CN104813143B - 道路网络分析器、道路网络分析系统、以及道路网络分析方法 - Google Patents
道路网络分析器、道路网络分析系统、以及道路网络分析方法 Download PDFInfo
- Publication number
- CN104813143B CN104813143B CN201480003157.8A CN201480003157A CN104813143B CN 104813143 B CN104813143 B CN 104813143B CN 201480003157 A CN201480003157 A CN 201480003157A CN 104813143 B CN104813143 B CN 104813143B
- Authority
- CN
- China
- Prior art keywords
- road network
- traffic
- discontinuous
- link
- incidence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0112—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3807—Creation or updating of map data characterised by the type of data
- G01C21/3815—Road data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3833—Creation or updating of map data characterised by the source of data
- G01C21/3844—Data obtained from position sensors only, e.g. from inertial navigation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0137—Measuring and analyzing of parameters relative to traffic conditions for specific applications
- G08G1/0141—Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B29/00—Maps; Plans; Charts; Diagrams, e.g. route diagram
- G09B29/10—Map spot or coordinate position indicators; Map reading aids
- G09B29/106—Map spot or coordinate position indicators; Map reading aids using electronic means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Traffic Control Systems (AREA)
- Instructional Devices (AREA)
- Navigation (AREA)
Abstract
本发明的分析器通过使用随着车辆的驾驶而产生的探测信息来充分地分析在道路网络中的改变。该分析器从在预定时段上累积的多个所述探测信息确定经过在所述道路网络中包括的指定路段的车辆的交通量。该分析器也从在所述预定时段上累积的所述多个探测信息确定不连续发生率,所述不连续发生率是车辆位置在所述指定路段中不连续的事件的发生率。该分析器基于在相对于在所述道路网络中包括的所述指定路段的两个不同时段中的交通量之间的改变程度和在所述两个不同时段中的不连续发生率之间的改变程度而检测在所述道路网络中的改变。所检测的在道路网络中的改变可以用于道路网络的调查。
Description
相关申请的交叉引用
本申请要求在2013年2月12日提交的日本申请JP-A-2013-24084的优先权,其内容由此通过引用被并入本申请内。
技术领域
本发明涉及用于分析在道路网络中的改变的道路网络分析的技术。
背景技术
通过例如新的高速公路或新的绕行道路的开放或因为建设或灾难而关闭道路来改变车辆经过的道路的状况。需要尽可能快地在地图数据上反映道路的这样的开放和关闭。特别是随着包括汽车导航系统的导航系统的最近扩展,已经强烈需要地图数据的较早更新。
已经提出了各种技术,用于通过使用从被称为探测汽车的车辆发送的信息来检测路况的改变,该探测汽车实际地行进通过道路,并且使得能够较早更新道路网络数据。例如,当多个探测汽车(车辆)经过未被注册为道路的位置时,一种建议的技术在地图数据库中注册该位置,以便使得能够在地图数据库上较早地反映在道路网络中的改变(例如,JPH09-243391A)。
然而,该提出的技术基于当探测汽车经过时的频率来在地图数据库中注册未被注册为道路的位置。该技术未识别路况的改变的重要性,特别是对于道路用户的影响的意义。不可能仅从自探测汽车发送的信息获得要在地图数据库中注册的所有的信息。通常,调查者被派遣来调查和注册详细数据。因此,存在下述需求:以重要性的顺序来进行关于路况的改变的调查。然而,现有技术不能满足该需求。
一种建议的道路网络分析系统(例如,JP 2012-150016A)是下述良好技术,其处理从例如探测汽车获得的探测信息,并且提取在交通量上的改变,以尽可能早地找出在道路网络上的重要改变。然而,交通量上的改变也由例如大的商业设施的开放和闭合引起。因此需要检测精度的进一步的改善。
发明内容
为了解决如上所述的问题的至少一部分,通过下面的方面来实现本发明。
(1)根据一个方面,提供了一种道路网络分析器。所述道路网络分析器通过使用随着车辆的驾驶而产生的探测信息来分析在道路网络中的改变,并且包括交通量计算器、不连续发生率计算器和检测器。所述交通量计算器可以被配置为从在预定时段上累积的多个所述探测信息确定经过在所述道路网络中包括的指定路段的车辆的交通量。所述不连续发生率计算器可以被配置为从在所述预定时段上累积的所述多个探测信息确定不连续发生率,所述不连续发生率是车辆位置在所述指定路段中不连续的事件的发生率。所述检测器可以被配置为基于在相对于在所述道路网络中包括的所述指定路段的两个不同时段中的交通量之间的改变程度和在所述两个不同时段中的不连续发生率之间的改变程度而检测在所述道路网络中的改变。
根据这个方面的所述道路网络分析器基于在所述两个不同时段中的交通量之间的改变程度和在所述两个不同时段中的不连续发生率之间的改变程度来检测在所述道路网络中的改变。这使得能够精确地检测在所述道路网络中的改变。更具体地,这抑制了由与所述道路相邻的诸如大的商业设施的设施的开放和关闭引起的在交通量上的改变被错误地归因于在所述道路网络中的改变。这因此使得能够更充分地确定现场调查的必要性。
(2)在根据上述方面的所述道路网络分析器中,所述不连续发生率计算器可以对照所述道路网络的道路网络数据查看所述探测信息,并且确定是否发生所述车辆位置不连续的事件,以便确定所述不连续发生率。当在所述探测信息中包括关于随着时间在车辆位置上的改变的信息时,可以通过使用这个信息容易地确定是否发生了所述车辆位置不连续的事件。当在随着所述车辆的驾驶产生的所述探测信息中包括指示是否发生了所述处理位置不连续的事件的信息时,可以仅基于所述探测信息来确定是否发生了所述车辆位置不连续的事件。可以在所述车辆上或中继探测信息的装置上产生这个探测信息。
(3)在根据上述方面的道路网络分析器中,所述道路网络的所述道路网络数据可以包括与道路相对应的链路和表示所述链路的端部的节点。所述道路网络数据的指定部分可以包括所述链路的至少一个和表示所述链路的至少一个端部的节点。所述探测信息可以包括识别所述车辆已经经过的链路或节点的信息。所述交通量可以是已经经过在所述指定部分中包括的所述链路或所述节点的车辆的数量。所述不连续发生率可以是已经经过被指定为不连续的链路或节点的车辆的数量与所述交通量的比率。这个方面的道路网络分析器可以通过以链路和节点的形式来表达所述道路网络而容易地检测在所述道路网络中的改变。然而,这样的道路网络的分析的概念也适用于以除了链路和节点的不同形式表达的道路网络。
(4)根据上述方面的道路网络分析器可以进一步包括探测信息获取器,所述探测信息获取器被配置为获得从所述车辆发送的所述探测信息。所述道路网络分析器可以从探测车辆直接地获得探测信息。在另一个应用中,从探测车辆发送的探测信息被一次累积在例如专用服务器中,并且所述道路网络分析器可以获得在这个服务器中累积的所述探测信息以分析所述道路网络。直接地获得从探测车辆发送的探测信息使得能够实时分析所述道路网络。另一方面,分析在所述服务器中存储的数据使得能够以固定间隔集体处理,并且便利对处理的调度和季节变化的消除。
(5)在根据上述方面的道路网络分析器中,在相对于在所述道路网络中包括的所述指定路段的在所述两个不同时段中的所述交通量之间的所述改变程度可以是在所述两个时段之一中的所述交通量与在所述两个时段的另一个中的所述交通量的比率。所述交通量每天、每个星期和每个季节都不同。在一些情况下,优选的是,将所述交通量的所述改变程度提供为从在所述两个时段之一中的所述交通量的增大率或降低率。可以将所述交通量的所述比率计算为在所述两个时段中的各个时段中的交通量与总的交通量的比率之差
(6)在根据上述方面的所述道路网络分析器中,在所述两个不同时段中的所述不连续发生率之间的所述改变程度可以是通过将在所述两个时段之一中的所述不连续发生率从在所述两个时段的另一个中的所述不连续发生率减去的差。在一些情况下,通过不连续发生率将所述不连续发生率的所述改变程度提供为所述不连续发生率之间的差而能够容易地明白所述不连续发生率的改变。替代地,可以将所述不连续发生率的所述改变程度提供为在所述两个时段之一中的所述不连续发生率与在所述两个时段的另一个中的所述不连续发生率的比率。
(7)在根据上述方面的所述道路网络分析器中,当所述交通量的所述比率与稳态值的偏差等于或大于预定水平时,并且当所述不连续发生率的所述差与稳态值的偏差等于或大于预定水平时,所述检测器可以检测在所述道路网络的所述指定路段中的改变。当所述交通量的所述比率和所述不连续发生率的所述差两者与它们的稳态值偏差了所述预定值或更大时,这个方面的所述道路网络分析器检测在所述道路网络的所述指定路段中的改变。这抑制了由与在所述道路网络中的改变不同的原因引起的所述交通量的改变被错误地归因于在所述道路网络中的改变。例如,通过大商业设施的开放或关闭,可以显著地改变在预定地区中的所述交通量。在这些情况下,一般不改变所述不连续发生率,使得所述交通量的这个改变不可能被错误地归因于在所述道路网络中的改变。
(8)在根据上述方面的所述道路网络分析器中,可以通过与二项分布的偏差来评估所述交通量的所述比率与所述稳态值的所述偏差。可以将在所述两个时段之间的在交通量上的改变看作在一个时段中的所述交通量比另一个时段的增大和在一个时段中的所述交通量比另一个时段的降低之间的只能二选一的选择。除非所述道路网络具有改变,否则认为在一个时段中的所述交通量是否比在另一个时段中的所述交通量增大(或降低)是随机事项。在这种情况下,当获得关于所述道路网络的所述指定路段的多个数据时,预期相对于所述道路网络的所述指定路段的所述交通量的所述比率遵循二项分布。因此能够容易通过与这个分布的所述偏差检测到所述交通量的所述比率与其稳态值的偏差。在获得极大数量的采样数据的情况下,可以通过正态分布来近似二项分布。
(9)在根据上述方面的所述道路网络分析器中,可以通过费舍尔概率测试来评估所述不连续发生率的所述改变程度。所述费舍尔概率测试是数学上验证是否满足虚假设(在这种情况下,相对于所述道路网络的所述指定路段,在一个时段中的不连续发生率与相对于在另一个时段中的不连续发生率实质上没有不同)的技术。这使得能够以数学严格性来评估所述不连续发生率的所述改变程度。另一个过程可以在所述两个时段中的所述不连续发生率之间进行比较,并且确定在一个时段中的所述不连续发生率是否大于在另一个时段中的所述不连续发生率。在本申请中,象所述交通量的所述改变那样,可以通过二项分布来评估所述不连续发生率的所述改变程度。
(10)根据第二方面,提供了一种道路网络分析系统。这个道路网络分析系统可以包括:探测车辆,所述探测车辆被配置为随着所述车辆的驾驶而产生探测信息;以及,分析器,所述分析器被配置为从所述探测车辆接收所述探测信息,并且分析道路网络。所述探测车辆可以包括发射器,所述发射器被配置为参考与所述道路网络相关的链路节点信息,并且发送作为所述探测信息的一部分的、所述探测车辆已经经过的链路和/或节点的信息。所述分析器可以包括探测信息累积器、计算器、提取器和检测器。所述探测信息累积器可以被配置为接收从多个所述探测车辆发送的所述探测信息,并且累积在预定时段上的接收到的探测信息。所述计算器可以被配置为从在所述预定时段上累积的多个所述探测信息确定经过在所述道路网络中包括的指定路段的链路和/或节点的车辆的交通量,并且从在所述预定时段上累积的所述多个探测信息确定不连续发生率,所述不连续发生率是车辆位置在所述指定路段中不连续的事件的发生率。所述提取器可以被配置为提取相对于在所述道路网络中包括的所述指定路段的两个不同时段中的交通量之间的改变程度和在所述两个不同时段中的不连续发生率之间的改变程度。所述检测器可以被配置为基于提取的所述交通量的改变程度和提取的所述不连续发生率的改变程度而检测在所述道路网络中的改变。
根据这个方面的所述道路网络分析系统基于在所述两个不同时段中的交通量之间的改变程度和在所述两个不同时段中的不连续发生率之间的改变程度而检测在道路网络中的改变。这使得能够精确地检测在道路网络中的改变。更具体地,这抑制了由与所述道路相邻的诸如大的商业设施的设施的开放和关闭引起的在交通量上的改变被错误地归因于在所述道路网络中的改变。这因此使得能够更充分地确定现场调查的必要性。
在如上所述的本发明的每一个方面中包括的多个结构组件不都是必要的,而是在该多个结构组件中的一些结构组件可以被适当地改变、省略或替换为其他结构组件,或者可以删除限制的一部分,以便解决如上所述的问题的一部分或全部或以便实现在此所述的有利效果的一部分或全部。为了解决如上所述的问题的一部分或全部或为了实现在此所述的有利效果的一部分或全部,在如上所述的本发明的一个方面中包括的技术特征的一部分或全部可以与在如上所述的本发明的另一个方面中包括的技术特征的一部分或全部组合,以提供本发明的又一个独立的方面。
也通过诸如下述部分的其他各种应用来实现本发明:道路网络分析方法,用于通过使用随着车辆的驾驶而产生的探测信息来分析在道路网络中的改变;程序,所述程序能够被计算机读取,并且使得该计算机执行通过使用随着车辆的驾驶而产生的探测信息来分析在道路网络中的改变的处理;以及,永久存储介质,其中,存储了这样的计算机程序。
附图说明
图1是图示根据第一实施例的道路网络分析系统的一般配置的框图;
图2是示出探测信息的一个示例的图;
图3是图示分析器的一般配置的框图;
图4是示出由探测车辆和服务器进行的处理流程的流程图;
图5是示出链路和节点的一个示例的图;
图6是示出交通量数据的一个示例的图;
图7是示出具有或没有跳跃事件的链路的阵列的图;
图8是示出由分析器执行的分析操作例程的流程图;
图9是示出由分析器执行的交通量改变比率计算和存储例程的流程图;
图10是示出由分析器执行的道路网络分析例程的流程图;
图11是示出交通量改变比率的奇异点的一个示例的图;
图12是图示由绕行道路的开放引起的在链路阵列中的改变的图;
图13是示出费舍尔概率测试的概念的图;
图14是示出根据第二实施例的交通量改变比率计算和存储例程的流程图;以及
图15是示出根据第三实施例的交通量改变比率计算和存储例程的流程图。
具体实施方式
A.实施例的概述
描述本发明的实施例。图1是图示根据本发明的一个实施例的道路网络分析系统10的一般配置的方框图。如所示,该道路网络分析系统10包括:n个探测车辆AM1、AM2、..、AMn、服务器100,服务器100被配置为从这些探测车辆接收探测信息;以及,分析器200,分析器200被配置为分析道路网络。在此后的说明中,探测车辆AM1、AM2、..、AMn被统称为探测车辆AMi,除非要求单独的区分。在原理上,通过词“经过”或“交通”来表达车辆在诸如道路或链路的特定位置上行进的状态,并且在原理上通过词“驾驶”来表达车辆仅行进的状态。
下面依序说明实施例的细节。为了更好地理解实施例,首先作为分析器200的功能描述与在权利要求书中的权利要求1相对应的相应组件的处理。分析器200包括交通量计算器210、不连续发生率计算器220和检测器230。分析器200或具体地说其交通量计算器210基于来自探测车辆AMi的探测信息来确定关于每个链路的在两个时段1和2中各自的探测车辆的交通量SL1和SL2。该两个时段可以例如是财政年度的前半年和后半年或上个月和这个月。
分析器200或具体地说其不连续发生率计算器220确定在两个时段1和2中各自的跳跃事件发生率JL1和JL2。跳跃事件发生率表示其中探测车辆AMi经过不连续链路的跳跃事件的数量与总的交通量的比率(下面将描述细节)。
另外,分析器200或具体地说其检测器230检测在道路网络中的改变。该检测被下面的过程执行。该过程首先通过RSL=SL2/SL1计算相对于每个链路的交通量改变比率RSL。该过程然后执行这个交通量改变比率RSL和跳跃事件发生率JL1和JL2的测试,并且当测试结果指示显著改变时检测相对于链路的在道路网络上的改变。
本发明的实施例因此通过相对于每个链路执行交通量改变比率RSL和跳跃事件发生率JL1和JL2的测试。这使得能够使能极其精确的检测在道路网络中的改变。该过程抑制了例如通过开放新的大商业设施引起的交通量的简单改变被错误地归因于在道路网络中的改变。该过程也减少了由探测车辆的故障或链路数据的不足引起的误检测。下面参考第一至第三实施例和多个修改来详细描述本发明的一些方面。
B.系统配置
探测车辆AMi包括:GPS装置11,GPS装置11被配置为检测车辆的位置;存储装置12,存储装置12被配置为存储地图数据库GDB;探测信息识别器14,探测信息识别器14被配置为从检测的车辆位置识别在道路数据量GDB上的链路;以及,通信器15,通信器15被配置为进行包括探测信息的传输的通信。探测车辆AMi可以进一步配备有使用地图数据库GDB的导航装置。在本申请中,存储装置12、探测信息识别器14和通信器15可以被包含为导航装置的一部分。
地图数据库GDB是存储与实际道路网络相对应的链路节点信息的数据库。与诸如十字路口、分支点和单向街道的起点的、具有不同车辆交通状况的位置对应地设置节点,并且将链路设置来互连这些节点。通常,当探测车辆AMi经过道路时,探测车辆AMi依序沿着由在地图数据库GDB上的节点连接的链路。
探测车辆AMi基于从GPS装置11获得的车辆位置(纬度经度信息)来识别与其中探测车辆AMI经过的道路对应的链路,并且经由通信器15以预定间隔发送作为探测信息的识别的链路。图2图示了从探测车辆AMi输出的探测信息PIi的一个示例。以具有分组报头的分组的形式来发送探测信息PIi。该分组包括探测ID、链路ID和时间(日期和时间)的数据。探测ID是用于识别从其发送了探测信息的探测车辆AMi的唯一号码。链路ID是用于识别与探测车辆AMi所经过的道路相对应的链路的唯一号码。时间是根据这个实施例的使得能够识别年、月和日期的数据。时间数据可以替代地是更详细的数据,诸如从GPS获得的小时、分钟和秒。探测信息PIi可以另外包括另一个信息,诸如在图2中的括号内所示的用户ID。在图2中的括号示出项目的选用的。例如,不同的用户可以驾驶同一探测车辆AMi,使得用户ID用于识别驾驶的用户。探测信息可以进一步包括探测车辆AMi的驾驶速度和关于例如油门、制动器和方向盘的驾驶操作的信息。
经由无线通信网络NE来向服务器100收集从探测车辆AMi发送的探测信息PIi。发送探测信息的技术是本领域中已知的,并且不详细被描述;可以通过例如TCP/IP协议来以分组的形式发送探测信息PIi。所发送的分组经由无线通信网络被转发到诸如因特网的广域通信网络,并且基于在报头中分配的IP地址被传递到服务器100。对于从探测车辆AMi向服务器100发送探测信息的定时,允许各种设置。根据这个实施例,为了收集用于分析的有效信息,以预定间隔从以指定或更高速度驾驶的探测车辆AMi发送探测信息。替代地,当车辆位置从在地图数据库GDB中的特定链路移动到另一个链路时,可以发送探测信息。根据另一个实施例,探测车辆AMi可以没有地图数据库GDB,并且以预定间隔发送从GPS装置11获得的位置信息。下述的服务器100或分析器200可以识别探测车辆AMi所位于的链路或节点。
服务器100包括探测信息数据库110、地图数据库120和道路网络数据库130。地图数据库120存储用于绘制地图的多边形数据。地图数据库120用于在分析器200中的用地图显示分析结果。道路网络数据库130存储道路网络数据,该道路网络数据示出由以链路和节点的形式表达的道路和十字路口构成的道路网络。道路网络数据可用于路线搜索。道路网络数据另外包括相对于各个链路和节点的关于下述部分的信息:诸如国道或地区道路的道路类型、诸如车道的数量的道路宽度、诸如右转和左转禁止的行驶方向限制、和诸如单向交通的交通限制。该道路网络数据库130可以与在探测车辆AMi上安装的地图数据库GDB相同。
探测信息数据库110是以时间系列记录探测车辆AMi的交通轨迹的数据库。服务器100向探测信息数据库110内存储从每个探测车辆AMi发送的探测信息PIi。探测信息数据库110至少存储用于识别车辆AMi的探测ID、链路ID和时间。当从探测车辆AMi上传的信息包括用户ID、详细时间数据、探测车辆AMi的驾驶速度和关于油门、制动器和方向盘的驾驶操作的信息时,可以另外在探测信息数据库110中存储这些信息。
服务器100在探测信息数据库110中存储在预定时段上来自多个探测车辆AMi的探测信息。以ss秒一次的间隔从探测车辆AMi发送探测信息。在n个探测车辆AMi作为分析目标在道路网络上存在、并且每天被驾驶平均hh小时、并且每个探测信息的量是10字节的假设下,一年的数据量是:10x n x(hh x 3600/ss)x 365字节。探测信息数据库100具有足以存储这样的数据量的容量。在存在10万探测车辆AMi、间隔是4秒、并且每天的平均驾驶时间是4小时的假设下,数据量:10x100000x(4x3600/4)x365是大约1.3兆兆字节。
分析器200使用在服务器100中存储的这个探测信息来分析道路网络。前面描述了由分析器200实现的功能。这个分析器200实际上被提供为计算机,该计算机包括CPU 201、ROM 202、RAM 203、通信器204、硬盘驱动器205、I/O接口206、键盘和鼠标207和显示器208,如图3中所示。通过在分析器200中安装的预定OS下执行在硬盘驱动器205中存储的计算机程序来实现例如上述的交通量计算器210的功能。替代地,可以通过分立硬件(例如,电路)来实现所述功能的一部分或全部。象分析器200那样,服务器100也被提供为包括CPU的计算机,并且通过执行计算机程序来执行相应的数据库的管理与写入和读取操作。
C.收集交通量数据的处理
下面描述在道路网络分析系统10的操作当中收集交通量数据的处理。图4是示出由在构成道路网络分析系统10的探测车辆AMi、服务器100和分析器200当中的探测车辆AMi和服务器100执行的处理的流程图。在图示的左侧的步骤S70至S90示出由探测车辆AMi在驾驶期间连续地执行的探测车辆处理例程,并且在右侧上的步骤S105至S155示出与服务器100连续执行的服务器处理例程。
在驾驶的开始后,探测车辆AMi每次过去预定时间(步骤S70)时获得链路ID(步骤S80)。获得链路ID的过程从GPS装置11获得车辆位置,并且对照在存储装置12的地图数据库GDB中存储的链路节点信息而查看车辆位置。换句话说,在步骤S80处获得的链路ID用于识别与探测车辆AMi当前经过的道路相对应的链路。
图5是示意地图示链路节点关系的图。图5的所示的示例包括与道路相对应的链路L1至L7和用于连接这些链路L1至L7的节点N1至N4。这样的链路节点关系被存储在服务器100的道路网络数据库130中以描述实际的道路配置。假定探测车辆AMi在时间T1经过链路L1,随后经过节点N1,并且在预定间隔后在时间T2处经过链路L2。在这种情况下,在时间T1获得作为链路ID的L1,并且在时间T2处获得作为链路ID的L2。在下面的说明中,通过链路编号1来表达链路L1,并且通过链路编号2来表达链路L2。
当获得当前链路ID时,探测车辆AMi以在图2中所示的探测信息的形式来组织这个链路ID,并且在无线通信网络NE上发送探测信息(步骤S90)。之后,探测车辆AMi去往“RTN(返回)”,并且终止探测车辆处理例程。在诸如因特网的未示出的广域通信网上从无线通信网络N2以分组的形式将发送的探测信息传递到服务器100。有可能探测车辆AMi在自时间T1的预定间隔之后在时间T3处仍然经过同一链路L2。在这种情况下,探测车辆AMi发送包括同一链路L2的探测信息。
服务器100经由网络接收这个探测信息(步骤S105),并且向探测信息数据库110内存储这个探测信息(步骤S115)。因此,示出探测车辆AMi以时间Ti连续经过的链路ID的阵列的数据被存储在探测信息数据库110的一部分中。服务器100随后确定探测车辆AMi是否移动到不同的链路(步骤S125)。当确定探测车辆AMi未移动到不同的链路或仍然经过与在时间T2和时间T3之间的时段中相同的链路L2(步骤S125:否)时,服务器100去往“RTN”,并且在探测信息的存储之后终止服务器处理例程,而没有任何进一步的处理。
另一方面,当确定探测车辆AMi移动到不同的链路时(步骤S125:是),服务器100更新交通量数据(步骤S135)。该交通量数据被存储在服务器100的探测信息数据库110中。在图6中示出交通量数据的示例。该交通量数据是以日为单位相对于所有的链路记录的数据,并且当探测车辆AMi经过与链路相对应的道路一次时递增值1。例如,当探测车辆AMi在日期A的时间T2处位于链路L2上,并且被确定从前一个链路L1移动到链路L2时,交通量1A递增1。当另一个探测车辆AMi经过链路时以及当同一探测车辆AMi在同一日期多次经过该同一链路时,在该日期上的该链路的交通量递增。在图6的所示示例中,以日为单位来存储交通量数据。然而,记录数据的单位可以是日的一半或诸如每小时的更短单位。替代地,可以以两天、一个星期或一个月为单位来记录数据。可以采用更长的记录单位用于小交通量的道路,并且可以采用更短的记录单位用于大交通量的道路。以这种方式相对于每个链路编号和相对于每个日期记录经过每个道路(即,链路)的探测车辆AMi的总数。
服务器100随后检测跳跃事件的存在或不存在(步骤S145)。检测跳跃事件的存在或不存在取决于通过对照在道路网络数据库130中存储的道路网络数据查看从探测车辆AMi发送的探测信息中包括的链路ID而确定链路ID是连续的还是不连续的。图7是解释跳跃事件的图。当探测车辆AMi经过在图5中所示的道路时,探测车辆AMi在几秒的短间隔处获得链路ID。只要探测车辆AMi沿着链路移动,则因此不可能不能获得探测车辆AMi经过的每个链路的链路ID。通常,链路ID被在图7中的链路示例1如下示出为连续的:
L1-->L2-->L2-->L5-->L6。
虽然链路信息不包括节点,但是该阵列通过在括号中添加节点N而被表达为:
L1-->(N1)-->L2-->L2,-->(N4)-->L5-->(N3)-->L6。
这个链路信息被存储在服务器100的道路网络数据库130中。
从探测车辆AMi获得并且以时间系列排列的链路ID可以是不连续的,就像由在图7中的链路示例2所示的L1、L2、L4和L6的阵列那样。这个阵列通过在括号中添加节点N被表达为:
L1,-->(N1)-->L2-->(x)-->L4,-->(N3)-->L6
通常在不同的链路ID之间存在节点。然而,在这个示例中,基于在道路网络数据库130中的道路网络数据,未找到节点来将链路L2与链路L4连接。该现象被称为链路的跳跃事件。因为链路L2和链路L4在道路网络数据库130上不连续,所以在从链路L2向链路L4移动的情况下,检测到跳跃事件的存在(步骤S145:是)。服务器100然后更新跳跃事件发生率数据(步骤S155)。跳跃事件发生率数据是如在图6的情况中那样相对于每个链路编号和相对于每个数据记录的数据。在步骤S155的处理后或一旦检测到跳跃事件的不存在(步骤S145:否),服务器100去往“RTN”,并且终止在图4中所示的服务器处理例程。
根据这个实施例,当依序获得的链路ID不连续时,相对于两个链路对跳跃事件的发生进行计数,并且在步骤S155处将其记录,而与驾驶方向无关。一旦检测到在探测信息中包括的不连续链路,则对于下面的链路更新跳跃事件发生率:
1)在从沿一个方向经过链路(上行)的车辆发送包括不连续链路的探测信息的情况下的前一个链路;
2)在从沿一个方向经过链路(上行)的车辆发送包括不连续链路的探测信息的情况下的后一个链路;
3)在从沿相反方向经过链路(下行)的车辆发送包括不连续链路的探测信息的情况下的前一个链路;并且
4)在从沿相反方向经过链路(下行)的车辆发送包括不连续链路的探测信息的情况下的后一个链路。
跳跃事件发生率应当被原始理解为跳跃事件的数量与总的交通量的比率。具体过程应当因此确定在上面的情况1)至4)中相对于每个链路的探测车辆的交通量,并且将跳跃事件的数量除以对应的交通量,以计算跳跃事件发生率。然而,这个实施例采用费舍尔概率测试来用于评估在跳跃事件发生率上的改变,如下所述,并且因此,直接地对跳跃事件的数量进行计数,为了方便起见其被称为“跳跃事件发生率”。下面作为修改将描述使用所计算的跳跃事件发生率的过程。检测跳跃事件的单位不限于上面的示例,但是仅前一个链路或后一个链路可以被用作检测的单位。可以在每个链路处对跳跃事件的数量进行计数,并且,可以从该计数计算在链路处的跳跃事件发生率。对于上行和下行可以单独地记录跳跃事件发生率。
D.分析处理
下面参考图8至10来描述由分析器200执行的分析处理。图8是示出作为由分析器200执行的分析处理的一部分的分析操作例程的流程图。由在分析器200中的用户的用于分析道路网络的指令触发该分析操作例程。可以另外以诸如每天、每星期、一个月的每10天或每个月的固定间隔来自动启动分析操作例程。当在服务器100中存储的链路信息的数量或跳跃事件的数量达到或超过预定水平时,也可以启动分析操作。
在图8中所示的处理的开始,分析器200首先将表示链路编号的变量L初始化为值1(步骤S205),并且从服务器100的探测信息数据库110读出相对于链路L的交通量数据(图6)和跳跃事件发生率数据(步骤S215)。分析器200随后计算相对于链路L的在时段1中的交通量数据SL1(步骤S225)并且计算相对于链路L的在时段2的交通量数据SL2(步骤S235)。在服务器100的探测信息数据库110中记录相对于链路L(例如,链路1)的在每个日期上的交通量。在相应的时段1和2中整合这些交通量。例如,时段1可以是4月至9月(财政年度的前一半),并且时段2可以是10月至3月(财政年度的后一半)。在另一个示例中,时段1可以是在最后月之前的月,并且时段2可以是最后月。在又一个示例中,时段1可以是该月的前10天(1号到10号),并且时段2可以是该月的第二个10天(11号至20号)。时段1和时段2可以是相同的长度,或者可以是不同的长度。
分析器200随后计算和存储交通量改变比率RSL(步骤S240)。交通量改变比率RSL是在时段2中的交通量与在时段1中的交通量的比率。下面将详细描述计算交通量改变比率RSL的过程。
在交通量改变比率RSL的计算和存储之后,分析器200计算相对于链路L的在时段1中的跳跃事件发生率数据JL1(步骤S255),并且计算相对于链路L的在时段2中的跳跃事件发生率数据JL2(步骤S265)。在服务器100的探测信息数据库110中记录相对于链路L(例如,链路L)的在每个日期上的跳跃事件发生率。在相应的时段1和2中整合这些跳跃事件发生率。这些时段1和2优选地与用于在步骤S225和S235处的交通量数据SL1和SL2的计算的时段1和2相同。步骤S215至S235的处理和步骤S255至S265的处理分别对应于在图1中所示的交通量计算器210的处理和不连续发生率计算器220的处理。
分析器200然后将表示链路编号的变量L递增1(步骤S280),并且确定是否已经对于所有的链路完成了操作(步骤S290)。当还没对于所有的链路完成了操作时,分析器200返回步骤S215,并且重复上面的系列的处理(步骤S215至S290)。另一方面,当已经对于所有的链路完成了操作时,分析器200去往“结束”,并且终止这个分析操作例程。
下面描述了在分析操作例程中的步骤S240的细节(交通量改变比率计算和存储例程)。图9是示出这个交通量改变比率计算和存储例程的流程图。在交通量改变比率计算和存储例程中,分析器200首先确定相对于链路L的在时段1和2中的交通量数据SL1和SL2是否等于或大于预定值(步骤S241)。当相对于由链路编号L指定的链路的在相应的时段1和2中的交通量数据SL1和SL2小于预定值时,交通量改变比率的计算经常无意义。因此,确定在这种情况下不计算交通量改变比率。当交通量数据SL1和SL2等于或大于预定值时(步骤S241:是),分析器200通过表达式(1)计算交通量改变比率RSL(步骤S243):
RSL=SL2/SL1 (1)
分析器200然后在硬盘驱动器205的指定区域中存储交通量改变比率RSL(步骤S245),并且去往“下一个”,以终止交通量改变比率计算和存储例程。当存在诸如季节变化的已知参数时,该过程可以通过考虑这个参数来校正交通量,并且确定交通量改变比率RSL。
通过如上所述的分析操作例程(图8)和交通量改变比率计算和存储例程(图9)来相对于在链路编号1至最大链路编号的所有链路当中的、具有等于或大于预定值的在时段1和2中的总的交通量SL1和SL2的链路计算交通量改变比率RSL以及跳跃事件发生率JL1和JL2。在硬盘驱动器205的指定区域中与链路编号L相关地存储计算的结果。
分析器200随后启动在图10中所示的道路网络分析例程。该例程可以在图8中所示的分析操作例程之后自动地被启动,或者可以被用户手动启动。在道路网络分析例程的开始时,分析器200首先将表示链路编号的变量L初始化为值1(步骤S300),并且读出在硬盘驱动器205中存储的交通量改变比率RSL(步骤S310)。交通量改变比率RSL可以不被包括在储存器中,如在图9中上述。分析器200因此确定在储存器中是否包括交通量改变比率RSL(步骤S315)。当在储存器中包括交通量改变比率RSL(步骤S315:是)时,分析器200另外读出跳跃事件发生率JL1和JL2(步骤S320)。
分析器200然后执行交通量改变比率RSL的测试(步骤S330)和跳跃事件发生率JL1和JL2的测试(步骤S340)。下文将描述这样的测试的细节。分析器200随后基于两个测试的结果确定交通量改变比率RSL与跳跃事件发生率JL1和JL2两者是否具有显著的改变(步骤S345)。当确定测试的结果指示显著的改变时,分析器200检测在道路网络中的改变,并且向例如显示器208输出检测的结果(步骤S350)。在输出检测的结果后(步骤S350),当确定交通量改变比率RSL与跳跃事件发生率JL1和JL2中的至少一个没有显著的改变时(步骤S345:否)或当在储存器中未包括交通量改变比率RSL时(步骤S315:否),分析器200将表示链路编号的变量L递增了值1(步骤S360),并且确定是否对于所有的链路已经完成了处理(步骤S365)。当还没有对于所有的链路完成了处理时,分析器200返回到步骤S310,并且重复上面的系列的处理(步骤S310至S365)。另一方面,当已经对于所有的链路完成了处理时,分析器200去往“结束”,并且终止该道路网络分析例程。
下面描述了交通量改变比率RSL和跳跃事件发生率的测试。通过下面的过程基于二项式定理来执行交通量改变比率RSL的测试(步骤S330)。当在时段2中的条件与在时段1中的条件没有不同时,相对于每个链路,时段1具有比时段2更大的交通量的概率是1/2。相对于在作为检测目标的道路网络中包括的所有链路N检测在时段1和时段2之一中的交通量相对于在另一个时段中的交通量的增量。以概率1/2发生的事件的分布被提供为通过二项式定理计算的二项分布。当探测车辆AMi提供了极大量的交通量数据时,已知通过正态分布来近似二项分布。在小交通量的情况下,在时段2中的交通量与在时段1中的交通量的改变比率RSL可以与值1偏离到一定程度。然而,在大交通量的情况下,在时段2中的交通量与在时段1中的交通量的改变比率RSL(SL2/SL1)被收敛为在值1周围的正态分布。这在图11中被示出。
在图11中,横坐标示出总的交通量(SL1+SL2),并且纵坐标示出交通量改变比率RSL(SL2/SL1)。如图所示,当在时段2中的条件与在时段1中的条件没有不同时,交通量改变比率RSL遵守正态分布,其中,常态率在值1处达到最大7.96%(其中,在两个时段中的交通量相等)。然后通过概率测试来找出作为奇异点的象图示的区域ED那样具有与该正态分布偏离的值的链路。更具体地,该过程确定相对于计算了交通量改变比率RSL的所有链路而言,所计算的交通量改变比率RSL是否是在95%或99%的可靠条件下与正态分布的显著偏差。通过正态分布的近似旨在简化可靠性测试的操作。可以使用原始二项分布来用于该测试。替代地,出于相同的目的,可以使用例如卡方测试的另一种统计测试。
另一方面,通过下面的过程来评估跳跃事件发生率。如上参考图5和7所述,当在从探测车辆AMi依序发送的探测信息中包括的链路编号表示在道路网络数据库130上链路不连续(例如,在图5和7中的L2和L4的序列)时,检测到跳跃事件。这样的跳跃事件可能例如在打开从链路L2到链路L4的新的绕行道路BP的情况下发生,如图12中所示。当探测车辆AMi未能通过GPS装置11分析和掌握位置时,跳跃事件也可以发生。当经过链路L2的探测车辆AMi的GPS装置11错误地输出在链路L4上的位置或与这个位置接近的位置的坐标达到特定的时段或更长时,探测车辆AMi输出包括链路L4的数据的下一个探测信息。
根据这个实施例,在图10的步骤S340处,通过费舍尔概率测试来评估跳跃事件发生率。费舍尔概率测试是用于分析被分类为两类(即,跳跃事件的存在或不存在)的数据的统计测试。该实施例采用费舍尔概率测试,以便精确地检测在通过使用四个变量确定的跳跃事件发生率上的改变,该四个变量即在时段1中的交通量、在时段1中的跳跃事件量、在时段2中的交通量、和在时段2中的跳跃事件量。图13示出相对于特定链路在时段1和2中的具有和没有跳跃事件的数据的示例。在该图示的示例中,数据的总数是n,其中,a+b=n=c+d。该测试确定满足下述假设的概率:“在时段2中的跳跃事件发生率与在时段1中的跳跃事件发生率实质上没有不同”(虚假设)。当采样的总数是n时,通过下面给出的表达式(2)来计算在图13中所示的表格的产生概率P。
P=(a!b!c!d!)/(e!f!g!h!n!) (2)
在此,“!”是表示阶乘运算的符号。因为a=e+f、b=g+h、c=e+g和d=f+h,所以在图13中所示的表格是具有自由度1的表格,其中,改变值e确定在总数n固定的条件下的所有其他值。通过从0起依序递增值e来计算产生概率P向实际获得的值的累积。
当小数量n的探测车辆AMi经过特定链路L(多达几十)并且特定数量的跳跃事件发生时,能够容易计算费舍尔概率测试。例如,在图13的下表中所示的观察值的示例中(n=50,e=5,f=14,g=7,h=24),通过下面给出的表达式(3)来计算这个分布的产生概率:
(19!31!12!38!)/(5!14!7!24!50!)近似为0.2519。
比该观察值的该分布更极端的分布的概率(即在0至4的值e处的概率)的和大约是0.5103。因此,确定该假设是不可否定的(即,在时段1和2中的跳跃事件发生率没有显著的差异)。在极大量的总的交通量数据(SL1+SL2)的情况下,费舍尔概率测试可能在计算上具有困难。这归因于阶乘运算。在总的交通量数据的值超过在该实施例中使用的计算机的数字运算中的阶乘运算的上限的情况下,可以确定当在从在两个时段中的跳跃事件的编号简单计算的在跳跃事件发生率上的差别达到或超过预定水平a%(例如,20%)时,跳跃事件发生率具有显著的改变。费舍尔概率测试可以不对于所有的链路执行,而是可以仅当在时段1中的跳跃事件发生率和在时段2中的跳跃事件发生率之间的差达到或超过预定值时执行。该修改通过阶乘运算而减少了负荷。根据另一种修改,可以另外使用专用于阶乘运算的处理器,并且可以独立于数据的数量而执行包括上面的阶乘运算的数值运算。
如上所述,第一实施例的道路网络分析系统10分析从探测车辆AMi发送的探测信息,并且在两个时段中执行交通量改变比率RSL和跳跃事件发生率的测试。当确定交通量改变比率RSL和跳跃事件发生率两者具有显著的改变时,道路网络分析系统10检测和输出在道路网络中的改变。这使得能够有效检测在道路网络中的改变,例如,在道路网络中的新绕行道路的开放、现有道路的永久关闭和现有道路的长期暂时关闭。另一方面,例如大商业设施的开放或关闭的、引起在交通量上的改变的因素不改变周围道路的跳跃事件发生率。这也降低了这个因素被误识别为在道路网络中的改变的概率。另外,这充分地消除了由GPS装置的故障或噪声引起的明显的跳跃事件被错误地归因于在道路网络上的改变的概率。第一实施例的道路网络分析系统10因此保证在道路网络中的实际改变的精确的识别,并且使得能够足够派遣和分布调查者。
E.第二实施例
下面描述本发明的第二实施例。第二实施例的道路网络分析系统10具有与第一实施例的硬件配置相同的硬件配置。第二实施例与第一实施例的不同之处是:交通量改变比率RSL和跳跃事件发生率的测试的目标范围。虽然第一实施例相对于每个链路对交通量和跳跃事件发生率进行计数,但是第二实施例采用下面的过程来用于该计数。
图14示出根据第二实施例的交通量改变比率计算和存储例程。该例程对应于根据第一实施例的图9的左侧流程图。在该例程的开始处,分析器200首先确定跳跃事件是否已经在感兴趣的链路L处发生(步骤S401)。更具体地,分析器200参考在硬盘205中存储的相对于链路L的跳跃事件发生率数据。当确定跳跃事件已经在这个链路L处发生甚至一次时(步骤S401:是),分析器200通过计算链路L和与链路L连接的链路的整合交通量的总数而计算在相应的时段1和2中的链路L的交通量SL1和SL2(步骤S403)。随后的系列处理与在第一实施例中描述的步骤S241和其后的处理相同。虽然未具体说明,但是分析器200也在步骤S403通过计算链路L和连接的链路的整合的跳跃事件发生率的总和而计算在相应的时段1和2中的链路L的跳跃事件发生率JL1和JL2。
一旦跳跃事件已经在感兴趣的链路处发生,则通过分别计算不仅跳跃事件已经发生的感兴趣的链路而且与这个链路直接连接的链路的交通量和跳跃事件发生率的总和,第二实施例的过程计算相对于感兴趣的链路的交通量和跳跃事件发生率。在图12中的所示示例中,当链路L4是跳跃事件的数量被计数的感兴趣的链路时,将链路L3、L5和L6指定为整合的目标范围。否则,第二实施例的过程与第一实施例的过程相同。
第二实施例的道路网络分析系统10分别计算相对于跳跃事件已经发生的感兴趣的链路和与感兴趣的该链路连接的链路的整合的交通量和整合的跳跃事件发生率的总数。这消除了由例如在图12中所示的窄区域中新的绕行道路的开放引起的在交通量上的改变,并且使得难以检测到该改变。在图12的所示示例中,当通过绕行道路BP的开放而增大经由链路L4经过链路L2到达链路L6的车辆的数量时,通过链路L3或链路L5到达链路6的车辆的数量被降低大体相同的程度。通过将与链路L4连接的链路L3和L5的整合的交通量相加而计算链路L4的交通量因此使得难以检测由绕路道路BP的开放引起的在交通量上的改变。另一方面,在绕行道路的开放引起在地区中的交通量上的实质增加的情况下,在已经发生跳跃事件的感兴趣的道路和与感兴趣的道路连接的道路的交通量显著增大。通过将与感兴趣的链路连接的链路的整合的交通量相加而计算感兴趣的链路的交通量使得能够将在交通量上的改变检测为更显著的改变。
换句话说,第二实施例优先地检测引起在地区中的交通量上的显著改变的在道路网络上的改变。在工人工时和成本上,经常以优先级的顺序执行道路网络的调查。因此,有利的是,优先地检测引起在交通量上的显著改变的在道路网络上的改变。可以与第一实施例的过程组合地执行第二实施例的过程,以检测在道路网络上的改变。
F.第三实施例
第三实施例也采用不同的交通量改变比率计算和存储例程。图15示出根据第三实施例的交通量改变比率计算和存储例程。如所示,第三实施例的分析器200识别与链路L相邻的链路(步骤S411),并且通过计算链路L和相邻的链路的整合的交通量的总数而计算在相应的时段1和2中的链路L的交通量SL1和SL2(步骤S413)。随后的系列处理与在第一实施例描述的步骤S241和其后的处理相同。类似地,分析器200通过计算链路L和相邻链路的整合的跳跃事件发生率的总数而计算在相应的时段1和2中的链路L的跳跃事件发生率JL1和JL2。
与链路L相邻的链路可以是至少部分地存在于链路L的指定半径内的链路。替代地,相邻链路可以是预先被注册为在道路网络数据库130上的链路L的相邻链路的链路。象第二实施例那样,通过分别计算相邻链路以及感兴趣的链路的整合的交通量和整合的跳跃事件发生率的总数,第三实施例优先地检测引起在地区中的交通量上的实质改变的在道路网络上的改变。
G.设置调查路线的处理
第一至第三实施例描述了被配置为检测预期在道路网络上的改变的位置的系统。这些系统可以另外被配置为执行设置调查路线的处理。设置调查路线的处理在JP 2012-150016A中被详细描述,并且仅在此被简述。总之,该系统可以在下面的条件下设置关于已经检测到在道路网络中的改变的链路的调查路线:
条件1:具有在时段1和2之间预定水平或高于预定水平的在交通量上的增大的链路、和在时段1和2之间预定水平或低于预定水平的在交通量上的减小的链路的高百分比的路线;以及
条件2:经过较高优先级的节点的路线。
在条件2中的顺序或优先级是“奇异节点”、“重要节点”和“关注节点”的顺序。当不能通过条件1将候选调查路线的数量减少为1时,应当考虑条件2。
“奇异节点”在此意指在交通量上具有显著改变的节点。通常,通过由表示例如十字路口的节点连接的多个链路来表达道路。在与特定节点连接的一个链路的交通量增大但是与同一节点连接的另一个链路的交通量减小的情况下,该节点具有在交通量上的很小改变。每个节点的交通量被整合,并且具有在时段1和2之间在交通量上的显著增大或显著减小的任何节点被指定为“奇异节点”。“重要节点”在此意指下述节点,在该节点处,在时段1和2之间具有在交通量上的增大的链路与在时段1和2之间具有在交通量上的减小的链路相交。“关注节点”在此意指下述节点,该节点位于在时段1和2之间具有在交通量上的增大的链路或在时段1和2之间具有在交通量上的减小的链路的一个端部处。
通过考虑这样的节点条件,可以将足够的路线选择为调查路线,并且可以设置调查路线以有效地检测在道路网络上的改变。
H.修改
H1.修改1
在上述的实施例中,在从探测车辆AMi向服务器100发送的探测信息中不包括诸如纬度经度信息的位置信息。然而,由在探测车辆AMi上安装的GPS装置获得的纬度经度信息可以被包括在探测信息中。该修改容易识别在发生跳跃事件时的探测车辆AMi的驾驶路线,并且使得能够自动产生与新的道路相对应的试验链路。一般需要现场调查来精确地确定在新的链路和现有链路之间的连接关系。因此注册试验路线是实用的。在图12的图示示例中,该过程可以向道路网络数据库130添加将节点N1连接到节点N3的试验链路LX,而不创建新的节点。
H2.修改2
在如上所述的实施例中,与每个链路相关地存储跳跃事件。跳跃事件可以替代地被检测和与每个节点而不是每个链路相关地存储。当探测车辆AMi进入节点并且然后消失(即,不走出到与该节点连接的链路)时或当探测车辆AMi未进入节点但是突然出现(即,走出到与该节点连接的链路)时,确定跳跃事件在该节点处发生。
H3.修改3
修改3执行在跳跃事件发生率上的改变的直接测试。第一实施例采用费舍尔概率测试来用于在跳跃事件发生率上的改变的测试。修改3通过将在时段1中的跳跃事件的数量除以在时段1中的交通量而计算跳跃事件的发生率(以下称为跳跃事件发生率)RJL1,并且通过将在时段2中的跳跃事件的数量除以在时段2中的交通量而计算跳跃事件的发生率RJL2,并且随后计算在跳跃事件发生率RJL1和RJL2之间的偏差DRJL。可以象交通量改变比率RSL那样处理该事件发生率偏差DRJL。在道路网络的固定条件下,同一个链路的跳跃事件发生率在相应的时段1和2中以相同的概率发生,并且时段1具有比时段2更高的跳跃事件发生率的概率是1/2。可以因此将事件发生率偏差DRJL处理为二项分布。以事件发生率偏差DRJL作为纵坐标并且以总的交通量作为横坐标,相对于所有链路的跳跃事件发生率的分布因此类似于在图11中所示的分布。引起在道路网络上的改变的链路因此可被检测为与该分布(二项分布或正态分布)偏离的奇异性。当测试结果指示在交通量改变比率RSL上的改变和在跳跃事件发生率偏差DRJL上的改变两者时,修改3的道路网络分析器检测在道路网络中的改变。
H4.修改4
当测试结果指示在交通量改变比率RSL上的改变和在跳跃事件发生率偏差DRJL上的改变两者时,修改3的道路网络分析器检测在道路网络上的改变。修改4的道路网络分析器采用下面的技术来检测在道路网络上的改变。修改4的道路网络分析器被配置为提前提供在交通量改变比率RSL和跳跃事件发生率偏差DRJL之间的二维图,并且一旦确定在预定区域中包括交通量改变比率RSL和跳跃事件发生率偏差DRJL,则检测在道路网络上的改变。该配置使得能够进行下面的确定。例如,当跳跃事件发生率偏差DRJL具有大值时,确定道路网络可能即使在小交通量改变比率RSL的条件下也具有改变。当交通量改变比率RSL具有大值时,确定道路网络可能甚至在相对小跳跃事件发生率偏差DRJL的条件下也具有改变。因此,该配置使得能够灵活地检测在道路网络中的改变。
H5.修改5
修改5通过学习而不是通过费舍尔概率测试来执行跳跃事件发生率的测试。费舍尔概率测试是数学上合理的良好技术,但是操作所需的时间和资源随着在数据的数量上的增加而增加。修改5的过程收集指示跳跃事件发生率实际上被例如新道路的开放改变的大量历史数据,并且学习跳跃事件发生率的改变。该过程然后通过模式匹配的技术来确定跳跃事件发生率的随后的改变是否归因于在道路网络上的改变。连续地比较多个模式的特性的匹配技术可以被用于该匹配。替代地,使用具有基于反向传播算法的学习功能的中性网络的技术可以被用于通过学习来增强匹配精度。
H6.修改6
取代或除了跳跃事件发生率,修改6利用:(A)探测车辆AMi与道路网络情况不匹配的信息,(B)关于在GPS装置处的GPS信号的连续或不连续的信息,或者(C)道路交通信息通信系统的信息。信息(A)示出在发生从特定链路到与该特定链路断开的另一个链路的跳跃事件时位置信息与实际路况不匹配。该信息便利了由新道路的开放引起跳跃事件的估计,并且即使当使用较低的标准来用于测试时也允许跳跃事件发生率的测试结果的精度。信息(B)示出GPS装置11不可用,因为探测车辆AMi进入隧道或降低了GPS的位置检测的精度。通过考虑这样的信息,可识别跳跃事件是否归因于由GPS的故障或例如新道路的开放的在道路网络中的实际改变引起的明显的链路。
H7.修改7
修改7是省略服务器100的方面,其中,分析器200执行来自探测车辆AMi的探测信息的收集和存储。该方面简化了网络道路分析系统10的配置。
H8.修改8
修改8是探测车辆检测到跳跃事件的方面。存储道路网络数据的探测车辆可以检测跳跃事件。在这个方面,不要求道路网络分析器来检测跳跃事件(不连续的发生)。
本发明不限于上面的实施例、示例或修改,但是可以在不偏离本发明的范围的情况下,对于实施例进行各种改变和修改。例如,与在发明内容中描述的各个方面的技术特征相对应的实施例、示例或修改的技术特征可以被适当地取代或组合,以便解决如上所述的问题的一部分或全部,或以便实现如上所述的有利效果的一部分或全部。可以适当地省略技术特征的任何一个,除非在此将该技术特征描述为必要的。
[工业适应性]
本发明适用于道路网络的分析,并且更具体地被应用来从探测数据分析和检测在道路网络上的改变,例如,开放新路线。本发明对于例如伴随道路网络的分析的地图制作业作出贡献。
Claims (19)
1.一种道路网络分析器,所述道路网络分析器通过使用随着车辆的驾驶而产生的探测信息来分析在道路网络中的改变,所述道路网络分析器包括:
交通量计算器,所述交通量计算器被配置为,从在预定时段上累积的多个所述探测信息确定经过在所述道路网络中包括的指定路段的车辆的交通量;
不连续发生率计算器,所述不连续发生率计算器被配置为,从在所述预定时段上累积的所述多个探测信息确定不连续发生率,所述不连续发生率是在所述指定路段中车辆位置被确定为从在所述道路网络中被确定为不连续的部分的移动或者向在所述道路网络中被确定为不连续的部分的移动的事件的发生率;以及
检测器,所述检测器被配置为,基于在相对于在所述道路网络中包括的所述指定路段的两个不同时段中的交通量之间的改变程度和在所述两个不同时段中的不连续发生率之间的改变程度,而检测在所述道路网络中的改变。
2.根据权利要求1所述的道路网络分析器,其中
所述不连续发生率计算器对照所述道路网络的道路网络数据查看所述探测信息,并且确定是否发生所述车辆位置为不连续的事件,以便确定所述不连续发生率。
3.根据权利要求1所述的道路网络分析器,其中
所述道路网络的所述道路网络数据包括与道路相对应的链路和表示所述链路的端部的节点,
所述道路网络数据的指定部分包括所述链路中的至少一个和表示所述链路的至少一个端部的节点,
所述探测信息包括识别所述车辆已经经过的链路或节点的信息,
所述交通量是已经经过在所述指定部分中包括的所述链路或所述节点的车辆的数量,并且
所述不连续发生率是已经经过被指定为不连续的链路或节点的车辆的数量与所述交通量的比率。
4.根据权利要求1所述的道路网络分析器,还包括:
探测信息获取器,所述探测信息获取器被配置为获得从所述车辆发送的所述探测信息。
5.根据权利要求1所述的道路网络分析器,其中
在相对于在所述道路网络中包括的所述指定路段的在所述两个不同时段中的所述交通量之间的所述改变程度是交通量比率,所述交通量比率是在所述两个时段之一中的所述交通量与在所述两个时段的另一个中的所述交通量的比率。
6.根据权利要求5所述的道路网络分析器,其中
在所述两个不同时段中的所述不连续发生率之间的所述改变程度是通过将在所述两个时段之一中的所述不连续发生率从在所述两个时段的另一个中的所述不连续发生率减去的差。
7.根据权利要求6所述的道路网络分析器,其中
当所述交通量比率与第一稳态值的偏差等于或大于预定水平时,并且当所述不连续发生率的所述差与第二稳态值的偏差等于或大于预定水平时,所述检测器检测到在所述道路网络的所述指定路段中的改变。
8.根据权利要求7所述的道路网络分析器,其中
通过与二项分布或正态分布的偏差来评估所述交通量比率与所述第一稳态值的所述偏差。
9.根据权利要求1至5的任一项所述的道路网络分析器,其中
通过费舍尔概率测试来评估所述不连续发生率的所述改变程度。
10.一种道路网络分析系统,包括:
探测车辆,所述探测车辆被配置为随着所述车辆的驾驶而产生探测信息;以及,
分析器,所述分析器被配置为从所述探测车辆接收所述探测信息,并且分析道路网络,其中
所述探测车辆包括发射器,所述发射器被配置为参考与所述道路网络相关的链路节点信息,并且发送作为所述探测信息的一部分的、所述探测车辆已经经过的链路和/或节点的信息,
所述分析器包括:
探测信息累积器,所述探测信息累积器被配置为接收从多个所述探测车辆发送的所述探测信息,并且累积在预定时段上的所接收的探测信息;
交通量计算器,所述交通量计算器被配置为从在所述预定时段上累积的多个所述探测信息确定经过在所述道路网络中包括的指定路段的车辆的交通量;
不连续发生率计算器,所述不连续发生率计算器被配置为从在所述预定时段上累积的所述多个探测信息确定不连续发生率,所述不连续发生率是在所述指定路段中车辆位置被确定为从在所述道路网络中被确定为不连续的部分的移动或者向在所述道路网络中被确定为不连续的部分的移动的事件的发生率;以及
检测器,所述检测器被配置为,基于相对于在所述道路网络中包括的所述指定路段的两个不同时段中的交通量之间的改变程度和在所述两个不同时段中的不连续发生率之间的改变程度,而检测在所述道路网络中的改变。
11.一种道路网络分析方法,所述道路网络分析方法通过使用随着车辆的驾驶而产生的探测信息来分析在道路网络中的改变,所述道路网络分析方法包括:
交通量计算处理,所述交通量计算处理从在预定时段上累积的多个所述探测信息确定经过在所述道路网络中包括的指定路段的车辆的交通量;
不连续发生率计算处理,所述不连续发生率计算处理从在所述预定时段上累积的所述多个探测信息确定不连续发生率,所述不连续发生率是在所述指定路段中车辆位置被确定为从在所述道路网络中被确定为不连续的部分的移动或者向在所述道路网络中被确定为不连续的部分的移动的事件的发生率;以及
检测处理,所述检测处理基于在相对于在所述道路网络中包括的所述指定路段的两个不同时段中的交通量之间的改变程度和在所述两个不同时段中的不连续发生率之间的改变程度,而检测在所述道路网络中的改变。
12.根据权利要求11所述的道路网络分析方法,其中
所述不连续发生率计算处理对照所述道路网络的道路网络数据查看所述探测信息,并且确定是否发生所述车辆位置为不连续的事件,以便确定所述不连续发生率。
13.根据权利要求11所述的道路网络分析方法,其中
所述道路网络的所述道路网络数据包括与道路相对应的链路和表示所述链路的端部的节点,
所述道路网络数据的指定部分包括所述链路中的至少一个和表示所述链路的至少一个端部的节点,
所述探测信息包括识别所述车辆已经经过的链路或节点的信息,
所述交通量是已经经过在所述指定部分中包括的所述链路或所述节点的车辆的数量,并且
所述不连续发生率是已经经过被指定为不连续的链路或节点的车辆的数量与所述交通量的比率。
14.根据权利要求11所述的道路网络分析方法,还包括:
探测信息获取处理,所述探测信息获取处理获得从所述车辆发送的所述探测信息。
15.根据权利要求11所述的道路网络分析方法,其中
在相对于在所述道路网络中包括的所述指定路段的在所述两个不同时段中的所述交通量之间的所述改变程度是交通量比率,所述交通量比率是在所述两个时段之一中的所述交通量与在所述两个时段的另一个中的所述交通量的比率。
16.根据权利要求15所述的道路网络分析方法,其中
在所述两个不同时段中的所述不连续发生率之间的所述改变程度是通过将在所述两个时段之一中的所述不连续发生率从在所述两个时段的另一个中的所述不连续发生率减去的差。
17.根据权利要求16所述的道路网络分析方法,其中
当所述交通量比率与第一稳态值的偏差等于或大于预定水平时,并且当所述不连续发生率的所述差与第二稳态值的偏差等于或大于预定水平时,所述检测处理检测到在所述道路网络的所述指定路段中的改变。
18.根据权利要求17所述的道路网络分析方法,其中
通过与二项分布或正态分布的偏差来评估所述交通量比率与所述第一稳态值的所述偏差。
19.根据权利要求11至15的任一项所述的道路网络分析方法,其中
通过费舍尔概率测试来评估所述不连续发生率的所述改变程度。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-024084 | 2013-02-12 | ||
JP2013024084A JP5819868B2 (ja) | 2013-02-12 | 2013-02-12 | 新規道路検出ロジック |
PCT/JP2014/000655 WO2014125802A1 (en) | 2013-02-12 | 2014-02-07 | New road detection logic |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104813143A CN104813143A (zh) | 2015-07-29 |
CN104813143B true CN104813143B (zh) | 2017-04-26 |
Family
ID=51353815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480003157.8A Expired - Fee Related CN104813143B (zh) | 2013-02-12 | 2014-02-07 | 道路网络分析器、道路网络分析系统、以及道路网络分析方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9508257B2 (zh) |
EP (1) | EP2956745A4 (zh) |
JP (1) | JP5819868B2 (zh) |
CN (1) | CN104813143B (zh) |
WO (1) | WO2014125802A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8875361B2 (en) | 2008-05-21 | 2014-11-04 | Wirtz Manufacturing Co., Inc. | Reformed battery grids |
GB201400382D0 (en) * | 2014-01-10 | 2014-02-26 | Tomtom Dev Germany Gmbh | Methods and systems for detecting a closure of a navigable element |
US9891057B2 (en) | 2015-03-23 | 2018-02-13 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Information processing device, computer readable storage medium, and map data updating system |
CN105139682B (zh) * | 2015-07-27 | 2017-11-10 | 福建工程学院 | 一种封闭道路的确认方法及系统 |
US9954744B2 (en) * | 2015-09-01 | 2018-04-24 | Intel Corporation | Estimation of application performance variation without a priori knowledge of the application |
US9818296B2 (en) * | 2015-10-16 | 2017-11-14 | Uber Technologies, Inc. | System for providing a city planning tool |
US10147315B2 (en) | 2016-07-27 | 2018-12-04 | Here Global B.V. | Method and apparatus for determining split lane traffic conditions utilizing both multimedia data and probe data |
US10198941B2 (en) * | 2016-07-27 | 2019-02-05 | Here Global B.V. | Method and apparatus for evaluating traffic approaching a junction at a lane level |
EP3358303B1 (en) * | 2017-02-07 | 2021-09-01 | HERE Global B.V. | An apparatus and associated methods for use in updating map data |
JP6572930B2 (ja) | 2017-03-24 | 2019-09-11 | 株式会社デンソー | 情報処理装置及び情報処理システム |
JP6927819B2 (ja) * | 2017-09-15 | 2021-09-01 | トヨタ自動車株式会社 | 交通量判定システム、交通量判定方法、及び交通量判定プログラム |
JP7032085B2 (ja) * | 2017-09-15 | 2022-03-08 | トヨタ自動車株式会社 | 交通量判定システム、交通量判定方法、及び交通量判定プログラム |
CN110659545B (zh) * | 2018-06-29 | 2023-11-14 | 比亚迪股份有限公司 | 车辆识别模型的训练方法、车辆识别方法、装置和车辆 |
JP7147712B2 (ja) * | 2018-08-31 | 2022-10-05 | 株式会社デンソー | 車両側装置、方法および記憶媒体 |
US11237007B2 (en) * | 2019-03-12 | 2022-02-01 | Here Global B.V. | Dangerous lane strands |
JP7333195B2 (ja) * | 2019-05-15 | 2023-08-24 | 株式会社Subaru | 自動運転支援システム |
US11222531B2 (en) * | 2019-11-18 | 2022-01-11 | Here Global B.V. | Method, apparatus, and system for providing dynamic window data transfer between road closure detection and road closure verification |
JP7211349B2 (ja) * | 2019-11-29 | 2023-01-24 | トヨタ自動車株式会社 | 路面損傷検出装置、路面損傷検出方法、プログラム |
US20210326699A1 (en) * | 2020-04-21 | 2021-10-21 | Inrix, Inc. | Travel speed prediction |
WO2022195847A1 (ja) * | 2021-03-19 | 2022-09-22 | 本田技研工業株式会社 | 経路設定装置、及び、経路設定システム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101866551A (zh) * | 2010-06-02 | 2010-10-20 | 北京世纪高通科技有限公司 | 一种交通流信息的处理方法及处理装置 |
CN102231235A (zh) * | 2011-04-29 | 2011-11-02 | 陈伟 | 一种交通流异常点检测定位方法 |
CN102364546A (zh) * | 2011-10-19 | 2012-02-29 | 北京世纪高通科技有限公司 | 交通信息数据故障处理的方法及装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3557776B2 (ja) | 1996-03-08 | 2004-08-25 | 日産自動車株式会社 | 車両用経路誘導装置 |
JP2006079483A (ja) * | 2004-09-13 | 2006-03-23 | Hitachi Ltd | 交通情報提供装置,交通情報提供方法 |
JP4654823B2 (ja) | 2005-08-03 | 2011-03-23 | 株式会社デンソー | 道路地図データ更新システム及び道路検出システム |
FI118614B (fi) | 2005-12-27 | 2008-01-15 | Navicore Oy | Menetelmä virheiden havaitsemiseksi navigointidatassa |
JP5133432B2 (ja) | 2006-03-10 | 2013-01-30 | 三菱電機株式会社 | ナビゲーション装置 |
JP2009026103A (ja) | 2007-07-20 | 2009-02-05 | Aisin Aw Co Ltd | 交通状況演算システム、交通状況演算方法及びコンピュータプログラム |
US9952057B2 (en) * | 2007-10-26 | 2018-04-24 | Tomtom Traffic B.V. | Method of processing positioning data |
JP2011503639A (ja) * | 2007-11-06 | 2011-01-27 | テレ アトラス ノース アメリカ インコーポレイテッド | 地図の更新において使用される、実世界の変化を検出するために複数の車両からのプローブ・データを使用する方法及びシステム |
CN102272552A (zh) * | 2008-12-31 | 2011-12-07 | 电子地图北美公司 | 用于处理与地理区域相关的信息的系统及方法 |
JP5315363B2 (ja) | 2011-01-19 | 2013-10-16 | 株式会社ゼンリン | 道路網解析システム |
US8760314B2 (en) * | 2012-06-11 | 2014-06-24 | Apple Inc. | Co-operative traffic notification |
US9109913B2 (en) * | 2013-09-30 | 2015-08-18 | Ford Global Technologies, Llc | Roadway-induced ride quality reconnaissance and route planning |
US9536424B2 (en) * | 2014-02-10 | 2017-01-03 | Here Global B.V. | Adaptive traffic dynamics prediction |
CA2943454C (en) * | 2014-04-04 | 2022-08-23 | Superpedestrian, Inc. | Systems, methods and devices for the operation of electrically motorized vehicles |
CA2955961A1 (en) * | 2014-07-28 | 2016-02-04 | Econolite Group, Inc. | Self-configuring traffic signal controller |
-
2013
- 2013-02-12 JP JP2013024084A patent/JP5819868B2/ja not_active Expired - Fee Related
-
2014
- 2014-02-07 CN CN201480003157.8A patent/CN104813143B/zh not_active Expired - Fee Related
- 2014-02-07 US US14/648,990 patent/US9508257B2/en not_active Expired - Fee Related
- 2014-02-07 EP EP14751517.5A patent/EP2956745A4/en not_active Withdrawn
- 2014-02-07 WO PCT/JP2014/000655 patent/WO2014125802A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101866551A (zh) * | 2010-06-02 | 2010-10-20 | 北京世纪高通科技有限公司 | 一种交通流信息的处理方法及处理装置 |
CN102231235A (zh) * | 2011-04-29 | 2011-11-02 | 陈伟 | 一种交通流异常点检测定位方法 |
CN102364546A (zh) * | 2011-10-19 | 2012-02-29 | 北京世纪高通科技有限公司 | 交通信息数据故障处理的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US9508257B2 (en) | 2016-11-29 |
JP2014153236A (ja) | 2014-08-25 |
EP2956745A4 (en) | 2016-11-02 |
WO2014125802A1 (en) | 2014-08-21 |
US20150317900A1 (en) | 2015-11-05 |
JP5819868B2 (ja) | 2015-11-24 |
CN104813143A (zh) | 2015-07-29 |
EP2956745A1 (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104813143B (zh) | 道路网络分析器、道路网络分析系统、以及道路网络分析方法 | |
US10878328B2 (en) | Method and system for analyzing driver behaviour based on telematics data | |
EP3224104B1 (en) | Apparatus and method for vehicle economy improvement | |
CN109215347A (zh) | 一种基于众包轨迹数据的交通数据质量控制方法 | |
CN102622879B (zh) | 交通信息提供装置 | |
US20130166188A1 (en) | Determine Spatiotemporal Causal Interactions In Data | |
US8165793B1 (en) | System and method for route representation with waypoint storage | |
WO2010107394A1 (en) | Determining a traffic route using predicted traffic congestion | |
CN108583624B (zh) | 列车运行状态可视化方法和装置 | |
Lin et al. | Vehicle re-identification with dynamic time windows for vehicle passage time estimation | |
CN106898142A (zh) | 一种考虑路段相关性的路径行程时间可靠度计算方法 | |
CN106327866A (zh) | 基于rfid的车辆出行od切分方法及其系统 | |
CN102598078A (zh) | 提高行驶时间估计可靠性 | |
CN111275969A (zh) | 一种基于道路环境智能识别的车辆轨迹填充方法 | |
CN109493449B (zh) | 一种基于货车gps轨迹数据和高速交易数据的货车载货状态估计方法 | |
CN112686466A (zh) | 地铁乘客的路径确认方法及装置 | |
CN111199247A (zh) | 一种公交运行仿真方法 | |
CN110675631A (zh) | 一种交通流溯源分析方法及系统 | |
CN106157616A (zh) | 一种交通流量短时预测装置 | |
CN102436742A (zh) | 浮动车系统交通信息服务水平评价方法及装置 | |
Liu et al. | Developments and applications of simulation-based online travel time prediction system: traveling to Ocean City, Maryland | |
CN108288379A (zh) | 一种交通数据的处理方法及装置 | |
JP2005091304A (ja) | 走行経路推定方法、走行経路推定システムにおけるセンター装置及びプログラム | |
JP2021502301A (ja) | 軌道ネットワーク内でのナビゲートのためのシステムおよび方法 | |
JP3904629B2 (ja) | 旅行時間予測装置及び旅行時間予測方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170426 Termination date: 20190207 |
|
CF01 | Termination of patent right due to non-payment of annual fee |