、负载颗粒团聚等问题。通过此法制备的二氧化锡基导电纳米晶/还原氧化石墨烯复合负极材料具有优异的电化学性能,比容量高、循环性能好、内阻小。

Description

一种锂离子电池负极材料及其制备方法
技术领域
本发明属于新能源材料科学与电化学技术的交叉技术领域,涉及一种溶剂热法制备导电纳米晶/还原氧化石墨烯复合材料的制备方法。
背景技术
由于化石燃料储量日渐降低和环境污染的日益加剧,同时人们对能源的需求不断增长,开发清洁高效的新型能源成为世界人们的研究重点。锂离子电池作为一种新型的储能装置, 具有比能量高、工作电压高、循环寿命长和环境友好等优点被广泛应用在混合动力汽车、电动汽车、智能电网等领域当中。
电极材料是影响电池能量密度和使用寿命的关键,目前商品化的锂离子电池的负极材料多为石墨,由于其比容量较低(理论比容量为378 mAh/g),已经不能满足人们对电池性能的需求。因此研究和开发新型锂离子电池负极材料迫在眉睫。
近年来,许多先进的高性能负极材料陆续被发现并被得到深入研究。其中稳定宽禁带半导体二氧化锡因为其较高的理论容量(782 mA h g-1)成为最有潜力的锂离子电池负极材料之一。但氧化锡负极材料在嵌锂脱锂过程中会产生超过自身体积300%的体积膨胀,这会导致电极粉化,严重影响电池的循环稳定性,极大的制约了其工业化。
石墨烯因其独特的二维蜂窝状层状导电结构,为其带来了许多优点,如常温下具有较高载流子迁移率(200 000 cm2/(V·s)),高比表面积,高柔韧性,出色的化学和机械性能等,这使得它成为了一种十分理想的复合材料基材。
为了进一步提高锂离子电池容量,近年来出现了一种金属氧化物/石墨烯的复合材料,以二氧化锡/石墨烯复合材料为主。中国专利CN 101969113 A公开了一种石墨烯基二氧化锡复合物的制备方法,但该方法制备的二氧化锡与石墨烯复合材料用于锂离子电池负极时容量偏低(600mAh/g);中国专利CN 101927979 A公开了一种二氧化锡/石墨烯纳米复合物的制备方法,但该方法制备的复合物中氧化锡颗粒较大,并且容量偏低(700mAh/g);中国专利CN 103078095 A公开了一种二氧化锡/石墨烯复合物的制备方法,但该方法制备的复合物用于锂电池负极材料时容量衰减快,稳定后的容量仅540mAh/g。这些复合材料由于内阻高,二氧化锡晶粒易团聚等问题,造成了其应用于锂离子电池时容量偏低,可逆性差等问题。因此,制备一种内阻低、晶粒尺寸均匀、形貌规整的负极材料对于提高锂离子电池的可逆容量、增强倍率性能具有重要意义。
为解决上述复合材料存在的问题,本发明采用溶剂热法制备以还原氧化石墨烯作为基体骨架,二氧化锡基导电纳米晶在还原氧化石墨烯片层两面均匀生长的二氧化锡基导电纳米晶/还原氧化石墨烯复合材料。通过此方法制备的二氧化锡基导电纳米晶/还原氧化石墨烯复合材料电化学性能优异、比容量高、循环性能好,克服了以往负极材料存在的不足。同时该方法工艺简单、条件温和、成本低廉,适用于锂离子电池负极材料及其产业化。
发明内容
本发明的目的在于提供一种采用工艺简单、条件温和、分散均匀的还原氧化石墨烯/二氧化锡基导电纳米晶复合物的制备方法,解决了现有技术所得石墨烯/金属氧化物复合物中石墨烯片层堆叠、界面电阻大、金属氧化物颗粒团聚、内阻高等问题,提高了电池的比容量,增强了电池的循环稳定性和倍率性能。
为实现上述目的,本发明所提供的技术方案如下:
一种二氧化锡基导电纳米晶/还原氧化石墨烯复合材料,以还原氧化石墨烯作为基体骨架,二氧化锡基导电纳米晶在还原氧化石墨烯片层两面均匀生长的复合材料。还原氧化石墨烯的层数为1~5层。二氧化锡基导电纳米晶为W、F、Mo、Nb、Ta、Cr中的一种或几种掺杂的SnO2;所述二氧化锡基导电纳米晶中异质原子的掺杂含量为0.01~20 at%。二氧化锡基导电纳米晶的晶粒尺寸为7~30 nm,其粉体方块电阻为20~60Ω/□。还原氧化石墨烯和二氧化锡基导电纳米晶的质量比为1∶0.1~10。
一种锂离子电池负极材料的制备方法,该方法的具体步骤为:
A.配置质量浓度为0.01~0.30 g/ml的二氧化锡基导电纳米晶分散液,二氧化锡基导电纳米晶为W、F、Mo、Nb、Ta、Cr中的一种或几种掺杂的SnO2;所述二氧化锡基导电纳米晶中异质原子的掺杂含量为0.01~20 at%;
B.将还原氧化石墨烯粉末均匀分散到二氧化锡基导电纳米晶分散液中,然后将分散液转入到高压反应釜进行溶剂热反应,还原氧化石墨烯和导电纳米晶的质量比为1∶0.1~10;
C.将水热后的样品洗涤、干燥,得到二氧化锡基导电纳米晶/还原氧化石墨烯复合材料。
步骤(a)中所述的二氧化锡基导电纳米晶分散液中的溶剂为水、甲醇、乙醇、异丙醇中的一种或几种。步骤(b)中所述的均匀分散为超声分散0.5~6小时,步骤(b)中所述的溶剂热反应条件为,在120~200℃下反应6~72小时。这种二氧化锡基导电纳米晶/还原氧化石墨烯复合物用作锂离子电池负极材料,其电池稳定后的比容量大于1000mAh/g。
本发明的有益效果是:用本发明制备的二氧化锡基导电纳米晶/还原氧化石墨烯复合材料,其内阻低、接触电阻小、可逆容量高、寿命长、倍率性能良好。
本发明采用溶剂热法制备二氧化锡基导电纳米晶/还原氧化石墨烯复合材料,不仅原料易得、工艺简单、条件温和、成本低廉、可操作性强,同时还克服了以往复合材料中石墨烯片层堆叠、接触电阻大、金属氧化物颗粒团聚、内阻偏高等问题。通过此法制备的二氧化锡基导电纳米晶/还原氧化石墨烯复合材料具有优异的电化学性能,比容量高、循环性能好,适用于锂离子负极材料及其产业化。
具体实施方式
以下实施例中的原料来源如下:
钨掺杂二氧化锡(WTO):根据文献制备WTO粉体(Mi Wang, Yanfeng Gao, ZhangChen, Chuanxiang Cao, Jiadong Zhou, Lei Dai, Xuhong Guo. Transparent andconductive W-doped SnO2 thin films fabricated by an aqueous solution process.Thin Solid Films 544 (2013) 419–426),颗粒粒径10-20nm,粉体方块电阻60Ω/□;
钼掺杂二氧化锡(MTO):根据文献合成MTO纳米晶(Xuekun Wang, Zhaoqiang Li,Zhiwei Zhang, Qun Li, Enyan Guo, Chengxiang Wang and Longwei Yin. Mo-dopedSnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries. Nanoscale, 2015,7, 3604-3613),颗粒粒径7-15nm,粉体方块电阻40 Ω/□;
氟掺杂二氧化锡(FTO):根据文献制备FTO粉体(Shanshan Wu, Shuai Yuan, LiyiShi, Yin Zhao, Jianhui Fang. Preparation, characterization and electricalproperties of fluorine-doped tin dioxide nanocrystals. Journal of Colloid andInterface Science 346 (2010) 12–16),颗粒直径8–15 nm,粉体方块电阻20 Ω/□;
铌掺杂二氧化锡(NTO):根据文献(Yude Wang, Torsten Brezesinski, MarkusAntonietti, and Bernd Smarsly. Ordered Mesoporous Sb-, Nb-, and Ta-Doped SnO2Thin Films with Adjustable Doping Levels and High Electrical Conductivity.ACS Nano, 2009, 3 (6) 1373–1378)制备NTO纳米晶,但不使用表面活性剂,颗粒粒径23-30nm,粉体方块电阻60 Ω/□;
钽掺杂二氧化锡(TTO):根据文献制备NTO纳米晶(Yude Wang, TorstenBrezesinski, Markus Antonietti, and Bernd Smarsly. Ordered Mesoporous Sb-,Nb-, and Ta-Doped SnO2 Thin Films with Adjustable Doping Levels and HighElectrical Conductivity. ACS Nano, 2009, 3 (6) 1373–1378),但不使用表面活性剂,颗粒粒径20-28nm,粉体方块电阻55 Ω/□;
铬掺杂二氧化锡(CTO):根据文献制备CTO纳米晶(K. Subramanyama,N.Sreelekha, G.Murali, D.AmaranathaReddy, R.P.Vijayalakshmi. Structural,optical and magnetic properties of Cr doped SnO2 nanoparticles stabilizedwith polyethylene glycol. Physica B 454 (2014) 86–92),颗粒直径13–21 nm,粉体方块电阻20 Ω/□;
还原氧化石墨烯(RGO):氧化石墨烯(GO)采用修改过的Hummers法制备氧化石墨烯(Sasha Stankovich, Richard D. Piner, SonBinh T. Nguyen, Rodney S. Ruoff.Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets.Carbon 2006, 44, 3342–3347.),还原方法根据中国专利(CN 103332678 A)。
下面结合实施例对本发明进行详细说明:
实施例一
称取0.2g的钨掺杂二氧化锡(钨掺杂量0.01 at%),分散于去离子水中得到质量浓度为0.01g/ml纳米晶分散液。将还原氧化石墨烯研磨成粉体,称取0.9g的还原氧化石墨烯粉加入到纳米晶分散液中,磁力搅拌分散均匀后,超声分散0.5小时,将分散液转入高压反应釜中,在120℃下反应6小时后冷却至室温,将反应物取出,洗涤烘干后得到钨掺杂氧化锡/还原氧化石墨烯复合材料。将上述复合物用于锂离子电池负极材料,稳定后比容量1011mAh/g。
实施例二
称取0.3g的钼掺杂二氧化锡(钼掺杂量0.7 at%),分散于去离子水中得到质量浓度为0.01g/ml纳米晶分散液。将还原氧化石墨烯研磨成粉体,称取1.0g的还原氧化石墨烯粉加入到纳米晶分散液中,磁力搅拌分散均匀后,超声分散6小时,将分散液转入高压反应釜中,在120℃下反应72小时后冷却至室温,将反应物取出,洗涤烘干后得到钼掺杂氧化锡/还原氧化石墨烯复合材料。将上述复合物用于锂离子电池负极材料,稳定后比容量1093mAh/g。
实施例三
称取0.6g的氟掺杂二氧化锡(氟掺杂量20at%),分散于去离子水中得到质量浓度为0.03g/ml纳米晶分散液。将还原氧化石墨烯研磨成粉体,称取2g的还原氧化石墨烯粉加入到纳米晶分散液中,磁力搅拌分散均匀后,超声分散6小时,将分散液转入高压反应釜中,在120℃下反应6小时后冷却至室温,将反应物取出,洗涤烘干后得到氟掺杂二氧化锡/还原氧化石墨烯复合材料。将上述复合物用于锂离子电池负极材料,稳定后比容量1133mAh/g。
实施例四
称取0.2g的铌掺杂二氧化锡(铌掺杂量10at%),分散于去离子水中得到质量浓度为0.015g/ml纳米晶分散液。将还原氧化石墨烯研磨成粉体,称取0.9g的还原氧化石墨烯粉加入到纳米晶分散液中,磁力搅拌分散均匀后,超声分散6小时,将分散液转入高压反应釜中,在200℃下反应6小时后冷却至室温,将反应物取出,洗涤烘干后得到铌掺杂氧化锡/还原氧化石墨烯复合材料。将上述复合物用于锂离子电池负极材料,稳定后比容量1433mAh/g。
实施例五
称取2g的氟掺杂二氧化锡(氟掺杂量12at%),分散于乙醇中得到质量浓度为0.20g/ml纳米晶分散液。将还原氧化石墨烯研磨成粉体,称取4g的还原氧化石墨烯粉加入到纳米晶分散液中,磁力搅拌分散均匀后,超声分散6小时,将分散液转入高压反应釜中,在180℃下反应20小时后冷却至室温,将反应物取出,洗涤烘干后得到氟掺杂氧化锡/还原氧化石墨烯复合材料。将上述复合物用于锂离子电池负极材料,稳定后比容量1243mAh/g。
实施例六
称取6g的铬掺杂的二氧化锡(铬掺杂量12at%),分散于醇水混合物中得到质量浓度为0.30g/ml纳米晶分散液。将还原氧化石墨烯研磨成粉体,称取6g还原氧化石墨烯粉加入到纳米晶分散液中,磁力搅拌分散均匀后,超声分散6小时,将分散液转入高压反应釜中,在180℃下反应20小时后冷却至室温,将反应物取出,洗涤烘干后得到铬掺杂的二氧化锡/还原氧化石墨烯复合材料。将上述复合物用于锂离子电池负极材料,稳定后比容量1180mAh/g。

Claims (4)

1.一种锂离子电池负极材料的制备方法,其特征在于,该方法的具体步骤为:
A.配置质量浓度为0.01~0.30g/ml的二氧化锡基导电纳米晶分散液,二氧化锡基导电纳米晶为W、F、Mo、Nb、Ta、Cr中的一种或几种掺杂的SnO2;所述二氧化锡基导电纳米晶中异质原子的掺杂含量为0.01~20at%;
B.将还原氧化石墨烯粉末均匀分散到二氧化锡基导电纳米晶分散液中,然后将分散液转入到高压反应釜进行溶剂热反应,还原氧化石墨烯和导电纳米晶的质量比为1∶0.1~10;
C.将水热后的样品洗涤、干燥,得到二氧化锡基导电纳米晶/还原氧化石墨烯复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(a)中所述的二氧化锡基导电纳米晶分散液中的溶剂为水、甲醇、乙醇、异丙醇中的一种或几种。
3.根据权利要求1所述的制备方法,其特征在于,步骤(b)中所述的均匀分散为超声分散0.5~6小时。
4.根据权利要求1所述的制备方法,其特征在于,步骤(b)中所述的溶剂热反应条件为,在120~200℃下反应6~72小时。
CN201510138473.2A 2015-03-27 2015-03-27 一种锂离子电池负极材料及其制备方法 Expired - Fee Related CN104852022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510138473.2A CN104852022B (zh) 2015-03-27 2015-03-27 一种锂离子电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510138473.2A CN104852022B (zh) 2015-03-27 2015-03-27 一种锂离子电池负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104852022A CN104852022A (zh) 2015-08-19
CN104852022B true CN104852022B (zh) 2017-03-15

