CN104775162A - 光激发光剂量检测晶体制备方法 - Google Patents

光激发光剂量检测晶体制备方法 Download PDF

Info

Publication number
CN104775162A
CN104775162A CN201410806914.7A CN201410806914A CN104775162A CN 104775162 A CN104775162 A CN 104775162A CN 201410806914 A CN201410806914 A CN 201410806914A CN 104775162 A CN104775162 A CN 104775162A
Authority
CN
China
Prior art keywords
carbon
crystal
aluminum oxide
photoluminescence
make
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410806914.7A
Other languages
English (en)
Other versions
CN104775162B (zh
Inventor
周明奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN104775162A publication Critical patent/CN104775162A/zh
Application granted granted Critical
Publication of CN104775162B publication Critical patent/CN104775162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • C09K11/655Aluminates; Silicates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Luminescent Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种光激发光剂量检测晶体制备方法,该方法是先将氧化铝(Al2O3)以碳包覆起来,在真空下经过扩散(Diffusion)后,使碳原子扩散进入氧化铝晶格内,再于大气下进行退火(Annealing),使氧与碳原子反应,透过C+O转换成CO,或C+O2转换成CO2,使氧化铝晶体产生氧空缺(Oxygen Vacancy),而可简易制得碳分布均匀的检测晶体(C:Al2O3)结构,具有光激发光剂量响应灵敏度高,且线性剂量响应范围宽的特性。

Description

光激发光剂量检测晶体制备方法
技术领域
本发明有关于一种光激发光剂量检测晶体制备方法,尤指涉及一种光激发光剂学,特别是指以碳包覆氧化铝结构经过真空扩散与大气退火后,使氧化铝晶体产生氧空缺(Oxygen Vacancy)缺陷的检测晶体(C:Al2O3)结构的制备方法。
背景技术
材料的热激发光(Thermoluminescence, TL)与光激发光(Optically Stimulated Luminescence, OSL)特性,广泛应用于辐射剂量学(Radiation Dosimetry),作为环境与个人辐射剂量之的测定。其中热激发光是指材料在吸收辐射能之后的热释光,而光激发光是指材料在吸收辐射能之后的光释光。光激发光与热激发光相比,光激发光剂量计使用过程中不用加热,可以有效避免发光中心之热淬灭,具有灵敏度高,使用相对简单的优点。然而,光激发光剂量学因为缺少有对辐射敏感、光激发光效率高、有效原子数较小、及光衰退性能好之的发光材料,因此长期没有得到重视与发展。
蓝宝石(Al2O3)晶体具有优良的热激发旋光性能,目前Al2O3晶体的生长方法常使用的包括提拉法(Czochralski, Cz)与泡生法(Kyropoulos, KY)两种,其中KY法仅能生长纯的Al2O3晶体,但纯的Al2O3晶体对射线的热激发光灵敏度很低。为了改善Al2O3晶体的热激发旋光性能,于20世纪90年代,Landauer公司的M.S. Akselrod研究小组采用Cz法在有石墨存在的强还原气氛条件下,生长得到α-Al2O3:C晶体(M. S. Akselrod et. al. Highly sensitive thermoluminescent anion-defective 0t-Al2O3: C single crystal detectors, Radiation Protection Dosimetry, 1990, 32: 15-20)。经过一系列的研究表明,α-Al2O3:C晶体具有灵敏度高;热激发光峰单一且温度适中;背底与剂量阈值低;线性剂量响应范围宽;热激发光与光激发旋光性能衰减速度慢;低剂量下重复使用性能好;对辐射敏感;及光激发光效率高等诸多优点。因此α-Al2O3:C晶体是极具应用潜力的热激发光与光激发光材料。然而,目前α-Al2O3:C晶体的生长与剂量计的制造主要被美国Landauer公司所垄断,该公司研制生产的α-Al2O3:C热激发光与光激发光剂量计已经在欧美广泛使用,普遍应用于环境与个人剂量监测,但其采用Cz法长晶过程复杂,而导致碳在Al2O3晶体中分布不均匀,难以获得品质均一的α-Al2O3:C晶体;同时,晶体生长工艺还需要昂贵的设备、生产周期长且成本高。国内关于α-Al2O3:C晶体生长以及α-Al2O3:C剂量计的研制则有杨新波等人于文献(杨新波等人.硅酸盐学报,2008, 36(5):678-682.;杨新波等人.无机材料学报,2009, 24(2):255-258.)中提出采用导模法(Edge-defined Film-fed Growth, EFG)生长蓝宝石晶体,其过程中使用石墨加热体,导致生长得到的蓝宝石晶体表面附着有碳与碳化物,晶体质量较差。故,一般无法符合使用者于实际使用时所需。
发明内容
本发明的主要目的在于,克服已知技术所遭遇的上述问题,并提供一种可简易制得碳分布均匀的光激发光剂量检测晶体(C:Al2O3)的制备方法。
本发明的次要目的在于,提供一种具有光激发光剂量响应灵敏度高,且线性剂量响应范围宽等特性的检测晶体(C:Al2O3)结构。
为达以上目的,本发明所用的技术方案是:一种光激发光剂量检测晶体制备方法,该方法至少包含下列步骤:
(A)于一氧化铝(Al2O3)外面涂覆一层碳膜,以碳将氧化铝包覆形成碳包覆氧化铝结构;其中,碳膜选自石墨碳材、碳粉、碳纸或人造石墨粉中的一种或几种。
(B)将该碳包覆氧化铝结构置于一高温炉中,在抽真空无氧环境下,以1500℃-1900℃的加热处理进行扩散程序,使碳原子扩散进入氧化铝晶格内;其中,加热处理时间为10min-2hr。
(C)在大气下的开放式高温炉中,以1400℃-1800℃的加热处理进行退火程序,使氧化铝内部晶格氧与碳原子反应而形成氧空缺缺陷,以制成检测晶体C:Al2O3结构;其中,加热处理时间为10min-2hr。
如此,可简易制得碳分布均匀的检测晶体(C:Al2O3)结构,具有光激发光剂量响应灵敏度高,且线性剂量响应范围宽的特性。
附图说明
图1是本发明的制备流程示意图。
标号说明:
步骤(A)碳包覆氧化铝11      步骤(B)加热扩散12
步骤(C)加热退火13。
具体实施方式
请参阅图1所示,为本发明的制备流程示意图。如图所示:本发明为一种光激发光剂量检测晶体制备方法,其至少包含下列步骤:
(A)碳包覆氧化铝步骤11:于一氧化铝(Al2O3)外面涂覆一层碳膜(Carbon Film),以碳将氧化铝包覆形成碳包覆氧化铝结构,其中该碳膜选自石墨碳材、碳粉(C2 powder)、碳纸(C-paper)、或人造石墨粉中的一种或几种组合;
(B)加热扩散步骤12:将该碳包覆氧化铝结构置于一高温炉中,在抽真空无氧环境下进行扩散程序(Diffusion Process),以1500℃-1900℃加热处理10min-2hr,使碳原子扩散进入氧化铝晶格内;以及
(C)加热退火步骤13:接着在大气下的开放式高温炉中进行退火程序(Annealing Process),以1400℃-1800℃加热处理10min-2hr,使氧化铝内部晶格氧与碳原子反应而形成氧空缺(Oxygen Vacancy)缺陷,以制成检测晶体(C:Al2O3)结构。
如是,藉由上述揭露的流程构成一全新的光激发光剂量检测晶体制备方法。
藉此,本发明所提的光激发光剂量检测晶体制备方法,是先将氧化铝以碳包覆起来,在真空下经过扩散后,使碳原子扩散进入氧化铝晶格内,再于大气下进行退火,使氧与碳原子反应,透过C+O转换成CO,或C+O2转换成CO2,使氧化铝晶体产生氧空缺(Oxygen Vacancy)缺陷,而可简易制得碳分布均匀的检测晶体(C:Al2O3)结构,具有光激发光剂量响应灵敏度高,且线性剂量响应范围宽的特性。
综上所述,本发明为一种光激发光剂量检测晶体制备方法,可有效改善现有技术的种种缺点,是先将氧化铝以碳包覆起来,在真空下经过扩散后,使碳原子扩散进入氧化铝晶格内,再于大气下进行退火,使氧化铝晶格内的氧与碳原子反应而形成氧空缺(Oxygen Vacancy)缺陷,以制成检测晶体(C:Al2O3)结构,进而使本发明的产生能更进步、更实用、更符合使用者所须,确已符合发明专利申请的要件,依法提出专利申请。
惟以上所述,仅为本发明的较佳实施例而已,当不能以此限定本发明实施的范围。故,凡依本发明申请专利范围及发明说明书内容所作的简单的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。

