CN104788612A - 一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法 - Google Patents

一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法 Download PDF

Info

Publication number
CN104788612A
CN104788612A CN201410022381.3A CN201410022381A CN104788612A CN 104788612 A CN104788612 A CN 104788612A CN 201410022381 A CN201410022381 A CN 201410022381A CN 104788612 A CN104788612 A CN 104788612A
Authority
CN
China
Prior art keywords
preparation
levofloxacin
magnetic
magnetic microsphere
template molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410022381.3A
Other languages
English (en)
Inventor
何华
肖得力
戴昊
袁丹华
彭军
孔素妹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN201410022381.3A priority Critical patent/CN104788612A/zh
Publication of CN104788612A publication Critical patent/CN104788612A/zh
Pending legal-status Critical Current

Links

Abstract

本发明涉及一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法。制备过程主要包括三个步骤:磁性微球的制备,分子印迹材料在微球上的包覆以及模板分子的洗脱。本发明提供的合成方法较为简便,制得的磁性微球表面分子印迹材料对左氧氟沙星具有特异识别功能、高吸附容量、快速吸附能力和对氧氟沙星手性拆分的能力,并且应有良好的磁性响应和高机械强度,不仅可用于各种固相萃取装置的吸附填料或涂层材料,亦可用于分子印迹传感器及芯片的制备,对沙星类药物特异性识别、手性拆分和高灵敏度检测研究将具有重要意义。