Family

ID=53851492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510138473.2A Expired - Fee Related CN104852022B (zh) 2015-03-27 2015-03-27 一种锂离子电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104852022B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169581B (zh) * 2016-08-30 2019-03-26 安徽师范大学 一种四硫化三铁/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106159239B (zh) * 2016-08-30 2019-06-25 安徽师范大学 一种硫化锰/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106299294A (zh) * 2016-09-13 2017-01-04 天津大学 一种二氧化锡纳米晶/二氧化钛纳米管复合材料的制备方法
CN106450257A (zh) * 2016-11-16 2017-02-22 上海大学 掺杂氧化锡石墨烯复合材料及其制备方法
CN106684325A (zh) * 2017-01-10 2017-05-17 郑州大学 一种铌掺杂二氧化锡薄膜锂离子电池负极极片及其制备方法,锂离子电池
CN107256951B (zh) * 2017-06-08 2019-12-10 陕西科技大学 一种CoO/还原氧化石墨烯复合物负极材料及其制备方法
CN108232181A (zh) * 2018-01-10 2018-06-29 苏州氟特电池材料股份有限公司 一种锂电池用碳基负极材料及其制备方法
CN109167019A (zh) * 2018-09-03 2019-01-08 大同新成新材料股份有限公司 一种电池负极材料及其制备方法和制备装置
CN110416532A (zh) * 2019-08-20 2019-11-05 广东工业大学 一种电池复合材料及其制备方法、电极片和电池
CN110459752B (zh) * 2019-08-29 2020-11-13 浙江大学山东工业技术研究院 一种钠离子电池负极材料及其制备方法和应用
CN112209430B (zh) * 2020-09-24 2023-03-31 广东工业大学 一种锂离子电池用二氧化锡/铌掺杂碳复合材料及其制备方法和应用
US11688850B1 (en) 2022-01-23 2023-06-27 Guangdong University Of Technology Preparation method of SnO2@Sn coated reduced graphene oxide composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326007A (zh) * 2013-06-25 2013-09-25 上海交通大学 三维石墨烯基二氧化锡复合材料的制备方法及其应用
CN103482617A (zh) * 2013-09-09 2014-01-01 东南大学 一种二氧化锡/石墨烯复合材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
CN103553034B (zh) * 2013-11-12 2015-04-15 哈尔滨工业大学 一种三维孔状石墨烯骨架的制备方法
CN103985873B (zh) * 2014-05-19 2016-09-28 陕西科技大学 一种提高锂离子电池用负极材料循环稳定性的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326007A (zh) * 2013-06-25 2013-09-25 上海交通大学 三维石墨烯基二氧化锡复合材料的制备方法及其应用
CN103482617A (zh) * 2013-09-09 2014-01-01 东南大学 一种二氧化锡/石墨烯复合材料的制备方法

Also Published As

Publication number Publication date
CN104852022A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
CN104852022B (zh) 一种锂离子电池负极材料及其制备方法
Luo et al. Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors
Wang et al. Supercapacitor performances of the MoS2/CoS2 nanotube arrays in situ grown on Ti plate
Xia et al. Recent progress on two-dimensional nanoflake ensembles for energy storage applications
Li et al. Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors
Yang et al. Direct reduction of graphene oxide by Ni foam as a high-capacitance supercapacitor electrode
CN103112846B (zh) 一种石墨烯-碳纳米管-纳米二氧化锡三维复合材料的制备方法及其产品
Li et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability
Zhu et al. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors
Qiao et al. Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties
Zeng et al. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries
Xue et al. Improving the electrode performance of Ge through Ge@ C core–shell nanoparticles and graphene networks
Khandare et al. MoO3-rGO nanocomposites for electrochemical energy storage
Zhu et al. 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors
Younas et al. Rapid and simplistic microwave assisted method to synthesise cobalt selenide nanosheets; a prospective material for high performance hybrid supercapacitor
Zhang et al. Three-dimensional pompon-like MnO2/graphene hydrogel composite for supercapacitor
Wang et al. Layered g-C3N4@ reduced graphene oxide composites as anodes with improved rate performance for lithium-ion batteries
Xu et al. Facile preparation of NiCo2O4 nanobelt/graphene composite for electrochemical capacitor application
Dong et al. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors
Lu et al. Transition metal oxides/hydroxides nanoarrays for aqueous electrochemical energy storage systems
CN106744857A (zh) 3d打印石墨烯‑金属复合材料、制备方法及应用
CN104269514A (zh) 具备三维多孔结构的过渡金属化合物-石墨烯复合材料的制备方法
Zhu et al. Synthesis of monodisperse mesoporous TiO2 nanospheres from a simple double-surfactant assembly-directed method for lithium storage
CN104299798B (zh) 一种硼原子掺杂改性石墨烯材料、制备方法及应用
Li et al. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170315

CF01 Termination of patent right due to non-payment of annual fee