CN104769473A - 光纤带 - Google Patents

光纤带 Download PDF

Info

Publication number
CN104769473A
CN104769473A CN201380057800.0A CN201380057800A CN104769473A CN 104769473 A CN104769473 A CN 104769473A CN 201380057800 A CN201380057800 A CN 201380057800A CN 104769473 A CN104769473 A CN 104769473A
Authority
CN
China
Prior art keywords
clad
optical fiber
unified
fibre ribbon
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380057800.0A
Other languages
English (en)
Other versions
CN104769473B (zh
Inventor
田中广树
斋藤稔
渡边广大
伊藤博昭
石井幸夫
新子谷悦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of CN104769473A publication Critical patent/CN104769473A/zh
Application granted granted Critical
Publication of CN104769473B publication Critical patent/CN104769473B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure

Abstract

根据本发明的光纤带包含统一包覆层,所述统一包覆层包含含有非晶质PPG和非晶质单体的紫外线固化性树脂,且所述统一包覆层形成在包覆光纤的周围。所述统一包覆层具有12MPa至20MPa且含两端点的平衡弹性模量、5%至9%且含两端点的屈服点伸长率,且在统一包覆层与包覆光纤的最外层之间的粘附力12N/cm至15N/cm且含两端点。

Description

光纤带
技术领域
本发明涉及光纤,特别地涉及其中将多根包覆光纤以带的形式一体化而成的光纤带。
背景技术
随着在互联网和企业网络中对高速通讯的需求,光纤电缆的使用已经快速扩大。
光纤由石英玻璃制成,因此非常容易受外部力和外部环境的影响。为此,保护性包覆层通常包覆在光纤的周围以保护光纤免受外部力和外部环境的影响。将这样包覆有保护性包覆层的光纤称为包覆光纤。然后,以将多根光纤进行排列且将紫外线固化性树脂包覆在包覆光纤的周围的方式,形成带形式的光纤带。
这样形成的光纤带的安装需要通过将保护性包覆层从光纤带分离从而将包覆光纤取出的作业。保护性包覆层从光纤带的分离性对处理光纤带的作业效率具有大的影响。为此,迄今为止一直采用的一种方法是通过使用单芯分离性作为表示保护性包覆层可以有多容易从包覆光纤分离的指标来评价光纤带(例如,参见专利文献1)。光纤带的单芯分离性由带材料与包覆光纤的最外层之间的粘附力决定。如果单芯分离性过好,换而言之,粘附力过弱,则当浸泡在水中时带材料层与最外层可能会彼此分离。这种分离可增加光纤的传输损失。另一方面,如果单芯分离性过差,换而言之,粘附力过强,则安装操作需要长的时间用于单芯分离作业,因此作业效率降低。
随着用于光纤的保护性包覆层的材料开发一直发展,其材料特性已经得到改进。伴随着这一改进,对带材料特性改进的需求已经变得越来越强烈。就这一点而言,光纤带的单芯分离性主要取决于在光纤带中使用的带材料的特性。通常用作光纤带用带材料的紫外线固化型聚氨酯丙烯酸酯树脂含有具有长链部分的多元醇成分作为骨架成分。通过这种多元醇成分与异氰酸酯成分、含有具有不饱和双键的羟基丙烯酸酯的反应性低聚物、同样具有不饱和双键的反应性多官能和/或反应性单官能丙烯酸酯单体、乙烯基单体、光聚合引发剂和两种以上的添加剂反应,从而构成带材料。随着用紫外线对这样构成的带材料进行照射,光聚合引发剂产生自由基且低聚物和单体的不饱和双键进行交联。作为低聚物的多元醇成分,可以列举聚丙二醇、环氧乙烷-氧化丁二烯共聚物和聚四亚甲基二醇。其中,聚四亚甲基二醇(下文中,简写为“PTMG”)具有高耐热性,且机械强度、伸长特性和韧性也优异。因此,PTMG被广泛用作带材料。
现有技术文献
专利文献
专利文献1:日本专利特许4630210号公报
发明内容
技术问题
然而,PTMG具有在20℃附近的熔点,且具有直链分子结构。因此,PTMG的问题在于在低温下PTMG比其他聚醚更容易结晶。因此,在温度等于或低于熔点的环境中储存期间PTMG会结晶。因此,在拉延操作(drawing operation)和统一包覆操作中,需要将带包覆树脂加热到等于或超过熔点的温度一次并将其融化。这显著地降低作业性。
另外,PTMG不参与紫外线固化反应。在含有未反应的PTMG的统一包覆层的情况下,即使在用紫外线照射形成固化的包覆层之后,所述PTMG在固化的包覆层中仍保持未反应。如果将其中一定或更大量的结晶物质如PTMG残留在包覆层中的光纤长时间暴露在低温环境下,则结晶物质可能会在包覆层中结晶并析出。这可能会显著地增加光纤的传输损失。
通过设置有侧链,可以使PTMG低聚物不易于凝集或结晶,但仍然不能完全避免结晶化。为了解决该问题,可以将非晶质聚丙二醇(下文中,PPG)等用作代替PTMG的低聚物。这一组成可以在使用环境中抑制单体的结晶化。然而,PPG的机械特性和韧性比PTMG差,因此问题在于,例如在单芯分离操作中带材料倾向于易于断裂。此外,一些单体诸如丙烯酸十二烷基酯(熔点:-8℃)或乙烯基己内酰胺(熔点:35℃)例如在使用环境的温度下可能会结晶化。通常,将具有高交联密度的着色剂布置在带层之下,且阻挡结晶成分向光纤内部的转移。然而,对于单体的结晶化对光纤的传输特性的影响仍然有担忧。因此,通过使用诸如非晶质PPG的材料,已经难以提供如下的光纤带:具有用于提高作业效率的良好的单芯分离性,且满足用于避免发生层间分离的耐水性。
鉴于前述问题而作出了本发明,本发明的目的是提供光纤带,其中通过采用非晶质PPG和非晶质单体来制造带材料,从而可靠地避免了在使用环境下的结晶化,且其中对带材料的诸特性进行调整从而对在PPG中不足的韧性进行控制,从而使所述光纤带能够实现与PTMG相当的单芯分离性和抑制层间分离的耐水性。
技术方案
为了提高作为PPG问题的韧性而对单芯分离的机理进行研究,作为结果,将注意力集中在剥离材料过程中带材料的弹性变形内的屈服点和粘附力上。对它们的深入研究导致如下发现:如果在对带材料在屈服点处的应力下的伸长长度、平衡弹性模量和粘附力进行控制的同时形成带材料,则在单芯分离过程中该带材料可以被分离而不发生断裂。另外,关于水浸泡的问题,发现耐水性是良好的。
为了实现前述目的,根据本发明的光纤带包含含有紫外线固化性树脂的统一包覆层,所述紫外线固化性树脂含有非晶质PPG和非晶质单体,所述统一包覆层在包覆光纤的周围形成。该统一包覆层具有12MPa至20MPa且含两端点的平衡弹性模量、5%至9%且含两端点的屈服点伸长率,且在统一包覆层与包覆光纤的最外层之间的粘附力为12N/cm至15N/cm且含两端点。
另外,在本发明的光纤带中,PPG优选具有500~10000的数均分子量。此外,在本发明的光纤带中,通过调整PPG的数均分子量可以对统一包覆层的平衡弹性模量、屈服点伸长率和粘附力进行优化。另外,在本发明的光纤带中,紫外线固化性树脂可以还含有非晶质单官能单体和/或多官能单体作为添加剂。另外,在本发明的光纤带中,通过调整在单官能单体和/或多官能单体中的官能团的比率可以对统一包覆层的平衡弹性模量、屈服点伸长率和粘附力进行优化。
有益效果
根据本发明,将非晶质PPG用于含有紫外线固化性树脂的统一包覆层,且对PPG的分子量和在紫外线固化性树脂中含有的非晶质单体中的官能团的比率进行调整。这使光纤带能够提供良好的作业性,利用该作业性,在光纤带的单芯分离过程中所述带材料将不会断裂。另外,即使在热水中浸泡的环境中,所述光纤带也能实现良好的耐水性而不导致层间分离。此外,在使用环境下可以完全地抑制带材料的结晶化。
附图说明
图1为根据本发明实施方式的光纤带的横截面图。
图2为根据本发明实施方式的着色包覆光纤的横截面图。
图3为显示用于制造根据本发明实施方式的光纤带的统一包覆层的平衡弹性模量和玻璃化转变温度的测定结果的实例的图。
图4为说明用于制造根据本发明实施方式的光纤带的统一包覆层与着色层之间粘附力的测定用试样的示意图。
图5为说明用于制造根据本发明实施方式的光纤带的统一包覆层与着色层之间粘附力的测定用方法的示意图。
具体实施方式
下文中,将会参照附图对本发明的实施方式进行说明。应该注意,本发明不限于以下实施方式。另外,在下面所述的附图中,具有相同功能的要素由相同标号表示,且可以省略其重复说明的一些部分。
图1为根据本发明实施方式的着色包覆光纤10的横截面图。着色包覆光纤10包含玻璃光纤101、初生层103、第二层105和着色层107。玻璃光纤101由石英玻璃制成,初生层103和第二层105依次在玻璃光纤101的周围形成。初生层103和第二层105各自由紫外线固化性树脂制成。在第二层105的周围形成着色层107。着色层107由环氧丙烯酸酯基树脂制成。这些紫外线固化性树脂各自含有低聚物、作为稀释剂的单体、光引发剂、链转移剂和添加剂。随着将这些组分材料变更为不同的组分材料,可以获得多种光纤。玻璃光纤101、初生层103和第二层105优选分别具有125μm、185μm或195μm、以及245μm的外径,且着色包覆光纤10具有255μm的外径。
图2为根据本发明实施方式的光纤带20的横截面图。光纤带20包含四根着色包覆光纤10和统一包覆层201。具体地,将所述四根着色包覆光纤10并排排列,且用统一包覆层201对这些着色包覆光纤10进行包覆。统一包覆层201由以紫外线固化性树脂制成的带树脂形成。在此,着色包覆光纤10的数目不限于四,而是可以为诸如8或12的任意数字。在本实施方式中,包覆光纤20优选具有0.30mm的厚度。
将聚丙二醇(PPG)用作在统一包覆层201中使用的低聚物的多元醇成分。由于PPG是非晶质的,所以可以完全地避免常规使用的聚四亚甲基二醇(PTMG)的问题,即由于PTMG在低温环境下的结晶化而导致的光纤传输损失的显著增加。PPG的数均分子量优选为500~10000,更优选为1000~8000,且特别优选为2000~4000。
作为在统一包覆层201中使用的低聚物的多元醇成分,PPG具有如下分子结构:其两端均设置有作为异氰酸酯的聚醚型氨基甲酸酯基低聚物。聚醚型氨基甲酸酯基低聚物由经由甲苯二异氰酸酯、异佛尔酮二异氰酸酯等键合所得的具有烯键式不饱和基团的羟基丙烯酸酯构成。
在统一包覆层201中使用的由此构成的低聚物进一步与作为反应稀释剂的具有不饱和双键的反应性多官能和/或反应性单官能丙烯酸酯单体或乙烯基单体,光聚合引发剂和各种添加剂进行合成。作为合成的结果,作为紫外线固化性树脂形成统一包覆层201。
通过对用作统一包覆层201的骨架成分的多元醇材料和材料的分子量进行选择,以及通过对在统一包覆层201的制造过程中要添加的单体材料和材料的添加量进行选择,可以根据需要对统一包覆层201的材料特性进行调整。例如,降低在本实施方式中使用的PPG分子量或增加在合成用的单体中的官能团可以引起统一包覆层201的杨氏模量、玻璃化转变温度和平衡弹性模量的提高。相反地,增加在本实施方式中使用的PPG分子量或减少在合成用的单体中的官能团可以引起统一包覆层201的杨氏模量、玻璃化转变温度和平衡弹性模量的减小。
作为在统一包覆层201的制造过程中要添加的单体,单官能单体的实例包括:PO改性的壬基酚丙烯酸酯、丙烯酸异冰片酯、丙烯酸2-乙基己酯、丙烯酸异壬酯、丙烯酸异癸酯、丙烯酸聚乙二醇酯、N-乙烯基吡咯烷酮、N-乙烯基己内酰胺等。此外,双官能单体和多官能单体的实例包括:1,6-己烷二丙烯酸酯、双酚A环氧丙烯酸酯、二丙烯酸三丙二醇酯、二羟甲基三环癸烷二丙烯酸酯等。在此,单官能单体比双官能单体和多官能单体产生更大的降低平衡弹性模量的效果。这是因为单官能单体比双官能单体和多官能单体表现得更显著地降低统一包覆层201的分子结构中交联点的数量。
在本实施方式中,通过调整PPG的分子量和作为添加剂的单体,对统一包覆层201的平衡弹性模量和屈服点伸长率、以及在统一包覆层201与着色层107之间的粘附力进行优化。该优化使得可以实现与常规使用的PTMG相当的良好单芯分离性,以及在光纤带20的处理中可确保优异的作业性而没有层间分离。特别地,根据本实施方式,通过选择非晶质材料作为要添加的单体以及进一步通过增加在单体中的官能团的比率可以改进作为带材料的统一包覆层201的伸长和韧性特性。
下文中,提供了根据本发明实施方式的光纤带20的材料特性的测定方法以及测定结果的说明。作为用于测定的试样,制造了以分别由不同材料制成的四种着色层(C1、C2、C3和C4)包覆的四种着色包覆光纤10。该变更的目的是为了确认在统一包覆层201与着色层107之间的界面处的特性是否取决于着色层107的材料。将这样制造的各种的四根着色包覆光纤10并排排列。其后,用含有PPG的统一包覆层201对这样排列的着色包覆光纤10进行包覆从而制造四种光纤带20中的每一种。
首先,对统一包覆层201的平衡弹性模量和玻璃化转变温度进行测定。图3为显示用于制造根据本发明实施方式的光纤带20的统一包覆层201的平衡弹性模量和玻璃化转变温度的测定结果的实例的图。通过用单刃工具沿统一包覆层201的纵向对其进行切片形成了在测定中使用的试样。使用由TA仪器公司出售的RSA3在动态力学分析(DMA)中对玻璃化转变温度Tg进行了测定。在该测定中,将玻璃化转变温度Tg定义为作为测定值的tanδ达到其最大值处的温度。另外,使用与在玻璃化转变温度的测定中所用的试样相同的试样在拉伸试验中对平衡弹性模量进行了测定。将测定条件设定为标距为20mm、频率为1Hz且升温速率为3℃/分钟。在-100℃~200℃的温度范围内对平衡弹性模量进行测定,将在该温度范围内的最低测定值确定为平衡弹性模量。
接下来,通过使用与在图3中说明的平衡弹性模量和玻璃化转变温度的测定中所用相同的切片试样,对统一包覆层201的拉伸杨氏模量进行测定。所述测定使用了万能拉伸试验机。在该测定方法中,首先使试样的一端结合到铝板,通过试验机将铝板夹住,然后在25mm的标距和1mm/分钟的拉伸速度下使试样延伸。然后,当将试样伸长了2.5%时对施加的应力进行测定,且基于应力值和伸长长度对拉伸杨氏模量进行计算。所述测定在温度为23℃、湿度为55%RH的环境下进行。
此外,通过使用与在拉伸杨氏模量的测定中所用相同的切片试样对统一包覆层201的屈服点伸长率进行测定。该测定也使用了如在拉伸杨氏模量的测定中的万能拉伸试验机。在该测定方法中,首先将试样的一端结合到铝板,通过试验机将铝板夹住,然后在25mm的标距和50mm/分钟的拉伸速度下使试样延伸。然后,当施加到试样的应力达到将试样从弹性变形状态转变为塑性变形状态的屈服点时,对试样的伸长长度进行测定。然后,将测定的伸长长度确定为屈服点伸长率。
随后,对统一包覆层201与着色层107之间的粘附力进行测定。图4为说明用于制造根据本发明实施方式的光纤带20的统一包覆层201与着色层107之间的粘附力的测定用试样40的示意图。如图4中所示,试样40包含四根着色包覆光纤401、402、403和404以及一部分统一包覆层410。
对于制造图4中所示的试样40的步骤的实例提供如下说明。首先,在具有300mm长度的光纤带20中,将具有10mm长度的一部分统一包覆层410保留而将其余的统一包覆层完全去除。接下来,在露出的四根着色包覆光纤401~404中,将第三根着色包覆光纤403拉出。结果,如在图4中所示,制造了其中仅第三根着色包覆光纤403被从光纤带20的一端拉出的试样。
使用如图4中所示的试样,对统一包覆层201与着色层107之间的粘附力进行测定。图5为说明用于制造根据本发明实施方式的光纤带20的统一包覆层201与着色层107之间粘附力的测定方法的示意图。在如图4中所示的试样的一端,将第三根着色包覆光纤403拉出,通过拉伸试验机的下部夹盘501将拉出的着色包覆光纤403夹住。同时,在试样的另一端,通过拉伸试验机的上部夹盘503将三根着色包覆光纤401、402和404一起夹住。然后,使拉伸试验机的下部夹盘501向下方移动从而将第三根着色包覆光纤403从所述一部分统一包覆层410完全拉出。将用于拉出的下部夹盘501的拉伸速度设定为10mm/分钟。在该过程中,通过安装在上部夹盘503之上的负荷传感器(load cell)505对在将第三根着色包覆光纤403从所述一部分统一包覆层410拉出时产生的力进行测定。用通过负荷传感器505测定的力的最大值除以第三根着色包覆光纤403的拉出部分的长度来计算出值,且将这样计算出的值确定为统一包覆层201与着色层107之间的粘附力。
然后,对如在图2中所示那样制造的光纤带20的单芯分离性进行评价。单芯分离性是在安装中对作业性有大的影响的特性。为此,进行了基于实际安装操作的感官试验。具体地,在第二根着色包覆光纤402与第三根着色包覆光纤403间插入钉子的情况下,将光纤带20沿其纵向方向撕开。结果,将光纤带20分为两个单元,即第一根和第二根着色包覆光纤401和402的单元,以及第三根和第四根着色包覆光纤403和404的单元。最后,将单芯的着色包覆光纤取出。对于各种试样,将上述操作重复10次。在该过程中,将如下试样评价为满足所需单芯分离性的试样:其中,各着色包覆光纤均被分离,而没有在作为两端处的光纤的着色包覆光纤401和着色包覆光纤404的各自周围的统一包覆层201的断裂。另一方面,将如下试样评价为不满足所需单芯分离性的试样:其中即使在十次试验的一次中,统一包覆层201断裂因而残留在着色包覆光纤401或着色包覆光纤404的周围。
接下来,通过使用如在图2中所示那样制造的光纤带20对光纤带20的耐水性进行测定。以如下方式对光纤带20的耐水性进行测定:将具有1km长度的光纤带20浸泡在60℃的热水中,并对浸泡后的传输损失进行测定。通过利用由日本安立公司制造的光时域反射计MW9076对光反向散射损耗系数(OTDR)进行评价而进行传输损失的测定。将传输信号的波长设定为1.55μm。在该测定方法中,对浸泡前光纤带20的传输损失进行测定,然后在60℃的热水中浸泡60天后以相同的方式对其传输损失进行测定,对浸泡前后的传输损失进行比较用于评价。在此,当光纤带20的传输损失增加了0.05dB/km以上时,将该光纤带20确定为在统一包覆层201与着色层107之间具有层间分离。因此,将该测定后传输损失增加了0.05dB/km以上的光纤带20评价为不满足使用环境下的耐水性。
对上述8种试样进行了上述测定。表1示出这些试样的测定结果。
由表1中示出的实验结果可以理解,基于屈服点伸长率和韧性特性,其中对PPG和作为添加剂的单体的分子量进行调整的本发明的统一包覆层201在运行作业中实现带材料的高耐破损性。
实施例1具有比比较例1更低的平衡弹性模量、更大的屈服点伸长率、更低的玻璃化转变温度和更低的粘附力,从而实现了单芯分离性和热水特性两者。
实施例2具有比比较例2更低的平衡弹性模量、更大的屈服点伸长率和更低的玻璃化转变温度,从而实现了单芯分离性和热水特性两者。
实施例3具有比比较例3更低的平衡弹性模量、更大的屈服点伸长率、更低的玻璃化转变温度和更低的粘附力,从而实现了单芯分离性和热水特性两者。
实施例4具有比比较例4更低的平衡弹性模量、更大的屈服点伸长率、更低的玻璃化转变温度和更低的粘附力,从而实现了单芯分离性和热水特性两者。
另外,从表1中示出的对于单芯分离性的评价和对于热水浸泡的评价的结果可以确定,即使使用任意种类的着色剂,在表1中示出的含有PPG的本发明统一包覆层201均可以实现良好的单芯分离性和耐水性两者。换言之,通过使用非晶质PPG和作为添加剂的非晶质单体可以抑制结晶化,且通过调整PPG的分子量和在非晶质单体中官能团的比率可以对着色层107与统一包覆层201之间的粘附力进行优化。
根据本实施方式,可以提供同时实现在使用环境下具有小传输损失的良好传输特性和在安装中具有良好作业性的光纤带。在常规光纤带中,对于因在低温环境下未反应部分而导致带材料的结晶化存在担忧。另外,由于在与包覆光纤的界面处的层间分离,还存在传输损失显著增加的担忧。相反,在本实施方式的光纤带中,将非晶质PPG用于带材料可以完全地抑制带材料的结晶化,因此可以实现良好的单芯分离性和作业性两者。此外,根据本实施方式,PPG的分子量和在非晶质单体中官能团比率的调整使光纤带能够实现与常规光纤带相当的特性。

Claims (2)

1.一种光纤带,包含:
多根包覆光纤;和
含有紫外线固化性树脂的统一包覆层,所述紫外线固化性树脂含有低聚物形式的非晶质聚丙二醇,所述统一包覆层在所述包覆光纤的周围形成,其中
所述统一包覆层具有12MPa至20MPa且含两端点的平衡弹性模量和5%至9%且含两端点的屈服点伸长率,且
在所述统一包覆层与所述包覆光纤的最外层之间的粘附力为12N/cm至15N/cm且含两端点。
2.一种光纤电缆,包含根据权利要求1所述的光纤带。
CN201380057800.0A 2012-11-05 2013-10-29 光纤带芯线 Expired - Fee Related CN104769473B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-243613 2012-11-05
JP2012243613A JP6067332B2 (ja) 2012-11-05 2012-11-05 光ファイバテープ心線
PCT/JP2013/006388 WO2014068955A1 (ja) 2012-11-05 2013-10-29 光ファイバテープ心線

Publications (2)

Publication Number Publication Date
CN104769473A true CN104769473A (zh) 2015-07-08
CN104769473B CN104769473B (zh) 2018-07-03

Family

ID=50626904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380057800.0A Expired - Fee Related CN104769473B (zh) 2012-11-05 2013-10-29 光纤带芯线

Country Status (5)

Country Link
US (1) US9411115B2 (zh)
JP (1) JP6067332B2 (zh)
CN (1) CN104769473B (zh)
BR (1) BR112015010073A2 (zh)
WO (1) WO2014068955A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137557A (zh) * 2015-09-16 2015-12-09 烽火通信科技股份有限公司 一种等时延传输多芯光缆
CN108369324A (zh) * 2015-12-01 2018-08-03 古河电气工业株式会社 光纤带芯线和光纤线缆
CN111650704A (zh) * 2020-04-29 2020-09-11 成都亨通光通信有限公司 一种室内外四芯带蝶形光缆及其工艺流程

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10241262B2 (en) * 2015-10-14 2019-03-26 Sumitomo Electric Industries, Ltd. Optical fiber
CN109562989B (zh) * 2016-08-02 2021-10-26 住友电气工业株式会社 光纤以及光纤的制造方法
JP2018037153A (ja) * 2016-08-29 2018-03-08 大電株式会社 ケーブル
JP7066468B2 (ja) * 2018-03-22 2022-05-13 株式会社フジクラ 光ファイバテープ心線

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040146255A1 (en) * 2002-11-06 2004-07-29 Hiroki Ishikawa Optical fiber ribbon and optical fiber cable using the same
JP2005513237A (ja) * 2001-12-20 2005-05-12 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 光ファイバーコーティング材料のための放射線硬化可能な組成物
CN1845945A (zh) * 2003-09-17 2006-10-11 帝斯曼知识产权资产管理有限公司 可固化液态树脂组合物
US20080181565A1 (en) * 2006-03-31 2008-07-31 The Furukawa Electric Co., Ltd. Optical Fiber Ribbon Core and Optical Fiber Cable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528553B1 (en) * 1999-07-20 2003-03-04 Dsm N.V. Radiation curable resin composition
JP4630210B2 (ja) 2006-03-22 2011-02-09 古河電気工業株式会社 光ファイバテープ心線およびその心線の密着力測定法
ATE498595T1 (de) * 2006-12-14 2011-03-15 Dsm Ip Assets Bv D1364 bt-sekundärbeschichtung für optische fasern
JP2011158580A (ja) * 2010-01-29 2011-08-18 Jsr Corp 光ファイバテープ層形成用液状硬化性樹脂組成物および光ファイバテープ心線
JP2011158581A (ja) * 2010-01-29 2011-08-18 Jsr Corp 光ファイバテープ層形成用液状硬化性樹脂組成物および光ファイバテープ心線
JP5294357B2 (ja) * 2012-02-15 2013-09-18 古河電気工業株式会社 光ファイバ着色心線、光ファイバテープ心線及び光ファイバケーブル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513237A (ja) * 2001-12-20 2005-05-12 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 光ファイバーコーティング材料のための放射線硬化可能な組成物
US20040146255A1 (en) * 2002-11-06 2004-07-29 Hiroki Ishikawa Optical fiber ribbon and optical fiber cable using the same
CN1845945A (zh) * 2003-09-17 2006-10-11 帝斯曼知识产权资产管理有限公司 可固化液态树脂组合物
US20080181565A1 (en) * 2006-03-31 2008-07-31 The Furukawa Electric Co., Ltd. Optical Fiber Ribbon Core and Optical Fiber Cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137557A (zh) * 2015-09-16 2015-12-09 烽火通信科技股份有限公司 一种等时延传输多芯光缆
CN108369324A (zh) * 2015-12-01 2018-08-03 古河电气工业株式会社 光纤带芯线和光纤线缆
CN108369324B (zh) * 2015-12-01 2021-06-18 古河电气工业株式会社 光纤带芯线和光纤线缆
CN111650704A (zh) * 2020-04-29 2020-09-11 成都亨通光通信有限公司 一种室内外四芯带蝶形光缆及其工艺流程

Also Published As

Publication number Publication date
WO2014068955A1 (ja) 2014-05-08
JP6067332B2 (ja) 2017-01-25
US9411115B2 (en) 2016-08-09
CN104769473B (zh) 2018-07-03
BR112015010073A2 (pt) 2017-07-11
JP2014092704A (ja) 2014-05-19
US20150234140A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
CN104769473A (zh) 光纤带
US10882783B2 (en) Optical fiber ribbon and optical fiber cable
JP7000500B2 (ja) 小さい直径の光ファイバ
JP7384827B2 (ja) 小径の低減衰光ファイバ
US7715675B2 (en) Optical fiber coating system and coated optical fiber
CN103513325B (zh) 光纤素线
US6775451B1 (en) Secondary coating composition for optical fibers
CN113728259B (zh) 耐穿刺的直径减小的多模光纤
TWI703358B (zh) 光纖及光纖帶心線
JP2022522975A (ja) 多数のファイバを有する光ファイバケーブル
US9291769B2 (en) Colored optical fiber, optical fiber ribbon and optical fiber cable, using colored optical fiber
US20070263972A1 (en) Optical Fiber with Cured Polymeric Coating
JP2023519073A (ja) 高い機械的信頼性を有する半径の減少した光ファイバ
JP2012131667A (ja) 光ファイバ心線
CA2395531A1 (en) Secondary coating composition for optical fibers
US20140116151A1 (en) Optical fibers
CN101512404B (zh) 光纤带状芯线
CN112654908B (zh) 光纤芯线和光纤线缆
JP2005533287A (ja) 被覆されたフォトニック結晶ファイバー
CN115190871A (zh) 具有低损耗和微弯曲敏感度的涂层直径减小的氯掺杂二氧化硅光纤
JP2001083381A (ja) 被覆光ファイバ
CN114930218B (zh) 具有高的机械可靠性的半径减小的光纤

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180703

Termination date: 20191029