Claims (4)

1.一种光激发光剂量检测晶体制备方法,其特征在于,该方法至少包含下列步骤:
(A)于一氧化铝(Al2O3)外面涂覆一层碳膜,以碳将氧化铝包覆形成碳包覆氧化铝结构;
(B)将该碳包覆氧化铝结构置于一高温炉中,在抽真空无氧环境下,以1500℃-1900℃的加热处理进行扩散程序,使碳原子扩散进入氧化铝晶格内;
(C)在大气下的开放式高温炉中,以1400℃-1800℃的加热处理进行退火程序,使氧化铝内部晶格氧与碳原子反应而形成氧空缺缺陷,以制成检测晶体C:Al2O3结构。
2.如权利要求1所述的光激发光剂量检测晶体制备方法,其特征在于,所述步骤(A)中的碳膜选自石墨碳材、碳粉、碳纸或人造石墨粉中的一种或几种。
3.如权利要求1所述的光激发光剂量检测晶体制备方法,其特征在于,所述步骤(B)中的加热处理时间为10min-2hr。
4.如权利要求1所述的光激发光剂量检测晶体制备方法,其特征在于,所述步骤(C)中的加热处理时间为10min-2hr。
CN201410806914.7A 2014-01-10 2014-12-23 光激发光剂量检测晶体制备方法 Active CN104775162B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103101106A TW201527739A (zh) 2014-01-10 2014-01-10 光激發光劑量檢測晶體製備方法
TW103101106 2014-01-10

Publications (2)

Publication Number Publication Date
CN104775162A true CN104775162A (zh) 2015-07-15
CN104775162B CN104775162B (zh) 2018-10-30

Family

ID=53521143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410806914.7A Active CN104775162B (zh) 2014-01-10 2014-12-23 光激发光剂量检测晶体制备方法

Country Status (3)

Country Link
US (1) US9322781B2 (zh)
CN (1) CN104775162B (zh)
TW (1) TW201527739A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE063258T2 (hu) * 2016-03-30 2024-01-28 Nikon Corp Alumínium-oxidot tartalmazó optikai komponens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035398A1 (en) * 1999-11-10 2001-05-17 Georgetown University Near-field crystal optical memory
CN101230484A (zh) * 2007-10-31 2008-07-30 中国科学院上海光学精密机械研究所 掺碳蓝宝石晶体的生长方法
CN101280458A (zh) * 2007-12-28 2008-10-08 中国科学院上海光学精密机械研究所 导模法生长掺碳蓝宝石晶体的方法
CN101533846A (zh) * 2009-04-03 2009-09-16 苏州纳米技术与纳米仿生研究所 用于辐射计量的光释光剂量元件及其制备方法
CN101560102A (zh) * 2009-05-26 2009-10-21 上海大学 C掺杂α-Al2O3透明陶瓷热释光和光释光材料的制备方法
CN103046137A (zh) * 2013-01-04 2013-04-17 中国科学院上海硅酸盐研究所 一种高强力学性能蓝宝石晶体及其制备方法
CN103094629A (zh) * 2011-11-01 2013-05-08 中国科学院上海硅酸盐研究所 一种提高beta-氧化铝固体电解质陶瓷表面钠润湿性的处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1451394B1 (en) * 2001-12-04 2008-08-13 Landauer, Inc. Aluminum oxide material for optical data storage
JP5413858B2 (ja) * 2009-04-01 2014-02-12 国立大学法人広島大学 アルミニウム酸化物蛍光体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035398A1 (en) * 1999-11-10 2001-05-17 Georgetown University Near-field crystal optical memory
CN101230484A (zh) * 2007-10-31 2008-07-30 中国科学院上海光学精密机械研究所 掺碳蓝宝石晶体的生长方法
CN101280458A (zh) * 2007-12-28 2008-10-08 中国科学院上海光学精密机械研究所 导模法生长掺碳蓝宝石晶体的方法
CN101533846A (zh) * 2009-04-03 2009-09-16 苏州纳米技术与纳米仿生研究所 用于辐射计量的光释光剂量元件及其制备方法
CN101560102A (zh) * 2009-05-26 2009-10-21 上海大学 C掺杂α-Al2O3透明陶瓷热释光和光释光材料的制备方法
CN103094629A (zh) * 2011-11-01 2013-05-08 中国科学院上海硅酸盐研究所 一种提高beta-氧化铝固体电解质陶瓷表面钠润湿性的处理方法
CN103046137A (zh) * 2013-01-04 2013-04-17 中国科学院上海硅酸盐研究所 一种高强力学性能蓝宝石晶体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.S. KULKARNI,ET AL.: "An alternative method of preparation of dosimetric grade α-Al2O3:C by vacuum-assisted post-growth thermal impurification technique", 《RADIATION MEASUREMENTS》 *

Also Published As

Publication number Publication date
CN104775162B (zh) 2018-10-30
TWI507673B (zh) 2015-11-11
TW201527739A (zh) 2015-07-16
US20150198530A1 (en) 2015-07-16
US9322781B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
Hu et al. X-ray scintillation in lead-free double perovskite crystals
RU2389835C2 (ru) Pr-СОДЕРЖАЩИЙ СЦИНТИЛЛЯЦИОННЫЙ МОНОКРИСТАЛЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ, ДЕТЕКТОР ИЗЛУЧЕНИЯ И УСТРОЙСТВО ОБСЛЕДОВАНИЯ
US8969812B2 (en) Garnet-type crystal for scintillator and radiation detector using the same
Higgins et al. Crystal growth of large diameter LaBr3: Ce and CeBr3
Kato et al. Development of BaF2 transparent ceramics and evaluation of the scintillation properties
CN107177885B (zh) 一种氧化镓单晶闪烁体的制备方法
Pan et al. Development of halide perovskite single crystal for radiation detection applications
CN102021651B (zh) 铈掺杂稀土硼酸盐闪烁晶体及其坩埚下降法制备方法
JP6058030B2 (ja) 結晶材料、放射線検出器、撮像装置、非破壊検査装置、および照明機器
Cooke et al. Intrinsic trapping sites in rare-earth and yttrium oxyorthosilicates
CN109851510A (zh) 一种钙钛矿晶体/量子点复合闪烁体及其制备方法和应用
CN107354509B (zh) 一种掺钇氟化钡晶体及其制备方法和应用
JP6078223B2 (ja) シンチレータ用ガーネット型単結晶およびこれを用いる放射線検出器
CN101560102B (zh) C掺杂α-Al2O3透明陶瓷热释光和光释光材料的制备方法
Donnald et al. The Effect of B $^{3+} $ and Ca $^{2+} $ Co-Doping on Factors Which Affect the Energy Resolution of Gd $ _ {{3}} $ Ga $ _ {{3}} $ Al $ _ {{2}} $ O $ _ {{12}} $: Ce
CN104775162A (zh) 光激发光剂量检测晶体制备方法
Mazhdi et al. The investigation of scintillation properties of gadolinium doped zinc oxide nanoparticles for nuclear radiation detection
CN101084329A (zh) 含Pr的闪烁体用单晶及其制造方法和放射线检测器以及检查装置
Kamada et al. 2-inch size crystal growth of Ce: Gd 3 Al 2 Ga 3 O 12 with various Ce concentration and their scintillation properties
CN105399334A (zh) 一种嵌有GdTaO4微晶相的闪烁微晶玻璃及其制备方法
Kurudirek et al. Development of ZnO nanorod-based scintillators grown under a low-temperature hydrothermal method for use in alpha-particle and thermal neutron detectors
Yanagida et al. Nd3+ Doped LiCaAIF6 Single Crystal for Scintillator Application
ZHONG et al. Spectroscopic properties of vacancies and trap levels in Lu3Al5O12: Ce3+ crystals
CN108192600B (zh) 一种Eu-Nd-Yb共掺杂铝酸锶高效宽谱量子剪裁发光材料
CN105154977B (zh) 高光产额钨酸铅(PbWO4)闪烁晶体的生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180813

Address after: 70, Lian Hai Road, Gushan District, Kaohsiung, Taiwan, China

Applicant after: Univ Nat Sun Yat Sen

Address before: Taiwan China Songshan Xinyi District Taipei City Road No. 439 3 floor

Applicant before: Zhou Mingqi

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant