CN104795989A - 具有减小的浪涌电流及故障保护的切换式电容器dc-dc转换器 - Google Patents

具有减小的浪涌电流及故障保护的切换式电容器dc-dc转换器 Download PDF

Info

Publication number
CN104795989A
CN104795989A CN201510025896.3A CN201510025896A CN104795989A CN 104795989 A CN104795989 A CN 104795989A CN 201510025896 A CN201510025896 A CN 201510025896A CN 104795989 A CN104795989 A CN 104795989A
Authority
CN
China
Prior art keywords
current
vout
circuit
voltage
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510025896.3A
Other languages
English (en)
Other versions
CN104795989B (zh
Inventor
张劲东
黎坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices International ULC
Linear Technology LLC
Original Assignee
Linear Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linear Technology LLC filed Critical Linear Technology LLC
Publication of CN104795989A publication Critical patent/CN104795989A/zh
Application granted granted Critical
Publication of CN104795989B publication Critical patent/CN104795989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及具有减小的浪涌电流及故障保护的切换式电容器DC-DC转换器。为减小进入到切换式电容器DC/DC转换器中的浪涌电流并检测电压及电流故障,将转换器控制器连同电流限制串联晶体管及故障检测电路装纳在一起。所述串联晶体管经控制以在启动期间将所述浪涌电流限制于预定最大电平。如果所述电流限制电平的持续时间或使Vout实现目标电压的时间超过第一阈值时间,那么封装中的第一故障检测器切断所述串联晶体管。在稳态操作期间,如果输入电流达到所述限制达第二阈值时间或如果Vout延伸到某一范围之外达所述第二阈值时间,那么所述封装中的第二故障检测器切断所述串联晶体管。

Description

具有减小的浪涌电流及故障保护的切换式电容器DC-DC转换器
相关申请案交叉参考
本申请案主张对张金东(Jindong Zhang)等人于2014年1月17日申请的以引用方式并入本文中的第61/928,745号美国临时申请案的优先权。
技术领域
本发明涉及DC/DC转换器,且特定来说涉及一种具有电流限制电路及故障保护电路的切换式电容器DC/DC转换器。
背景技术
也称为电荷泵的切换式电容器网络通常用以对输入电压Vin进行倍增或分压。输出电压Vout与Vin成比例,例如2X、3X、1/2X、1/3X等。连接到Vout的负载可为常规电阻型负载、电压调节器(例如,降压转换器)或任何其它类型的负载。
关于此类切换式电容器DC/DC转换器的一个问题是输入电压直接耦合到电容器。在系统的启动后,当首先施加Vin时,到电容器中的浪涌电流在达到稳态之前可因低阻抗互连而容易地在几纳秒内超过1000A。这对设计强加了各种约束及风险。
图1图解说明输出为输入电压Vin的大致一半的电压Vout的常规2∶1切换式电容器转换器10。在稳态操作期间,切换FET Q1-Q4,如图2中所展示,以循环地将称为飞跨电容器的电容器C2充电及放电。展示了所述FET的本体二极管。当跨越电容器C1连接时重复地将电容器C2充电到Vin/2,且当跨越电容器C3连接时将电荷转移到电容器C3(及负载12)。电容器C1及C3在启动时最初由Vin充电,其中C1与C3的节点处于Vin/2。通常,电容器由于其大的尺寸而连接在任何控制器封装外部。如果电流为高的,那么开关Q1-Q4也可在封装外部。输入电压Vin直接连接到FET Q1及电容器C1的顶部端子。
2∶1切换式电容器转换器可在无电容器C1的情况下恰当地操作。在此情况中,当FET Q1及Q3接通时,电容器C2及C3串联地由Vin充电。当FET Q2及Q4接通时,电容器C2及C3为并联的。这迫使电容器C2及C3电压彼此极为接近,处于大约Vin/2。
图3图解说明在Vin电力供应于时间T0通电后当电容器C1-C3具有零初始电压时,浪涌电流可如何容易地超过1000A(取决于路径中的任何寄生电阻)。高电流可仅持续小于1微秒,但可容易地超过FET的安全操作电流且在设计中需要加以考虑。输出电压Vout仅在电容器C1、C2及C3被完全充电且如图2中所展示而控制开关Q1-Q4之后达到其稳态电压。Vout波形展示在浪涌电流之后的某一振铃。
在故障条件(例如电容器C3变为短路)中,由于切换式电容器电路中不存在限制电流的电感器,因此输入浪涌电流可快速升高到极高的电平,从而导致FET失效及系统损坏。
需要一种用于控制其中浪涌电流减小的切换式电容器DC/DC转换器的完整电路。所述电路还应在操作期间检测故障且采取适当的安全措施。
发明内容
在优选实施例中,用于切换式电容器DC/DC转换器的开关控制器电路装纳在与电流限制电路及故障检测电路相同的封装中。并非将输入电压直接连接到切换式电容器转换器,而是将输入电压连接到控制输入引线与电容器之间的串联FET的电流限制电路。当在启动期间或在稳态期间检测到故障时,所述FET还充当保护FET。在启动及稳态期间使用不同的故障检测技术。
在启动后,连接于反馈回路中的串联FET即刻将浪涌电流限制于受控制最大值,同时切换式电容器转换器的输出电压Vout在预计时间限制内斜升到其稳态Vout。当浪涌电流低于电流限制阈值时,串联FET完全接通以将全输入电压供应到切换式电容器转换器。
故障检测电路包含对浪涌电流的持续时间进行计时的计时器。如果持续时间在第一阈值时间之外,那么系统关断串联FET并发出故障信号。此外,在启动阶段期间,如果Vout在第一阈值时间内不处于目标电压范围内,那么系统关断串联FET并发出故障信号。
另一电路在稳态操作期间检测故障。如果在稳态操作期间转换器的输出电压Vout在上阈值电压及下阈值电压的范围之外达多于第二阈值时间,那么发生输出电压故障,且关断串联FET。系统接着发出故障信号。上阈值电压及下阈值电压分别以小的正或负偏移系结到Vin/N(其中N等于目标Vin/Vout)。此外,在稳态操作期间,输入电流达到电流限制达长于第二阈值时间,那么关断串联FET且发出故障信号。所述第一阈值时间可不同于所述第二阈值时间。
电容器开关可在封装内部或外部,此取决于所述开关的电流要求。
切换式电容器转换器可对输入电压进行倍增或分压。连接到转换器的输出的负载可为电阻负载、电压调节器或任何其它类型的负载。
本发明描述了各种实施例。
附图说明
图1图解说明常规切换式电容器DC/DC转换器。
图2图解说明施加到图1中的开关的信号。
图3图解说明在启动时在图1的转换器中产生的各种波形。
图4图解说明发明性电路的高级示意图。
图5图解说明在启动时图4的电路内的各种波形。
图6更详细地图解说明图4的经封装电路。
图7A是识别由图6的电路在启动阶段期间执行的步骤的流程图。
图7B是识别由图6的电路在稳态期间执行的步骤的流程图。
图8图解说明电容器网络的负载可如何作为降压转换器。
图9图解说明电容器网络可如何经连接以对输入电压进行倍增。
以相同编号标记相同或等效的元件。
具体实施方式
图4图解说明含有图1的切换式电容器转换器10的发明性电路的高级示意图。在一个实施例中,除图1中的电容器C1-C3之外的整个电路均在具有用于连接到印刷电路板的引线的单个封装14内。
封装14的输入电压Vin1端子16耦合到电力供应及串联晶体管(例如FET 18)的第一端子。FET 18的第二端子耦合到切换式电容器转换器10的输入且将输入电压Vin2施加到转换器10。Vin2将耦合到图1中的电容器C1的顶部端子。滤波器电容器20耦合到FET 18的第二端子。
在操作期间,例如借助低值串联感测电阻器感测输入电流Iin,且将对应于Iin的信号施加到电流浪涌控制器22。控制器22在启动期间驱动FET 18的栅极使得Iin处于可设定电流限制。控制器22使Iin维持处于电流限制直到转换器10中的所有电容器被实质上完全充电为止。此时,Iin将变为低于电流限制,且控制器22增加FET 18的栅极电压直到FET 18完全导通为止。此时,Vin2将大致等于Vin1,且稳态操作可开始。
图5图解说明在启动时图4的电路内的各种波形,假定Vin1为48V。如所展示,存在Iin的快速斜升直到达到电流限制(例如3-10X稳态电流)为止。Iin保持处于电流限制直到电容器被完全充电为止。尽管Iin受到限制,但Vin2斜升直到其处于大约48V的稳态电压为止。同时,转换器10开关(图1中的Q1-Q4)经控制以使输出电压Vout斜升到大致24V,假定转换器为(Vin1)/2分压器。
随着电流限制的时间一起检测输出电压Vout。如果电流限制花费长于阈值时间(时间1)或如果Vout在某一范围(在Vhigh与Vlow之间)超出阈值时间(时间1),那么电路块24假定故障,且控制器22将FET 18关闭并产生故障报告信号。
如果在启动阶段期间不存在故障,那么电路块24继续控制开关Q1-Q4(图1及2)以产生大致(Vin1)/2的输出电压Vout以实现操作稳态。
图6更详细地图解说明图4的电路的一个实施例。将参考图7A及7B的流程图描述图6的电路的操作。
在图7A的步骤30中,系统由产生Vin1的电力供应启动。
到转换器10中的电流流动穿过低值串联电阻器32及FET 18(或其它类型的晶体管或可控制导体)。跨越电阻器32的电压由比较器34检测。偏移电压Vlim由电压源36产生。当跨越电阻器32的电压超过Vlim时,比较器34产生逻辑1,从而指示输入电流Iin处于或高于电流限制阈值。
比较器34的输出经由栅极驱动器38控制到FET 18的栅极驱动电压。驱动器38产生足以使电流传导穿过FET 18的栅极电压使得到比较器34中的输入不超过跳脱阈值。因此,在启动时,用以将电容器C1、C2、C3及20充电的浪涌电流处于电流限制阈值(图7中的步骤40)。还通过检测到输入电流处于电流限制而使第一计时器起动,如下文所描述。电容器42以及电阻器43及44防止振荡。栅极驱动器38包含电平移位器及逻辑。
由于输入电流受到限制,因此电容器C1、C2、C3及20将以与在不存在电流限制的情况下相比慢得多的速率充电。这在图5中由Iin处于受限值且Vin2以相对慢的速率斜升到48V(通过各种电容器充电)展示。
在Vin2的斜升期间,切换转换器10,如关于图1及2所描述。
经分压Vout作为Vfb反馈到比较器64及66。高阈值电压值Vhigh施加到比较器64,且低阈值Vlow施加到比较器66。N为目标切换式电容器电路转换比率,即,N等于VIN1/VOUT。Vhigh阈值被设定为1/N Vin1加上正的x%Vin1偏移,然后除以Vout被分压的相同百分比。Vlow阈值被设定为1/N Vin1减去y%Vin1偏移,然后除以Vout被分压的相同百分比。简单电阻网络及连接到Vin1的电荷泵电路67可用以产生Vhigh及Vlow。因此,Vhigh及Vlow遵循输入电压Vin,而非为固定参考电压。其它电路可用以产生Vhigh及Vlow。如果Vout在两个阈值之间,那么比较器64及66两者输出逻辑0。如果Vout在任一阈值之外,那么比较器64/66中的一者将输出逻辑1。
当Vin2大致等于Vin1且Vout达到目标Vin1/N电平时,启动完成。在所述实例中,Vout为大约1/2Vin1且N等于2。然而,可使用任何类型的切换式电容器转换器对Vin1进行倍增或分压。
一旦电容器已被充分充电,输入电流Iin便降到远低于电流限制阈值(由于不再存在浪涌电流)且最大栅极电压便施加到FET 18(由于比较器34的输出为零)以使得其本质上成为闭合的开关。
在启动阶段开始时,计时器开关48闭合。借助受限最大电流接通输入FET 18以使电压Vin2斜升。FET Q1-Q4由电路块46切换以使输出电压Vout斜升。电流源50将计时器电容器Ct充电以产生斜变电压Vct。Vct及参考电压Vref1施加到启动计时器比较器54的输入,其中Vref1对应于图5中的时间1。如果在时间1(Vct斜升到高于Vref1)比较器34输出仍为逻辑1(指示输入FET 18仍处于电流限制)或“或”门70输出仍为逻辑1(指示Vout在Vlow-Vhigh窗范围之外),那么故障控制电路46关断输入FET 18且发出故障报告信号。Vref1经选择为大于浪涌电流处于电流限制的预期时间及使输出电压Vout斜升到其目标范围的预期时间。在时间1有效地检查浪涌电流限制及Vout电平的状态的步骤为图7A中的步骤55。可使用简单逻辑来执行此功能。
如果不存在启动故障,那么FET Q1-Q4继续由电路块46以常规方式切换。在稳态中,Vout为大致1/2Vin1(步骤79)。计时器开关48及68断开且计时器电容器Ct由电压源61以比Vref1及Vref2高的电平偏置。
图7B展示在稳态操作期间在时间1之后执行的步骤。
在稳态中,输入电流应低于电流限制且Vout应在Vhigh与Vlow之间。
如果在稳态阶段期间电流限制比较器34的输出变高(输入电流处于限制)或Vout在Vhigh及Vlow的范围之外,那么二极管72或二极管74(充当“或”门)将变为被正向偏置且闭合计时器开关68以起动第二计时器。这展示于图7B的步骤80、82、84、88及90中。
当开关68闭合时,计时器电容器Ct经由电流源75放电以产生斜降的Vct。如果Vout保持在阈值之外达太长时间(步骤82中的时间2),从而指示故障,那么Vct将变为低于Vref2以触发比较器62发信号通知故障。电路块46接着切断FET 18,停止FETQ1-Q4的任何进一步切换并发出故障报告信号(图7B中的步骤90及86)。
类似地,如果电流限制电平保持达多于阈值周期(时间2),那么将触发比较器62以指示故障,且将切断FET 18(步骤84及86)。因此,在稳态期间使用同一计时来检测输入电流及Vout故障。
各种计时器阈值取决于非故障瞬态的预期持续时间。由电流源50及75产生的电流可为不同的。
如果输入电流在时间2内降到低于电流限制及/或Vout在时间2内返回到其目标范围(非故障条件),那么断开开关68且将电容器Ct复位(步骤91)直到检测到下一事件。
为了防止开关68在启动期间存在浪涌电流且Vout在目标范围之外时闭合,可仅在启动之后逝去某一时间之后于稳态阶段期间(例如在时间1之后的某一时间)启用到开关68的控制信号(例如通过另一开关)。
封装14中还包含Vin1欠电压封锁特征。将Vin1施加到电阻器分压器84以将Vin1_UV信号提供到电路块46。将此电压与参考电压进行比较以确定Vin1是否充分高以恰当地操作系统。
封装14中可包含额外特征。
经连接以接收Vout的负载可为任何类型的负载,例如电阻负载或电压调节器。图8图解说明负载可如何作为常规降压转换器90以输出任何电压电平,例如1V。
图9图解说明切换式电容器转换器92可如何以反向配置连接以对输入电压Vin1进行倍增。
尽管已展示及描述了本发明的特定实施例,但所属领域的技术人员将显而易见可在不背离本发明的情况下对其较宽广方面做出改变及修改,且因此,所附权利要求书欲将属于本发明的真正精神及范围内的所有此类改变及修改涵盖于其范围内。

Claims (15)

1.一种用于控制切换式电容器DC/DC转换器以产生输出电压Vout的电路,其包括:
控制器电路,其用于产生用于控制所述切换式电容器DC/DC转换器中的开关以产生Vout的控制信号;
输入端子,其用于输入电压Vin1;
输入电流传感器,其用于产生对应于输入电流的输入电流信号;及
电流限制电路,其耦合到所述输入电流传感器,用于检测所述输入电流何时已达到电流限制电平且用于控制进入到所述转换器中的浪涌电流以便不超过所述电流限制电平。
2.根据权利要求1所述的电路,其中所述电流限制电路控制所述浪涌电流以便不超过预定最大电流电平。
3.根据权利要求2所述的电路,其进一步包括:
串联晶体管,其耦合于所述输入电流传感器与所述转换器之间;及
串联晶体管控制器,其与所述串联晶体管、所述电流限制电路及所述输入电流传感器连接成一回路,其中在启动期间当将Vin1施加到所述输入端子时,所述串联晶体管控制器控制所述串联晶体管以将进入到所述转换器中的所述浪涌电流限制于所述电流限制电平。
4.根据权利要求3所述的电路,其进一步包括:
故障检测电路,其包括:
第一故障电路,其包含第一计时器,用于检测在所述电路的启动阶段期间是否存在输入电流故障或Vout故障,且用于在于所述启动阶段期间检测到故障的情况下关断所述串联晶体管;及
第二故障电路,其包含第二计时器,用于检测在所述电路的稳态阶段期间是否存在输入电流故障或Vout故障,且用于在于所述稳态阶段期间检测到故障的情况下关断所述串联晶体管。
5.根据权利要求4所述的电路,其中如果所述输入电流在第一时间限制时处于所述电流限制电平,那么所述第一计时器在所述第一时间限制之后发信号通知一故障,从而发信号通知存在输入电流故障,且
其中如果Vout在所述第一时间限制时不在目标范围内,那么所述第一计时器也在所述第一时间限制之后发信号通知一故障,从而发信号通知存在Vout故障。
6.根据权利要求5所述的电路,其中所述第二计时器在所述输入电流达到所述电流限制电平时起动,其中如果所述输入电流保持处于所述电流限制电平达第二时间限制,那么所述第二计时器发信号通知存在输入电流故障,且
其中所述第二计时器也在Vout不在所述目标范围内时起动,其中如果Vout保持在所述目标范围之外达所述第二时间限制,那么所述第二计时器发信号通知存在Vout故障。
7.根据权利要求6所述的电路,其中所述第一时间限制不同于所述第二时间限制。
8.根据权利要求6所述的电路,其进一步包括经耦合以接收所述输入电压Vin1的电压产生器,所述电压产生器产生大于Vin1/N的第一电压且产生低于Vin1/N的第二电压,其中在稳态中N等于Vin1/Vout,且所述第一电压及所述第二电压界定Vout的所述目标范围。
9.根据权利要求8所述的电路,其中由第一比较器及第二比较器将Vout与所述第一电压及所述第二电压进行比较以确定Vout是否在所述目标范围内。
10.根据权利要求4所述的电路,其中所述第一计时器在启动的起始时起动。
11.根据权利要求4所述的电路,其中所述第一计时器包括将第一电流源耦合到计时器电容器的第一开关,其中由第一比较器将电容器电压与第一参考电压进行比较。
12.根据权利要求11所述的电路,其中所述第二计时器包括将第二电流源耦合到所述计时器电容器的第二开关,其中由第二比较器将所述电容器电压与第二参考电压进行比较。
13.根据权利要求11所述的电路,其中当不存在故障条件时将所述计时器电容器复位。
14.根据权利要求4所述的电路,其中除一或多个电容器外,所述控制器电路、所述串联晶体管、所述电流限制电路、所述串联晶体管控制器、所述第一故障电路及所述第二故障电路均装纳于单个封装中。
15.一种用于控制切换式电容器DC/DC转换器以产生输出电压Vout的方法,其包括:
在输入端子处接收用于给所述切换式电容器DC/DC转换器供电的输入电压Vin1;
由控制器电路产生用于控制所述转换器中的开关以产生Vout的控制信号;
由输入电流传感器感测输入电流并产生对应于输入电流的输入电流信号;及
由电流限制电路产生耦合到所述输入电流传感器以用于控制进入到所述转换器中的浪涌电流以便不超过电流限制电平的电流限制信号。
CN201510025896.3A 2014-01-17 2015-01-19 具有减小的浪涌电流及故障保护的切换式电容器dc‑dc转换器 Active CN104795989B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461928745P 2014-01-17 2014-01-17
US61/928,745 2014-01-17
US14/592,476 US9484799B2 (en) 2014-01-17 2015-01-08 Switched capacitor DC-DC converter with reduced in-rush current and fault protection
US14/592,476 2015-01-08

Publications (2)

Publication Number Publication Date
CN104795989A true CN104795989A (zh) 2015-07-22
CN104795989B CN104795989B (zh) 2017-07-28

Family

ID=52354745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510025896.3A Active CN104795989B (zh) 2014-01-17 2015-01-19 具有减小的浪涌电流及故障保护的切换式电容器dc‑dc转换器

Country Status (4)

Country Link
US (1) US9484799B2 (zh)
EP (1) EP2897270B1 (zh)
CN (1) CN104795989B (zh)
TW (1) TWI562520B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787667A (zh) * 2017-02-07 2017-05-31 北京百卓网络技术有限公司 开关电源缓启动电路及控制方法
CN107276401A (zh) * 2016-04-01 2017-10-20 霍尼韦尔国际公司 本质上安全的功率调节电路
TWI605673B (zh) * 2016-10-07 2017-11-11 新唐科技股份有限公司 切換式電容直流對直流電源轉換器電路及使用其輸出電壓之方法
TWI607623B (zh) * 2016-10-07 2017-12-01 新唐科技股份有限公司 切換式電容型直流轉直流轉換器及其控制方法
CN108387799A (zh) * 2018-03-06 2018-08-10 浙江宇视科技有限公司 过压分析系统及装置
CN108400712A (zh) * 2018-02-10 2018-08-14 杰华特微电子(杭州)有限公司 一种高效降压电路及其控制方法
WO2019127037A1 (en) * 2017-12-26 2019-07-04 Astec International Limited Current limiting circuits
CN110266184A (zh) * 2018-03-12 2019-09-20 凌力尔特科技控股有限责任公司 零电压切换的混合开关电容器转换器
CN113556029A (zh) * 2020-04-23 2021-10-26 台达电子企业管理(上海)有限公司 飞跨电容多电平端口失压保护电路
CN114342236A (zh) * 2020-07-29 2022-04-12 华为数字能源技术有限公司 变换电路及相关电子设备
CN114527407A (zh) * 2022-04-22 2022-05-24 深圳英集芯科技股份有限公司 电容检测电路、装置及设备
US11476751B2 (en) 2020-04-24 2022-10-18 Delta Electronics (Shanghai) Co., Ltd. Short circuit current suppression circuit for flying capacitor converter and energy storage system having the same

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901810B2 (en) 2011-05-08 2024-02-13 Koolbridge Solar, Inc. Adaptive electrical power distribution panel
US8937822B2 (en) * 2011-05-08 2015-01-20 Paul Wilkinson Dent Solar energy conversion and utilization system
US11460488B2 (en) 2017-08-14 2022-10-04 Koolbridge Solar, Inc. AC electrical power measurements
WO2015120306A2 (en) * 2014-02-07 2015-08-13 The Trustees Of Dartmouth College System and method for reducing power loss in switched-capacitor power converters
US10069408B2 (en) * 2014-02-14 2018-09-04 The American University In Cairo Switched capacitor circuit modifying voltage on the inductor of a buck regulator
US9548648B2 (en) * 2014-04-25 2017-01-17 Texas Instruments Incorporated Switched reference MOSFET drive assist circuit
US9787180B2 (en) * 2014-07-24 2017-10-10 Infineon Technologies Ag High side switch with current limit feedback
US9819260B2 (en) * 2015-01-15 2017-11-14 Nxp B.V. Integrated circuit charge pump with failure protection
US9819257B2 (en) * 2015-07-10 2017-11-14 Intersil Americas LLC DC-to-DC converter input node short protection
US10205313B2 (en) 2015-07-24 2019-02-12 Symptote Technologies, LLC Two-transistor devices for protecting circuits from sustained overcurrent
US9525348B1 (en) * 2015-07-31 2016-12-20 Abb Schweiz Ag Power converter having integrated capacitor-blocked transistor cells
EP3353870B1 (en) 2015-09-21 2023-06-07 Symptote Technologies LLC One-transistor devices for protecting circuits and autocatalytic voltage conversion therefor
US9780661B2 (en) * 2015-10-29 2017-10-03 Texas Instruments Incorporated High efficiency DC-DC converter with active shunt to accommodate high input voltage transients
US9755518B2 (en) * 2016-02-05 2017-09-05 Qualcomm Incorporated Current measurments in switching regulators
TWI599870B (zh) * 2016-03-25 2017-09-21 威盛電子股份有限公司 操作系統及控制方法
EP3485561B8 (en) * 2016-07-15 2021-12-08 Analog Devices International Unlimited Company Driving charge pump circuits
EP3291430B1 (de) * 2016-08-29 2021-06-30 Elmos Semiconductor SE Ladungspumpe zur erzeugung einer ausgangsspannung durch vervielfachung einer dc-betriebsspannung
GB2562330B (en) * 2016-11-03 2022-08-03 Cirrus Logic Int Semiconductor Ltd Variable ratio charge pump with peak current and average current limiting circuitry
US10114392B2 (en) 2016-11-03 2018-10-30 Cirrus Logic, Inc. Variable ratio charge pump with peak current and average current limiting circuitry
US20180152101A1 (en) * 2016-11-30 2018-05-31 Cirrus Logic International Semiconductor Ltd. Charge pump output power throttling
US10361630B1 (en) 2016-12-23 2019-07-23 Verily Life Sciences Llc Systems and methods for a reconfigurable switched capacitor DC-DC converter
US10826452B2 (en) 2017-02-10 2020-11-03 Cirrus Logic, Inc. Charge pump with current mode output power throttling
US10651800B2 (en) 2017-02-10 2020-05-12 Cirrus Logic, Inc. Boosted amplifier with current limiting
US10128835B2 (en) * 2017-02-20 2018-11-13 Stmicroelectronics International N.V. Aging tolerant I/O driver
US10027223B1 (en) * 2017-06-12 2018-07-17 Linear Technology Holding Llc Soft-charging of switched capacitors in power converter circuits
US10181804B1 (en) 2017-08-11 2019-01-15 Linear Technology Holding Llc Soft-start circuit for switched resonant power converters
US11228171B2 (en) 2017-08-14 2022-01-18 Koolbridge Solar, Inc. Overcurrent trip coordination between inverter and circuit breakers
US10439494B2 (en) 2017-08-15 2019-10-08 Texas Instruments Incorporated Inductor current sensing and regulation for power converter
US10355609B2 (en) 2017-08-15 2019-07-16 Texas Instruments Incorporated Voltage step-down technique for deriving gate-charge using multi-level core architecture
US11362587B2 (en) * 2017-08-15 2022-06-14 Texas Instruments Incorporated Hysteretic pulse modulation for charge balance of multi-level power converters
US11411491B2 (en) * 2017-09-29 2022-08-09 Intel Corporation Multiple output voltage conversion
US11183863B2 (en) 2017-10-20 2021-11-23 Honor Device Co., Ltd. Charging apparatus and terminal
US10581312B2 (en) * 2017-12-29 2020-03-03 Texas Instruments Incorporated Multilevel converter using node voltage track and control
US10404175B2 (en) * 2017-12-29 2019-09-03 Texas Instruments Incorporated Converter topology with adaptive power path architecture
US10199928B1 (en) * 2018-01-19 2019-02-05 Infineon Technologies Austria Ag Soft start of switched capacitor converters by reducing voltage provided by initial power switch
US10833585B2 (en) * 2018-03-02 2020-11-10 Texas Instruments Incorporated Scalable switched capacitor integrated buck (SCIB) regulator for high conversion step down application
US11407283B2 (en) 2018-04-30 2022-08-09 Tiger Tool International Incorporated Cab heating systems and methods for vehicles
TWI742358B (zh) * 2018-05-04 2021-10-11 德商伍爾特電子eiSos有限公司 功率變換器及形成其一部分的電路
US10340794B1 (en) 2018-06-21 2019-07-02 Linear Technology Llc Reverse capacitor voltage balancing for high current high voltage charge pump circuits
US10547241B1 (en) * 2018-08-29 2020-01-28 Linear Technology Holding Llc Hybrid inverting PWM power converters
WO2020097124A1 (en) 2018-11-05 2020-05-14 Tiger Tool International Incorporated Cooling systems and methods for vehicle cabs
US10693367B1 (en) 2019-02-19 2020-06-23 Rolls-Royce North American Technologies, Inc. Pre-charging circuit for power converters
CN111953202A (zh) * 2019-05-17 2020-11-17 力智电子股份有限公司 切换电容式电源转换装置及其运作方法
WO2020263288A1 (en) 2019-06-24 2020-12-30 General Electric Company Short-circuit protection systems and methods for flying capacitor based buck-boost converters
US10778099B1 (en) * 2019-07-23 2020-09-15 Texas Instruments Incorporated Boost-back protection for power converter
TWI704439B (zh) * 2019-09-06 2020-09-11 新唐科技股份有限公司 啟動電路及其操作方法
KR102355293B1 (ko) * 2019-09-27 2022-01-25 주식회사 실리콘마이터스 스위치-커패시터 컨버터
JP7086308B2 (ja) * 2019-10-16 2022-06-17 三菱電機株式会社 Dc/dcコンバータ装置
AU2020391223A1 (en) * 2019-11-27 2022-07-07 Tiger Tool International Incorporated DC-DC step up converter systems and methods
US11150300B2 (en) 2019-12-16 2021-10-19 Analog Devices International Unlimited Company Adaptive blanking of over current fault detection circuits in power conversion gate drivers
US11431243B2 (en) * 2020-02-28 2022-08-30 Smart Prong Technologies, Inc. Pre-charging a voltage converter
CN113471936A (zh) * 2020-03-31 2021-10-01 法雷奥动力总成(上海)有限公司 用于电动车的直流/直流转换器的欠压保护电路和欠压保护方法
US11791715B2 (en) * 2020-04-16 2023-10-17 Hamilton Sundstrand Corporation Intelligent architecture for actuator motor drive powered from wide-input high-voltage direct current
CN113555917A (zh) * 2020-04-26 2021-10-26 北京小米移动软件有限公司 电子设备及其充电方法,可读存储介质
US20210376622A1 (en) * 2020-06-02 2021-12-02 Qualcomm Incorporated Trickle charging and precharging a dead multi-cell-in-series battery
US12030368B2 (en) 2020-07-02 2024-07-09 Tiger Tool International Incorporated Compressor systems and methods for use by vehicle heating, ventilating, and air conditioning systems
KR102439280B1 (ko) * 2020-11-02 2022-09-02 주식회사 실리콘마이터스 가변 전압 변환비를 갖는 스위치드 커패시터 컨버터
TWI770985B (zh) * 2020-11-23 2022-07-11 立錡科技股份有限公司 高效率充電系統及其電源轉換電路
US11374400B2 (en) 2020-12-01 2022-06-28 Rolls-Royce Singapore Pte. Ltd. Topology of a solid state power controller with two mid-capacitors
US11601049B2 (en) 2021-01-19 2023-03-07 Analog Devices, Inc. Multi-phase hybrid converter
US11594956B2 (en) 2021-01-19 2023-02-28 Analog Devices, Inc. Dual-phase hybrid converter
US11581796B2 (en) 2021-01-19 2023-02-14 Analog Devices, Inc. Pulse width modulation controllers for hybrid converters
KR102633213B1 (ko) * 2021-04-22 2024-02-05 엘에스일렉트릭(주) 직류-직류 컨버터
US11545895B2 (en) 2021-06-04 2023-01-03 Nxp B.V. Precharge in a switched capacitor (SC) converter
CN114094684B (zh) * 2021-11-12 2023-11-17 上海南芯半导体科技股份有限公司 一种用于给电池充电的架构
CN114244105B (zh) * 2022-02-24 2022-04-26 伏达半导体(合肥)有限公司 功率转换结构、方法包括其的电子设备及芯片单元
EP4401294A1 (en) * 2023-01-13 2024-07-17 Siemens Aktiengesellschaft Multi-level buck-boost converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227498A1 (en) * 2003-05-12 2004-11-18 Taiyo Yuden Co., Ltd. Switching power supply circuit and overcurrent protection method for the switching power supply circuit
CN101159410A (zh) * 2006-10-04 2008-04-09 电力集成公司 响应于耦合到控制电路接线端阻抗的控制电路方法和设备
US20080150500A1 (en) * 2006-12-18 2008-06-26 Decicon, Inc. Hybrid dc-dc switching regulator circuit
US20090072803A1 (en) * 2007-09-19 2009-03-19 Kee-Chee Tiew Inrush current control
WO2009155540A1 (en) * 2008-06-20 2009-12-23 Monolithic Power Systems, Inc. Charge pumps with controlled ramp rate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696735B2 (en) 2007-03-30 2010-04-13 Intel Corporation Switched capacitor converters
US8427113B2 (en) 2007-08-01 2013-04-23 Intersil Americas LLC Voltage converter with combined buck converter and capacitive voltage divider
US7759923B2 (en) * 2008-07-08 2010-07-20 Micrel, Inc. Current sensing in a buck-boost switching regulator using integrally embedded PMOS devices
TWI397231B (zh) * 2008-08-19 2013-05-21 Anpec Electronics Corp 嵌制電源熱插拔所造成電壓突波之電路及相關晶片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227498A1 (en) * 2003-05-12 2004-11-18 Taiyo Yuden Co., Ltd. Switching power supply circuit and overcurrent protection method for the switching power supply circuit
CN101159410A (zh) * 2006-10-04 2008-04-09 电力集成公司 响应于耦合到控制电路接线端阻抗的控制电路方法和设备
US20080150500A1 (en) * 2006-12-18 2008-06-26 Decicon, Inc. Hybrid dc-dc switching regulator circuit
US20090072803A1 (en) * 2007-09-19 2009-03-19 Kee-Chee Tiew Inrush current control
WO2009155540A1 (en) * 2008-06-20 2009-12-23 Monolithic Power Systems, Inc. Charge pumps with controlled ramp rate

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276401B (zh) * 2016-04-01 2022-01-18 霍尼韦尔国际公司 本质上安全的功率调节电路
CN107276401A (zh) * 2016-04-01 2017-10-20 霍尼韦尔国际公司 本质上安全的功率调节电路
TWI605673B (zh) * 2016-10-07 2017-11-11 新唐科技股份有限公司 切換式電容直流對直流電源轉換器電路及使用其輸出電壓之方法
TWI607623B (zh) * 2016-10-07 2017-12-01 新唐科技股份有限公司 切換式電容型直流轉直流轉換器及其控制方法
CN106787667A (zh) * 2017-02-07 2017-05-31 北京百卓网络技术有限公司 开关电源缓启动电路及控制方法
CN110199464B (zh) * 2017-12-26 2024-08-23 雅达电子国际有限公司 限流电路
WO2019127037A1 (en) * 2017-12-26 2019-07-04 Astec International Limited Current limiting circuits
CN110199464A (zh) * 2017-12-26 2019-09-03 雅达电子国际有限公司 限流电路
US11444452B2 (en) 2017-12-26 2022-09-13 Astec International Limited Current limiting circuits
US10931100B2 (en) 2017-12-26 2021-02-23 Astec International Limited Current limiting circuits
CN108400712A (zh) * 2018-02-10 2018-08-14 杰华特微电子(杭州)有限公司 一种高效降压电路及其控制方法
CN108387799A (zh) * 2018-03-06 2018-08-10 浙江宇视科技有限公司 过压分析系统及装置
CN110266184A (zh) * 2018-03-12 2019-09-20 凌力尔特科技控股有限责任公司 零电压切换的混合开关电容器转换器
CN113556029A (zh) * 2020-04-23 2021-10-26 台达电子企业管理(上海)有限公司 飞跨电容多电平端口失压保护电路
US11476751B2 (en) 2020-04-24 2022-10-18 Delta Electronics (Shanghai) Co., Ltd. Short circuit current suppression circuit for flying capacitor converter and energy storage system having the same
CN114342236A (zh) * 2020-07-29 2022-04-12 华为数字能源技术有限公司 变换电路及相关电子设备
CN114342236B (zh) * 2020-07-29 2024-07-05 华为数字能源技术有限公司 变换电路及相关电子设备
CN114527407A (zh) * 2022-04-22 2022-05-24 深圳英集芯科技股份有限公司 电容检测电路、装置及设备
CN114527407B (zh) * 2022-04-22 2022-07-08 深圳英集芯科技股份有限公司 电容检测电路、装置及设备
WO2023202690A1 (zh) * 2022-04-22 2023-10-26 深圳英集芯科技股份有限公司 电容检测电路、装置及设备

Also Published As

Publication number Publication date
TWI562520B (en) 2016-12-11
EP2897270B1 (en) 2018-07-04
CN104795989B (zh) 2017-07-28
EP2897270A1 (en) 2015-07-22
US20150207401A1 (en) 2015-07-23
TW201530998A (zh) 2015-08-01
US9484799B2 (en) 2016-11-01

Similar Documents

Publication Publication Date Title
CN104795989A (zh) 具有减小的浪涌电流及故障保护的切换式电容器dc-dc转换器
US9985543B1 (en) Switching power supply
US8878460B2 (en) DC-DC converter protection circuit and protection method thereof
WO2012140840A1 (ja) コンバータ装置及び半導体装置
CN108718152B (zh) 交错式pfc控制电路及电机驱动电路
EP2330728A1 (en) Power control circuit, power supply unit, power supply system, and power controller control method
US20140016384A1 (en) Current sensing circuit and control circuit thereof and power converter circuit
CN103227568A (zh) 反激转换器及用于操作所述反激转换器的方法
US10176950B2 (en) Latching relay drive circuit
CN105322810B (zh) 电源转换装置及其电流反馈信号异常时的保护方法
CN201622302U (zh) 过电压与过电流检测电路
WO2012155325A1 (en) Dc/dc power converter with wide input voltage range
WO2015079580A1 (ja) 電源装置
US9350251B2 (en) Power conversion apparatus and over power protection method thereof
CN101958533B (zh) 用于隔离式电源供应器的电流感测电阻短路保护装置及方法
US11632842B2 (en) Selective inrush current control with active current clamp and monitoring
US9913346B1 (en) Surge protection system and method for an LED driver
CN105471284A (zh) 电源转换装置及其过功率保护方法
US9077256B2 (en) Method of forming a low power dissipation regulator and structure therefor
JP5105098B2 (ja) 電源瞬断対策回路、スイッチング電源装置、及び、制御方法
CN109818328B (zh) 一种开关电源过压保护电路
CN107819398B (zh) 过电压保护电路
JP2001095240A (ja) 入力過電圧制限機能を備えた突入電流防止回路
JP6561321B2 (ja) スイッチング電源装置
JP2014197941A (ja) 電力変換装置、突入電流抑制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: California, USA

Patentee after: LINEAR TECHNOLOGY Corp.

Address before: California, USA

Patentee before: LINEAR TECHNOLOGY Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211229

Address after: Limerick

Patentee after: ANALOG DEVICES INTERNATIONAL UNLIMITED Co.

Address before: California, USA

Patentee before: LINEAR TECHNOLOGY Corp.