CN104775162B - 光激发光剂量检测晶体制备方法 - Google Patents

光激发光剂量检测晶体制备方法 Download PDF

Info

Publication number
CN104775162B
CN104775162B CN201410806914.7A CN201410806914A CN104775162B CN 104775162 B CN104775162 B CN 104775162B CN 201410806914 A CN201410806914 A CN 201410806914A CN 104775162 B CN104775162 B CN 104775162B
Authority
CN
China
Prior art keywords
carbon
crystal
phot
aluminium oxide
luminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410806914.7A
Other languages
English (en)
Other versions
CN104775162A (zh
Inventor
周明奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Publication of CN104775162A publication Critical patent/CN104775162A/zh
Application granted granted Critical
Publication of CN104775162B publication Critical patent/CN104775162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • C09K11/655Aluminates; Silicates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种光激发光剂量检测晶体制备方法,该方法是先将氧化铝(Al2O3)以碳包覆起来,在真空下经过扩散(Diffusion)后,使碳原子扩散进入氧化铝晶格内,再于大气下进行退火(Annealing),使氧与碳原子反应,透过C+O转换成CO,或C+O2转换成CO2,使氧化铝晶体产生氧空缺(Oxygen Vacancy),而可简易制得碳分布均匀的检测晶体(C:Al2O3)结构,具有光激发光剂量响应灵敏度高,且线性剂量响应范围宽的特性。

Description

光激发光剂量检测晶体制备方法
技术领域
本发明有关于一种光激发光剂量检测晶体制备方法,尤指涉及一种光激发光剂学,特别是指以碳包覆氧化铝结构经过真空扩散与大气退火后,使氧化铝晶体产生氧空缺(Oxygen Vacancy)缺陷的检测晶体(C:Al2O3)结构的制备方法。
背景技术
材料的热激发光(Thermoluminescence, TL)与光激发光(Optically StimulatedLuminescence, OSL)特性,广泛应用于辐射剂量学(Radiation Dosimetry),作为环境与个人辐射剂量之的测定。其中热激发光是指材料在吸收辐射能之后的热释光,而光激发光是指材料在吸收辐射能之后的光释光。光激发光与热激发光相比,光激发光剂量计使用过程中不用加热,可以有效避免发光中心之热淬灭,具有灵敏度高,使用相对简单的优点。然而,光激发光剂量学因为缺少有对辐射敏感、光激发光效率高、有效原子数较小、及光衰退性能好之的发光材料,因此长期没有得到重视与发展。
蓝宝石(Al2O3)晶体具有优良的热激发旋光性能,目前Al2O3晶体的生长方法常使用的包括提拉法(Czochralski, Cz)与泡生法(Kyropoulos, KY)两种,其中KY法仅能生长纯的Al2O3晶体,但纯的Al2O3晶体对射线的热激发光灵敏度很低。为了改善Al2O3晶体的热激发旋光性能,于20世纪90年代,Landauer公司的M.S. Akselrod研究小组采用Cz法在有石墨存在的强还原气氛条件下,生长得到α-Al2O3:C晶体(M. S. Akselrod et. al. Highlysensitive thermoluminescent anion-defective 0t-Al2O3: C single crystaldetectors, Radiation Protection Dosimetry, 1990, 32: 15-20)。经过一系列的研究表明,α-Al2O3:C晶体具有灵敏度高;热激发光峰单一且温度适中;背底与剂量阈值低;线性剂量响应范围宽;热激发光与光激发旋光性能衰减速度慢;低剂量下重复使用性能好;对辐射敏感;及光激发光效率高等诸多优点。因此α-Al2O3:C晶体是极具应用潜力的热激发光与光激发光材料。然而,目前α-Al2O3:C晶体的生长与剂量计的制造主要被美国Landauer公司所垄断,该公司研制生产的α-Al2O3:C热激发光与光激发光剂量计已经在欧美广泛使用,普遍应用于环境与个人剂量监测,但其采用Cz法长晶过程复杂,而导致碳在Al2O3晶体中分布不均匀,难以获得品质均一的α-Al2O3:C晶体;同时,晶体生长工艺还需要昂贵的设备、生产周期长且成本高。国内关于α-Al2O3:C晶体生长以及α-Al2O3:C剂量计的研制则有杨新波等人于文献(杨新波等人.硅酸盐学报,2008, 36(5):678-682.;杨新波等人.无机材料学报,2009, 24(2):255-258.)中提出采用导模法(Edge-defined Film-fed Growth, EFG)生长蓝宝石晶体,其过程中使用石墨加热体,导致生长得到的蓝宝石晶体表面附着有碳与碳化物,晶体质量较差。故,一般无法符合使用者于实际使用时所需。
发明内容
本发明的主要目的在于,克服已知技术所遭遇的上述问题,并提供一种可简易制得碳分布均匀的光激发光剂量检测晶体(C:Al2O3)的制备方法。
本发明的次要目的在于,提供一种具有光激发光剂量响应灵敏度高,且线性剂量响应范围宽等特性的检测晶体(C:Al2O3)结构。
为达以上目的,本发明所用的技术方案是:一种光激发光剂量检测晶体制备方法,该方法至少包含下列步骤:
(A)于一氧化铝(Al2O3)外面涂覆一层碳膜,以碳将氧化铝包覆形成碳包覆氧化铝结构;其中,碳膜选自石墨碳材、碳粉、碳纸或人造石墨粉中的一种或几种。
(B)将该碳包覆氧化铝结构置于一高温炉中,在抽真空无氧环境下,以1500℃-1900℃的加热处理进行扩散程序,使碳原子扩散进入氧化铝晶格内;其中,加热处理时间为10min-2hr。
(C)在大气下的开放式高温炉中,以1400℃-1800℃的加热处理进行退火程序,使氧化铝内部晶格氧与碳原子反应而形成氧空缺缺陷,以制成检测晶体C:Al2O3结构;其中,加热处理时间为10min-2hr。
如此,可简易制得碳分布均匀的检测晶体(C:Al2O3)结构,具有光激发光剂量响应灵敏度高,且线性剂量响应范围宽的特性。
附图说明
图1是本发明的制备流程示意图。
标号说明:
步骤(A)碳包覆氧化铝11 步骤(B)加热扩散12
步骤(C)加热退火13。
具体实施方式
请参阅图1所示,为本发明的制备流程示意图。如图所示:本发明为一种光激发光剂量检测晶体制备方法,其至少包含下列步骤:
(A)碳包覆氧化铝步骤11:于一氧化铝(Al2O3)外面涂覆一层碳膜(Carbon Film),以碳将氧化铝包覆形成碳包覆氧化铝结构,其中该碳膜选自石墨碳材、碳粉(C2 powder)、碳纸(C-paper)、或人造石墨粉中的一种或几种组合;
(B)加热扩散步骤12:将该碳包覆氧化铝结构置于一高温炉中,在抽真空无氧环境下进行扩散程序(Diffusion Process),以1500℃-1900℃加热处理10min-2hr,使碳原子扩散进入氧化铝晶格内;以及
(C)加热退火步骤13:接着在大气下的开放式高温炉中进行退火程序(AnnealingProcess),以1400℃-1800℃加热处理10min-2hr,使氧化铝内部晶格氧与碳原子反应而形成氧空缺(Oxygen Vacancy)缺陷,以制成检测晶体(C:Al2O3)结构。
如是,藉由上述揭露的流程构成一全新的光激发光剂量检测晶体制备方法。
藉此,本发明所提的光激发光剂量检测晶体制备方法,是先将氧化铝以碳包覆起来,在真空下经过扩散后,使碳原子扩散进入氧化铝晶格内,再于大气下进行退火,使氧与碳原子反应,透过C+O转换成CO,或C+O2转换成CO2,使氧化铝晶体产生氧空缺(OxygenVacancy)缺陷,而可简易制得碳分布均匀的检测晶体(C:Al2O3)结构,具有光激发光剂量响应灵敏度高,且线性剂量响应范围宽的特性。
综上所述,本发明为一种光激发光剂量检测晶体制备方法,可有效改善现有技术的种种缺点,是先将氧化铝以碳包覆起来,在真空下经过扩散后,使碳原子扩散进入氧化铝晶格内,再于大气下进行退火,使氧化铝晶格内的氧与碳原子反应而形成氧空缺(OxygenVacancy)缺陷,以制成检测晶体(C:Al2O3)结构,进而使本发明的产生能更进步、更实用、更符合使用者所须,确已符合发明专利申请的要件,依法提出专利申请。
惟以上所述,仅为本发明的较佳实施例而已,当不能以此限定本发明实施的范围。故,凡依本发明申请专利范围及发明说明书内容所作的简单的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。