Description

一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法
技术领域
本发明属于新材料科学领域,特别涉及一种基于磁性微球的表面印迹材料的制备方法,该印迹材料可对左氧氟沙星进行特异性识别。
背景技术
为克服生物大分子识别过程的种种缺点,人们根据对生物大分子识别过程专一性的认识,合成了具有分子识别能力的人工合成聚合物材料——分子印迹聚合物(MIPs),以分离、纯化化合物。因为分子印迹聚合物具有构效预定性、特异识别性和广泛适用性三大特点,且拥有对严苛的化学环境显惰性、稳定性好、使用寿命长等优点,其在分离提纯、生物传感器、免疫分析以及模拟酶等方面均显示出巨大潜力,逐渐成为分析工作者研究的热点。
目前,诸如本体聚合、原位聚合、悬浮聚合、分散聚合等多种制备方法已广泛应用。然而,以上数种传统方法制得的印迹聚合物有效印迹位点的密度很低,因此制得的材料对目标分子的结合容量小,结合速度慢。基于纳米结构的分子印迹材料则具有较高的比表面积,印迹材料上大多结合位点位于或接近材料表面,对目标分子具有高亲和力,可对其快速吸附,有望解决上述传统分子印迹遇到的难题。
左氧氟沙星作为喹诺酮类(quinolone)抗菌剂的一种,具有4-喹诺酮基本结构,可对细菌DNA螺旋酶进行选择性抑制,目前被广泛应用于临床。基于药代动力学研究、药物不良反应研究、环境监测的需要,急需建立复杂基质中(如血样、尿样)中痕量左氧氟沙星的分析方法。传统的固相萃取材料和色谱填料简化了分析过程,但仍存在诸多缺陷,比如特异选择性低、操作复杂费时,难以满足当下快速高效的检测需求,新型的载体和涂层材料的研究成为复杂基质中痕量左氧氟沙星监测分析的关键。
作为一种新型的纳米材料,磁性微球本质上是具有磁性的纳米-微米级粒子,其中以四氧化三铁纳米粒子为代表,在很多领域具有广泛的应用价值。将磁性微球作为基质,开发新型的分子印迹材料,可解决传统分子印迹技术遇到的困难:(1)磁性微球具有高机械强度和抗形变力,所以磁性微球表面印迹材料能够克服传统印迹材料的溶胀效应导致的印迹空间形状变形、识别位点移动等缺点,这一特性不仅保证了识别位点和印迹三维孔穴的构型稳定,而且可使其作为HPLC固定相时能够耐高压,具有较高的柱效;(2)磁性微球具有较高的比表面积,使得大量的识别位点处于印迹层的表面,模板分子的去除和再结合将变得非常容易,从而加快合成后的模板清洗过程,同时避免分析时的模板泄漏现象,更可大大提高了印迹效率;(3)磁性微球具有优异的磁性能,基于它的分子印迹材料可在外加磁场作用下,快速高效地与样品溶液分离。当此种材料用于样品富集时,不需要进行过滤、离心等耗时复杂的前处理过程。当其应用于微通道领域时,磁性微球作为固定相在外加磁场作用下,可以定位在管道中的指定区域,从而方便地调节其填充长度以达到最佳拆分效果,还可以在使用后通过撤除外加磁场进行微通道的重复利用。这在构型复杂,通道曲折的微芯片电色谱领域中具有独特的应用前景。
发明内容
技术问题:
本发明的目的是克服传统分子印迹材料的缺点,提供一种新型磁性微球表面分子印迹材料的制备方法,利用该方法制备出的印迹材料应对左氧氟沙星具有特异识别功能、高吸附容量和快速吸附能力并且应有良好的磁性响应和高机械强度,从而实现对左氧氟沙星高选择性的分离富集和高灵敏度的检测。
技术方案:
1.本发明的技术解决方案为:
a.磁性微球的制备:三氯化铁、乙酸钠和丙烯酸钠加入由乙二醇和二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
b.将模板分子、功能单体加入反应溶剂中混合,振荡2h,得到预组装溶液,备用;
c.将步骤a制得的磁性微球加入反应溶剂中超声分散,加入步骤b制得的预组装溶液、交联剂和引发剂,超声分散,然后倒入含分散剂聚乙烯吡咯烷酮的溶剂中,机械搅拌下通N2除氧,60℃下反应。
d.反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
2.据权利要求1所述的制备方法,其特征在于:所述步骤a中三氯化铁的摩尔浓度为0.05~0.5mol/L,乙二醇和二乙二醇的比例为1∶5~5∶1,反应时间为4~24h。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤b中,模板分子为喹诺酮类药物左氧氟沙星(1evofloxacin),功能单体为甲基丙烯酸、丙烯酸、2-乙烯基吡啶、4-乙烯基吡啶和丙烯酰胺;溶剂为甲苯、氯仿、乙腈、二甲基亚砜和水;模板分子和功能单体的摩尔比为1∶1~1∶10。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤c中,交联剂为二甲基丙烯酸乙二醇酯,模板分子和交联剂的摩尔比为1∶5~1∶40;引发剂为偶氮二异丁腈,引发剂用量为功能单体和交联剂双键质量总量的0.02%~0.5%,反应时间为6~36h。
附图说明
图1是本发明制备的磁性微球表面分子印迹材料的合成路线示意图。
图2是本发明制得磁性纳米粒子表面分子印迹材料和非印迹材料的饱和吸收曲线。
具体实施方案
一、制备实例
以下实施例为本发明的一些举例,不应被看做是对本发明的限定。
实施例1
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
将1mmol左氧氟沙星、4mmol甲基丙烯酸加入10mL二甲基亚砜中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL二甲基亚砜中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的二甲基亚砜/水(体积比9∶1)混合溶剂中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例2
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
将1mmol左氧氟沙星、4mmol甲基丙烯酸加入10mL二甲基亚砜中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL二甲基亚砜中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的二甲基亚砜中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例3
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
将1mmol左氧氟沙星、4mmol丙烯酸加入10mL二甲基亚砜中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL二甲基亚砜中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的二甲基亚砜/水(体积比9∶1)混合溶剂中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例4
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用:
将1mmol左氧氟沙星、4mmol2-乙烯基吡啶加入10mL二甲基亚砜中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL二甲基亚砜中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的二甲基亚砜/水(体积比9∶1)混合溶剂中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例5
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
将1mmol左氧氟沙星、4mmol4-乙烯基吡啶加入10mL二甲基亚砜中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL二甲基亚砜中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的二甲基亚砜/水(体积比9∶1)混合溶剂中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例6
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,各用:
将1mmol左氧氟沙星、4mmol甲基丙烯酸加入10mL氯仿中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL氯仿中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的氯仿中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例7
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
将1mmol左氧氟沙星、4mmol甲基丙烯酸加入10mL乙腈中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL乙腈中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的乙腈中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例8
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
将1mmol左氧氟沙星、6mmol甲基丙烯酸加入10mL二甲基亚砜中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL二甲基亚砜中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的二甲基亚砜/水(体积比9∶1)混合溶剂中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例9
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
将1mmol左氧氟沙星、4mmol甲基丙烯酸加入10mL二甲基亚砜中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL二甲基亚砜中超声分散,加入上述制得的预组装溶液、15mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的二甲基亚砜/水(体积比9∶1)混合溶剂中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
实施例10
2.4g三氯化铁、3.4g乙酸钠和3.4g丙烯酸钠加入由33.75mL乙二醇和11.25mL二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应10h,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
将1mmol左氧氟沙星、4mmol甲基丙烯酸加入10mL二甲基亚砜中混合,振荡2h,得到预组装溶液,备用;
将1.0g上述制得的磁性微球加入4mL二甲基亚砜中超声分散,加入上述制得的预组装溶液、20mmol二甲基丙烯酸乙二醇酯和50mg偶氮二异丁腈,超声分散30min,然后倒入含0.4g聚乙烯吡咯烷酮的二甲基亚砜/水(体积比8∶2)混合溶剂中,机械搅拌下通N2除氧,60℃下反应。
反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
二、本发明制备的磁性微球表面分子印迹材料的结合动力学实验
实验器材:美国安捷伦公司的1200型高效液相色谱仪。
实验方法:配制一定浓度的加替沙星溶液,取等量的MIPs和NIP作为吸附剂,使用高效液相色谱测定不同吸附时间后的上清液的浓度,计算复合材料对底物的吸附量Q(μg/mg)。计算公式为:Q=(C0-C1)V/m
其中C0表示吸附前溶液中模板的浓度(μg/mL);C1表示吸附后溶液中模板的浓度(μg/mL);V表示溶液的体积(mL);m表示加入的分子印迹聚合物的质量(mg)。
具体实施步骤如下:
精密称取5.0mg实施例1制备的MIPs和NIP,分别置于2mL的离心管中,加入2mL浓度为200ug/mL的左氧氟沙星溶液,室温下振荡,于0.1、0.2、0.5、1、1.5、2、2.5、3、4、5、6、8h取出,磁场分离,取上清液用高效液相色谱仪测定其峰面积,依据标准曲线计算不同吸附时间加替沙星的浓度,计算聚合物对底物的结合量Q。
三、本发明制备的磁性微球表面分子印迹材料的吸附等温实验
实验器材:美国安捷伦公司的1200型高效液相色谱仪。
实验方法:配制一系列不同浓度的加替沙星溶液,取等量的MIPs和NIP作为吸附剂吸附2h,离心后,紫外可见分光光度法测定上清液的浓度,计算分子印迹聚合物饱和结合量Q(μg/mg)。计算公式为:Q=(C0-C1)V/m
其中C0表示吸附前溶液中模板的浓度(μg/mL);C1表示吸附后溶液中模板的浓度(μg/mL);V表示溶液的体积(mL);m表示加入的分子印迹聚合物的质量(mg)。
通过吸附等温线,绘制Scatchard曲线。Scatchard方程可表示为:Q/C=(Qmax-Q)/Kd
其中,Kd(μg/mL)为结合位点的平衡离解常数;Qmax(μg/mg)是结合点的最大表观结合量,Q(μg/mg)为MIPs的单位结合量;C(μg/mL)是模板在吸附液中的平衡浓度。
具体实施步骤如下:
精密称取5.0mg实施例1制备的MIPs,分别置于2ml的离心管中,加入2mL不同初始浓度的加替沙星溶液,浓度范围为:100~5001μg/mL。室温下振荡2h达到吸附平衡后,磁场分离,取上清液用高效液相色谱仪测定其峰面积,依据标准曲线计算不同吸附时间加替沙星的浓度,计算聚合物饱和结合量Q。
四、本发明制备的磁性微球表面分子印迹聚合物的选择性实验
实验器材:美国安捷伦公司的1200型高效液相色谱仪。
实验方法:选择与氧氟沙星具有相似结构的化合物作为对照底物,对比MIPs和NIP对不同底物的吸附情况,采用饱和结合量Q来表征MIPs和NIP对氧氟沙星及对照底物的分子识别特性。
具体实施步骤如下:
精密称取5.0mg实施例1制备的MIPs和NIP,分别置于2ml的离心管中,加入2mL一定浓度的氧氟沙星、加替沙星、环丙沙星溶液。室温下振荡2h达到吸附平衡后,磁场分离,取上清液用紫外分光光度计测定其吸光度,计算分子印迹聚合物饱和结合量Q。

Claims (4)

1.一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法,其特征在于制备步骤为:
a.磁性微球的制备:三氯化铁、乙酸钠和丙烯酸钠加入由乙二醇和二乙二醇组成的混合溶剂中,超声1h得到黄色的混合溶液,将其转入聚四氟乙烯材质的反应釜中,密封,置于马弗炉中反应,反应结束后冷却至室温,用甲醇和水洗数次,于60℃真空干燥至恒重,备用;
b.将模板分子、功能单体加入反应溶剂中混合,振荡2h,得到预组装溶液,备用;
c.将步骤b制得的磁性微球加入反应溶剂中超声分散,加入步骤b制得的预组装溶液、交联剂和引发剂,超声分散,然后倒入含分散剂聚乙烯吡咯烷酮的溶剂中,机械搅拌下通N2除氧,60℃下反应;
d.反应结束后磁场分离除去上清液,磁性纳米粒子用体积比为9∶1的甲醇/乙酸混合溶液反复超声洗涤,直至上清液经紫外检测不到模板分子为止,于60℃真空干燥至恒重,得到磁性微球表面分子印迹材料。
2.据权利要求1所述的制备方法,其特征在于:所述步骤a中三氯化铁的摩尔浓度为0.05~0.5mol/L,乙二醇和二乙二醇的比例为1∶5~5∶1,反应时间为4~24h。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤b中,模板分子为喹诺酮类药物左氧氟沙星(1evofloxacin),功能单体为甲基丙烯酸、丙烯酸、2-乙烯基吡啶、4-乙烯基吡啶和丙烯酰胺;溶剂为甲苯、氯仿、乙腈、二甲基亚砜和水;模板分子和功能单体的摩尔比为1∶1~1∶10。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤c中,交联剂为二甲基丙烯酸乙二醇酯,模板分子和交联剂的摩尔比为1∶5~1∶40;引发剂为偶氮二异丁腈,引发剂用量为功能单体和交联剂双键质量总量的0.02%~0.5%,反应时间为6-36h。
CN201410022381.3A 2014-01-16 2014-01-16 一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法 Pending CN104788612A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410022381.3A CN104788612A (zh) 2014-01-16 2014-01-16 一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410022381.3A CN104788612A (zh) 2014-01-16 2014-01-16 一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法

Publications (1)

Publication Number Publication Date
CN104788612A true CN104788612A (zh) 2015-07-22

Family

ID=53553831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410022381.3A Pending CN104788612A (zh) 2014-01-16 2014-01-16 一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法

Country Status (1)

Country Link
CN (1) CN104788612A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104906093A (zh) * 2015-05-18 2015-09-16 天津医科大学 漂浮缓释型胃内滞留液晶分子印迹药物载体及其制备
CN109553736A (zh) * 2018-12-01 2019-04-02 浙江海洋大学 一种用壳聚糖表面印迹聚合物的制备方法
CN109569534A (zh) * 2018-12-01 2019-04-05 浙江海洋大学 一种用羧基化纳晶纤维素印迹聚合物的制备方法
CN109632921A (zh) * 2018-12-07 2019-04-16 嘉兴学院 左氧氟沙星原料药中右氧氟沙星含量的检测方法、使用的电化学传感器以及手性吡咯化合物
CN109939656A (zh) * 2019-04-10 2019-06-28 湖南农业大学 诺氟沙星磁性分子印迹纳米粒子的制备方法及应用
CN110339823A (zh) * 2019-07-01 2019-10-18 河南城建学院 一种凤眼莲基磁性多级孔碳表面印迹材料及其制备方法和应用
CN113398900A (zh) * 2021-07-14 2021-09-17 广州汇标检测技术中心 一种针对黄曲霉毒素的分子印迹材料及其制备方法和应用
CN114509479A (zh) * 2022-02-16 2022-05-17 云南大学 一种磁性核壳分子印迹材料及制备和应用、电化学传感器及应用、氯胺酮的检测方法
CN115318252A (zh) * 2022-07-25 2022-11-11 中国科学院广州地球化学研究所 一种纳米粘土水铝英石/海藻酸钠印迹微球的制备方法及应用
CN116223600A (zh) * 2023-03-28 2023-06-06 中国热带农业科学院分析测试中心 一种利用电化学传感检测左氧氟沙星的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550207A (zh) * 2009-05-15 2009-10-07 吉林大学 磁性分子印迹聚合物的制备及在复杂样品前处理中的应用
CN102012372A (zh) * 2010-11-10 2011-04-13 吉林大学 利用磁性印迹表面增强拉曼光谱技术检测药物分子的方法
CN102212160A (zh) * 2011-05-12 2011-10-12 天津医科大学 波聚合制备左旋氧氟沙星分子印迹聚合物的方法
CN103223352A (zh) * 2013-04-02 2013-07-31 江苏大学 具有良好光透过性的磁性印迹复合光催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550207A (zh) * 2009-05-15 2009-10-07 吉林大学 磁性分子印迹聚合物的制备及在复杂样品前处理中的应用
CN102012372A (zh) * 2010-11-10 2011-04-13 吉林大学 利用磁性印迹表面增强拉曼光谱技术检测药物分子的方法
CN102212160A (zh) * 2011-05-12 2011-10-12 天津医科大学 波聚合制备左旋氧氟沙星分子印迹聚合物的方法
CN103223352A (zh) * 2013-04-02 2013-07-31 江苏大学 具有良好光透过性的磁性印迹复合光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PIERRE DRAMOU等: "Loading behavior of gatifloxacin in urine and lake water on a novel magnetic molecularly imprinted polymer used as extraction sorbent with spectrophotometric analysis", 《J. SEP. SCI.》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104906093A (zh) * 2015-05-18 2015-09-16 天津医科大学 漂浮缓释型胃内滞留液晶分子印迹药物载体及其制备
CN104906093B (zh) * 2015-05-18 2017-04-05 天津医科大学 漂浮缓释型胃内滞留液晶分子印迹药物载体及其制备
CN109553736A (zh) * 2018-12-01 2019-04-02 浙江海洋大学 一种用壳聚糖表面印迹聚合物的制备方法
CN109569534A (zh) * 2018-12-01 2019-04-05 浙江海洋大学 一种用羧基化纳晶纤维素印迹聚合物的制备方法
CN109632921A (zh) * 2018-12-07 2019-04-16 嘉兴学院 左氧氟沙星原料药中右氧氟沙星含量的检测方法、使用的电化学传感器以及手性吡咯化合物
CN109939656A (zh) * 2019-04-10 2019-06-28 湖南农业大学 诺氟沙星磁性分子印迹纳米粒子的制备方法及应用
CN110339823A (zh) * 2019-07-01 2019-10-18 河南城建学院 一种凤眼莲基磁性多级孔碳表面印迹材料及其制备方法和应用
CN113398900A (zh) * 2021-07-14 2021-09-17 广州汇标检测技术中心 一种针对黄曲霉毒素的分子印迹材料及其制备方法和应用
CN113398900B (zh) * 2021-07-14 2023-03-31 广州汇标检测技术中心 一种针对黄曲霉毒素的分子印迹材料及其制备方法和应用
CN114509479A (zh) * 2022-02-16 2022-05-17 云南大学 一种磁性核壳分子印迹材料及制备和应用、电化学传感器及应用、氯胺酮的检测方法
CN115318252A (zh) * 2022-07-25 2022-11-11 中国科学院广州地球化学研究所 一种纳米粘土水铝英石/海藻酸钠印迹微球的制备方法及应用
CN115318252B (zh) * 2022-07-25 2023-08-11 中国科学院广州地球化学研究所 一种纳米粘土水铝英石/海藻酸钠印迹微球的制备方法及应用
CN116223600A (zh) * 2023-03-28 2023-06-06 中国热带农业科学院分析测试中心 一种利用电化学传感检测左氧氟沙星的方法
CN116223600B (zh) * 2023-03-28 2023-11-07 中国热带农业科学院分析测试中心 一种利用电化学传感检测左氧氟沙星的方法

Similar Documents

Publication Publication Date Title
CN104788612A (zh) 一种基于磁性微球的左氧氟沙星表面印迹材料的制备方法
CN103724539A (zh) 一种磁性碳纳米管表面分子印迹材料的制备方法
Ansari et al. Novel developments and trends of analytical methods for drug analysis in biological and environmental samples by molecularly imprinted polymers
Andersson et al. A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting
CN106317335B (zh) 适于生物样品的分子印迹聚合物传感材料及其制备方法
Qiu et al. Fabrication of a molecularly imprinted polymer immobilized membrane with nanopores and its application in determination of β2-agonists in pork samples
CN106810638A (zh) 磺胺类兽药亲水性磁性分子印迹材料的制备方法及应用
Wang et al. The preparation of high-capacity boronate affinity adsorbents by surface initiated reversible addition fragmentation chain transfer polymerization for the enrichment of ribonucleosides in serum
CN103570870B (zh) 多模板单分散三七活性皂苷分子印迹聚合物及其制备方法
CN106540668B (zh) 磁性亲水分子印迹复合材料及其制备方法
Yu et al. Temperature-response polymer coating for in-tube solid-phase microextraction coupled to high-performance liquid chromatography
CN103497277B (zh) 黄芩素分子印迹聚合物及其制备方法和应用
Huang et al. Chip-based multi-molecularly imprinted monolithic capillary array columns coated Fe3O4/GO for selective extraction and simultaneous determination of tetracycline, chlortetracycline and deoxytetracycline in eggs
CN103910836A (zh) 一种可应用于生物样品前处理的磁性碳纳米管表面分子印迹聚合物的制备方法
CN102775566B (zh) 加替沙星分子印迹聚合物及该聚合物的制备方法
CN103601840B (zh) 聚丙烯酰胺固定化离子液体毛细管整体柱的制备及固相萃取方法
Jiang et al. Small organic molecular imprinted materials: their preparation and application
CN101768238A (zh) 一种桔青毒素分子印迹材料及其制备方法与应用
Iturralde et al. The effect of the crosslinking agent on the performance of propranolol imprinted polymers
CN104237184B (zh) 一种ZnO纳米棒分子印迹荧光传感器的制备方法
CN103232572A (zh) 用于检测洛克沙胂的分子印迹聚合物及其制备方法
CN104174390B (zh) 乙氧酰胺苯甲酯分子印迹固相萃取小柱的制备方法及应用
Carrasco-Correa et al. Evaluation of 2, 3-epoxypropyl groups and functionalization yield in glycidyl methacrylate monoliths using gas chromatography
Yuan et al. Sensitive determination of rose bengal in brown sugar by a molecularly imprinted solid-phase extraction monolithic capillary column coupled with capillary electrophoresis
CN103263900A (zh) 一种纳米氧化铝材料改性的聚合物整体柱的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150722

WD01 Invention patent application deemed withdrawn after publication