Claims (3)

1.一种光激发光剂量检测晶体制备方法,其特征在于,该方法至少包含下列步骤:
(A)于一氧化铝外面涂覆一层碳膜,以碳将氧化铝包覆形成碳包覆氧化铝结构;其中,碳膜选自碳粉、碳纸或人造石墨粉中的一种或几种;
(B)将该碳包覆氧化铝结构置于一高温炉中,在抽真空无氧环境下,以1500℃-1900℃的加热处理进行扩散程序,使碳原子扩散进入氧化铝晶格内;
(C)在大气下的开放式高温炉中,以1400℃-1800℃的加热处理进行退火程序,使氧化铝内部晶格氧与碳原子反应而形成氧空缺缺陷,以制成检测晶体C:Al2O3结构。
2.如权利要求1所述的光激发光剂量检测晶体制备方法,其特征在于,所述步骤(B)中的加热处理时间为10min-2h。
3.如权利要求1所述的光激发光剂量检测晶体制备方法,其特征在于,所述步骤(C)中的加热处理时间为10min-2h。
CN201410806914.7A 2014-01-10 2014-12-23 光激发光剂量检测晶体制备方法 Active CN104775162B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103101106 2014-01-10
TW103101106A TW201527739A (zh) 2014-01-10 2014-01-10 光激發光劑量檢測晶體製備方法

Publications (2)

Publication Number Publication Date
CN104775162A CN104775162A (zh) 2015-07-15
CN104775162B true CN104775162B (zh) 2018-10-30

Family

ID=53521143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410806914.7A Active CN104775162B (zh) 2014-01-10 2014-12-23 光激发光剂量检测晶体制备方法

Country Status (3)

Country Link
US (1) US9322781B2 (zh)
CN (1) CN104775162B (zh)
TW (1) TW201527739A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168643A1 (ja) * 2016-03-30 2017-10-05 株式会社ニコン 酸化アルミニウム、酸化アルミニウムの製造方法、および光学部品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035398A1 (en) * 1999-11-10 2001-05-17 Georgetown University Near-field crystal optical memory
CN101230484A (zh) * 2007-10-31 2008-07-30 中国科学院上海光学精密机械研究所 掺碳蓝宝石晶体的生长方法
CN101280458A (zh) * 2007-12-28 2008-10-08 中国科学院上海光学精密机械研究所 导模法生长掺碳蓝宝石晶体的方法
CN101533846A (zh) * 2009-04-03 2009-09-16 苏州纳米技术与纳米仿生研究所 用于辐射计量的光释光剂量元件及其制备方法
CN101560102A (zh) * 2009-05-26 2009-10-21 上海大学 C掺杂α-Al2O3透明陶瓷热释光和光释光材料的制备方法
CN103046137A (zh) * 2013-01-04 2013-04-17 中国科学院上海硅酸盐研究所 一种高强力学性能蓝宝石晶体及其制备方法
CN103094629A (zh) * 2011-11-01 2013-05-08 中国科学院上海硅酸盐研究所 一种提高beta-氧化铝固体电解质陶瓷表面钠润湿性的处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846434B2 (en) * 2001-12-04 2005-01-25 Landauer, Inc. Aluminum oxide material for optical data storage
WO2010114002A1 (ja) * 2009-04-01 2010-10-07 国立大学法人 広島大学 アルミニウム酸化物蛍光体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035398A1 (en) * 1999-11-10 2001-05-17 Georgetown University Near-field crystal optical memory
CN101230484A (zh) * 2007-10-31 2008-07-30 中国科学院上海光学精密机械研究所 掺碳蓝宝石晶体的生长方法
CN101280458A (zh) * 2007-12-28 2008-10-08 中国科学院上海光学精密机械研究所 导模法生长掺碳蓝宝石晶体的方法
CN101533846A (zh) * 2009-04-03 2009-09-16 苏州纳米技术与纳米仿生研究所 用于辐射计量的光释光剂量元件及其制备方法
CN101560102A (zh) * 2009-05-26 2009-10-21 上海大学 C掺杂α-Al2O3透明陶瓷热释光和光释光材料的制备方法
CN103094629A (zh) * 2011-11-01 2013-05-08 中国科学院上海硅酸盐研究所 一种提高beta-氧化铝固体电解质陶瓷表面钠润湿性的处理方法
CN103046137A (zh) * 2013-01-04 2013-04-17 中国科学院上海硅酸盐研究所 一种高强力学性能蓝宝石晶体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
An alternative method of preparation of dosimetric grade α-Al2O3:C by vacuum-assisted post-growth thermal impurification technique;M.S. Kulkarni,et al.;《Radiation Measurements》;20050630;第39卷;277-282 *

Also Published As

Publication number Publication date
TW201527739A (zh) 2015-07-16
US20150198530A1 (en) 2015-07-16
CN104775162A (zh) 2015-07-15
US9322781B2 (en) 2016-04-26
TWI507673B (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
Singh et al. Synthesis and characterization of thermoluminescent Li2B4O7 nanophosphor
CN111989595B (zh) 基于钙钛矿的纳米闪烁体
Mesterházy et al. Accidental and retrospective dosimetry using TL method
Pan et al. Development of halide perovskite single crystal for radiation detection applications
Aydın et al. TL/OSL studies of Li2B4O7: Cu dosimetric phosphors
Rivera et al. Preparation of CaSO4: Dy by precipitation method to gamma radiation dosimetry
CN107177885B (zh) 一种氧化镓单晶闪烁体的制备方法
Pal et al. Thermoluminescence properties of ZnO and ZnO: Yb nanophosphors
Jingyuan et al. Optically stimulated luminescence (OSL) of LiMgPO4: Tm, Tb phosphor
Sahani et al. A comprehensive review on zinc oxide bulk and nano-structured materials for ionizing radiation detection and measurement applications
Shoushtari et al. Preparation and thermoluminescent dosimetry features of high sensitivity LiF: Mg, Ce phosphor
Ekdal et al. Thermoluminescence characteristics of Li2B4O7 single crystal dosimeters doped with Mn
CN104775162B (zh) 光激发光剂量检测晶体制备方法
Oza et al. Synthesis and thermoluminescence characterizations of Sr2B5O9Cl: Dy3+ phosphor for TL dosimetry
CN107354509A (zh) 一种掺钇氟化钡晶体及其制备方法和应用
Kulkarni et al. Carbon doped yttrium aluminum garnet (YAG: C)—A new phosphor for radiation dosimetry
Trinkler et al. Thermoluminescence properties of AlN ceramics
Kortov et al. Luminescent and dosimetric properties of nanostructured ceramics based on aluminum oxide
Pérez Salas et al. Nonthermoluminescent dosimetry based on the afterglow response of europium‐doped alkali halides
Nattudurai et al. Thermoluminescence characteristics of biological tissue equivalent single crystal: europium doped lithium tetraborate for dosimetry applications
Roomi et al. Development of a new rare-earth (Dy3+)-based thermoluminescent dosimeter
Kortov et al. Specific features of luminescence of radiation-colored α-Al2O3 single crystals
Leong et al. Thermoluminescence characteristics of aluminium oxide doped with carbon and titanium co-doped subjected to 6 and 10 MV photon irradiations
Bharthasaradhi et al. Thermoluminescence property of nano scale Al2O3: C by combustion method
Appleby et al. Optimisation of lithium borate–barium chloride glass-ceramic thermal neutron imaging plates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180813

Address after: 70, Lian Hai Road, Gushan District, Kaohsiung, Taiwan, China

Applicant after: Univ Nat Sun Yat Sen

Address before: Taiwan China Songshan Xinyi District Taipei City Road No. 439 3 floor

Applicant before: Zhou Mingqi

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant