CN104764987A - 一种电力电子开关器件igbt高频模型寄生参数的获取方法 - Google Patents

一种电力电子开关器件igbt高频模型寄生参数的获取方法 Download PDF

Info

Publication number
CN104764987A
CN104764987A CN201510122065.8A CN201510122065A CN104764987A CN 104764987 A CN104764987 A CN 104764987A CN 201510122065 A CN201510122065 A CN 201510122065A CN 104764987 A CN104764987 A CN 104764987A
Authority
CN
China
Prior art keywords
value
differential mode
common mode
particle
emi signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510122065.8A
Other languages
English (en)
Other versions
CN104764987B (zh
Inventor
姬军鹏
马志鹏
曾光
李金刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201510122065.8A priority Critical patent/CN104764987B/zh
Publication of CN104764987A publication Critical patent/CN104764987A/zh
Application granted granted Critical
Publication of CN104764987B publication Critical patent/CN104764987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种电力电子开关器件IGBT高频模型寄生参数的获取方法,将实际电路中开关器件的高频EMI特性与仿真电路中开关器件的高频EMI特性进行对比,然后采用粒子群算法对所建立仿真电路的开关器件模型寄生参数进行优化调整,使得仿真电路中开关器件的高频EMI特性与实际电路中开关器件的高频EMI特性达到一致,因此,本发明的方法可以准确建立高精度、高性能的仿真模型,进而可以有效的指导实际电路的研发,在研发实际电路过程中大大降低了返工几率,缩短了制作周期,降低了制作成本。

Description

一种电力电子开关器件IGBT高频模型寄生参数的获取方法
技术领域
本发明属于电力电子器件技术领域,具体涉及一种电力电子开关器件IGBT高频模型寄生参数的获取方法。
背景技术
随着功率变换技术的不断发展,以电力电子开关器件为主的功率变换器应用越来越广泛,在研制这些功率变换器实际电路之前常需要进行电路特性仿真,以准确掌握所设计电路的性能。为了能够得到精准的仿真结果,对于电路及器件精确的仿真模型建立显的至关重要。开关器件的建模是电路仿真的最关键部分,其开关器件高频模型中最难确定的是其寄生的高频参数。
电力电子开关器件的一般参数可以通过厂家提供的器件说明书获得,但是器件说明书上的参数并不能完全准确反映其高频特性,甚至有些寄生参数根本无法获得,因此电子开关器件模型不能够准确反映实际开关器件的高频特性,系统电路的仿真结果也就不能准确反映实际电路的性能。这就使得仿真结果对实际研发的指导作用大大降低,从而使得研制过程出现返工,使得制作周期变长,制作成本增加。
发明内容
本发明的目的是提供一种电力电子开关器件IGBT高频模型寄生参数的获取方法,克服了现有技术中的电子开关器件模型不能准确反映实际开关器件的高频特性造成的对实际研发指导作用差的技术问题。
本发明所采用的技术方案是,一种电力电子开关器件IGBT高频模型寄生参数的获取方法,采用如下系统:其包括实际测试电路,实际测试电路包括第一直流电压源,其正极连接有第一开关器件,负极连接有第一负载,在第一直流电压源和开关器件之间设置有第一端口,在第一直流电压源和负载之间设置有第二端口;第一端口连接有第一模拟数字转化器,第二端口连接有第二模拟数字转化器;第一模拟数字转换器和第二模拟数字转换器连接有计算机数据处理系统;
电力电子开关器件IGBT高频模型寄生参数的获取方法,具体按照以下步骤实施:
步骤1:将激励源输入至实际测试电路的第一开关器件;
步骤2:第一模拟数字转化器和第二模拟数字转化器分别采集实际测试电路中第一端口的对地EMI信号Ua1和第二端口的对地EMI信号Ua2,并将其传送至计算机数据处理系统;
步骤3:计算机数据处理系统处理传送过来的第一端口的对地EMI信号Ua1和第二端口的对地EMI信号Ua2,得到实际测试电路的差模EMI信号Ua差模和共模EMI信号Ua共模,实现实际测试电路的共差模EMI信号的分离;
步骤4:求取共模EMI信号Ua共模分频段的平均值,依次记为:x1,x2,...,x30
步骤5:求取差模EMI信号Ua差模分频段的平均值,依次记为:y1,y2,...,y30
步骤6:通过pspice仿真软件搭建仿真电路,其中包括第二开关器件,即为电力电子开关器件IGBT高频模型,其包括如下寄生参数:基极-集电极间电容Cgc、基极-发射极间电容Cge、集电极-发射极间电容Cce、对地电容Ccg和Ceg、寄生电感Lr
步骤7:结合实际测试电路的差模EMI信号Ua差模和共模EMI信号Ua共模,采用粒子群算法迭代优化步骤6中仿真电路的电力电子开关器件IGBT高频模型寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg的值;
步骤8,输出得到的电力电子开关器件IGBT高频模型寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg的最优值。
本发明的特点还在于,
步骤3中实际测试电路的共差模EMI信号的分离的具体方法如下;
由于测量到的实际测试电路中第一端口处的对地EMI信号Ua1是对地共模EMI信号Ua共模与对地差模EMI信号Ua差模之和,如式(1)所示,测量到的实际测试电路中第二端口处的对地EMI信号Ua2是共模EMI信号Ua共模与差模EMI信号Ua差模之差,如式(2)所示,因此,可以得到:
Ua1=Ua共模+Ua差模   (1);
Ua2=Ua共模-Ua差模   (2);
通过式(1)和(2)可以计算出差模EMI信号Ua差模和共模EMI信号Ua共模
因此,得到实际测试电路的差模EMI信号Ua差模和共模EMI信号Ua共模
步骤4中求取共模EMI信号分频段的平均值的方法如下:将得到的实际测试电路的共模EMI信号Ua共模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取一个平均值,得到30组实际测试电路的共模EMI信号分频段值,依次记为x1,x2,...,x30
步骤5中求取差模EMI信号分频段的平均值的方法如下:将实际测试电路的差模EMI信号Ua差模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取平均值作为一个值,得到30组实际测试电路的差模EMI信号分频段值,依次记为:y1,y2,...,y30
步骤6中搭建的仿真电路包括第二直流电压源,其正极连接有第二开关器件,负极连接有第二负载,在第二直流电压源和第二开关器件之间设置有第三端口,在第二直流电压源和第二负载之间设置有第四端口;第二开关器件包括串联的基极-发射极寄生电容Cge基极-集电极寄生电容Cgc,基极-发射极寄生电容Cge与基极-集电极寄生电容Cgc串联后与开关S、反向续流二极管D、集电极-发射极寄生电容Cce并联,开关S的一端与发射极e相连,发射极e与负载相连;集电极-发射极寄生电容Cce的一端与对地寄生电容Ccg相连,另一端与地寄生电容Ceg相连,反向续流二极管D的阴极与基极-集电极寄生电容Cgc相连,其阴极还依次连接有寄生电感Lr和集电极c,其阳极与基极-发射极寄生电容Cge相连,基极g连接在基极-集电极寄生电容Cgc和基极-发射极寄生电容Cge之间的连接导线上;
其中,开关S的参数为:关断阻值ROFF=4×105V/A、开通阻值RON=0.0055V/A、关断电压VOFF=-15V、开通电压VON=15V;反向续流二极管D的参数为:二极管的反向饱和电流IS=3.18×10-43A;最大集射级电压UCES=1200V;基极-集电极间电容Cgc、基极-发射极间电容Cge、集电极-发射极间电容Cce、对地电容Ccg和Ceg、寄生电感Lr的设置为随机值。
步骤7中采用粒子群算法迭代优化步骤6中仿真电路的电力电子开关器件IGBT高频模型寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg的值的具体过程如下:
7.1,将需要参与优化求解的自变量参数Cgc,Cge,Cce,Lr,Ccg,Ceg进行粒子编码,编码如下式所示:
G=[Cgc,Cge,Cce,Lr,Ccg,Ceg]   (5);
其中,G代表由各寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg组成的粒子;
7.2,初始化粒子群:
粒子数目M取为100个,最大迭代次数为K,K=25,惯量权重因子ω设置为0.4≤ω≤0.9,ω1=0.4,ωK=0.9,学习因子c1=c2=1.8,:
粒子i的初始位置X1(i)如下式所示:
X1(i)=G(min)+(G(max)-G(min))×rand(1,1))   (6);
根据实际测试电路的第一开关器件的型号,确定粒子的最大值G(max)与最小值G(min);
粒子i的初始速度如下式所示:
V1(i)=V(max)×rand(1,1)   (7);
V(max)的值取G(max)的值
其中,i表示粒子的数目,i=1~100,rand(1,1)为0~1之间的随机数;
从初始化的100个粒子群中随机选取一个粒子作为初始的局部最优粒子,记为P1,其值为个体极值,并将其作为全局最优粒子,记为G1,其值为全局极值,将该粒子的Cgc,Cge,Cce,Lr,Ccg,Ceg值作为步骤6中仿真电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,计算该粒子的适应值,记为J1(best),也就是初始过程中全局最优粒子的适应值,记为F1(best)
7.3,优化参数Cgc,Cge,Cce,Lr,Ccg,Ceg
(1)更新粒子速度和位置:
Vk+1(i)=wk×Vk(i)+c1×rand1(1,1)×(Pk-Xk(i)+c2×rand2(1,1)×(Gk-Xk(i))   (8);
Xk+1(i)=Xk(i)+Vk+1(i))   (9);
w k + 1 = w 1 - w 1 - w K K × k - - - ( 10 ) ;
其中:k表示当前迭代次数。
(2)将更新后的各粒子的Cgc,Cge,Cce,Lr,Ccg,Ceg的值分别作为步骤6中仿真电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,按照求取J1(best)的方法计算各粒子的适应值Jk+1(i)
(3)更新个体极值与全局极值:
将适应值Jk+1(i)最小的粒子作为此次迭代过程得到的局部最优粒子,其值为新的个体极值,该粒子的适应值记为Jk+1(best),该局部最优粒子记为Pk+1
将局部最优粒子Pk+1对应的Jk+1(best)与全局最优粒子Gk对应的适应值Fk(best)相比较,若Jk+1(best)>Fk(best),则Pk+1替换Gk为此次迭代过程的全局最优粒子Gk+1,Fk+1(best)=Jk+1(best);反之,则Gk仍为此次迭代过程的全局最优粒子,记为Gk+1,Fk+1(best)=Fk(best);此次迭代过程的全局最优粒子Gk+1的值为新的全局极值;
7.4,重复步骤7.3,直至达到迭代次数K,终止迭代过程,得到全局最优粒子GK+1,然后将全局最优粒子GK+1的Cgc,Cge,Cce,Lr,Ccg,Ceg的值作为步骤6中仿真测试电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,并计算该粒子的适应值JK+1,最后判断在迭代过程中全局最优粒子Gk的适应值是否满足至少连续10次小于0.000001,若满足,全局最优粒子GK+1的Cgc,Cge,Cce,Lr,Ccg,Ceg的值,即为获取的最终电力电子开关器件IGBT高频模型寄生参数;若不满足,进入步骤7.5;
步骤7.5,改变总迭代次数为Kj,Kj=K+jC,C为大于等于5的自然数,重复采用步骤7.1~7.4的方法,直至在迭代过程中全局最优粒子Gk(j)的适应值满足至少连续10次小于0.000001,最终得到的全局最优粒子的参数即为构建电力电子开关器件IGBT高频模型的最优参数;
步骤7.2中求解J1(best)过程如下:
(1),计算机数据处理系统处理新的仿真电路第三端口的对地EMI信号Us1,第四端口的对地EMI信号Us2,得到新的仿真电路的差模EMI信号Us差模和共模EMI信号Us共模,实现仿真电路的共差模EMI信号的分离;
(2),求取仿真电路共模EMI信号和差模EMI信号分频段的平均值,分别记为:m1,m2,...,m30,n1,n2,...,n30
(3),求取差模EMI信号与共模EMI信号相对误差:
将实际测试电路的30组实测差模EMI信号分频段值y1,y2,...,y30与新的仿真电路的30组差模EMI信号分频段值n1,n2,...,n30进行一一对应求取相对误差
将实际测试电路的30组实测共模EMI信号分频段值x1,x2,...,x30与新的仿真电路的30组共模EMI信号m1,m2,...,m30分频段值进行一一对应求取相对误差
其中,l=1,2…,30;
(4),计算该粒子的当前适应值J1(best)
步骤7.2中得到新的仿真电路的差模EMI信号Us差模和共模EMI信号Us共模的方法如下:
由于仿真电路中第一端口处的对地EMI信号Us1是共模EMI信号Us共模与差模EMI信号Us差模之和,如式(14)所示;仿真测试电路中第二端口处对地EMI信号是共模EMI信号Us共模与差模EMI信号Us差模之差,如式(15)所示,因此,可以得到:
Us1=Us共模+Us差模   (14);
Us2=Us共模-Us差模   (15);
通过式(14和(15)可以计算出差模EMI信号Us差模和共模EMI信号Us共模
因此,可以得到新的仿真电路的差模EMI信号Us差模和共模EMI信号Us共模
步骤7.2中求取仿真电路共模EMI信号和差模EMI信号分频段的平均值的方法如下:
将得到的共模EMI信号Us共模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取一个平均值,得到30组新的仿真电路的共模EMI信号分频段值,依次记为:m1,m2,...,m30
将得到的差模EMI信号Us差模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取平均值作为一个值,得到30组新的仿真电路的差模EMI信号分频段值,依次记为:n1,n2,...,n30
第一开关器件采用德国SEMIKRON的SKM400GB123D型号的IGBT。
本发明的有益效果是,本发明的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,将实际电路中开关器件的高频EMI特性与仿真电路中开关器件的高频EMI特性进行对比,然后采用粒子群算法对所建立的开关器件模型寄生参数进行优化调整,使得仿真电路中开关器件的高频EMI特性与实际电路中开关器件的高频EMI特性达到一致,可以准确建立高精度、高性能的仿真模型,进而可以有效的指导实际电路的研发,在研发实际电路过程中大大降低了返工几率,缩短了制作周期,降低了制作成本。
附图说明
图1是电力电子开关器件高频寄生参数优化提取系统图;
图2是实际测试电路示意图;
图3是仿真软件搭建的仿真电路示意图;
图4是电力电子开关器件高频寄生参数提取的流程图;
图5是优化算法流程图。
图中,1.实际测试电路,2.第一模拟数字转换器,3.第二模拟数字转换器,4.计算机数据处理系统,5.第一直流电压源,6.第一端口,7.第一开关器件,8.第一负载,9.第二端口,10.第二直流电压源,11.第三端口,12.第二开关器件,13.第二负载,14.第四端口。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
参见图1,一种电力电子开关器件IGBT高频模型寄生参数的获取系统包括实际测试电路1,实际测试电路连接有第一模拟数字转换器2,第二模拟数字转换器3,第一模拟数字转换器和第二模拟数字转换器3连接有计算机数据处理系统4。
参见图2,实际测试电路1包括第一直流电压源5,其正极连接有第一开关器件7,负极连接有第一负载8,在第一直流电压源5和开关器件7之间设置有第一端口6,在第一直流电压源5和负载8之间设置有第二端口9;第一模拟数字转化器2和第一端口连接,第二模拟数字转化器3和第二端口连接;第一开关器件7采用德国SEMIKRON的SKM400GB123D型号的IGBT。
第一直流电压源10为100V的电压源,第一负载8为10Ω的纯阻性负载。
参见图4,本发明的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,具体按照以下步骤实施:
步骤1:将激励源输入至实际测试电路1的第一开关器件7,激励源是通过信号发生器发出的正向电压为+15V,负向电压为-15V,占空比50%,频率为20kHz的方波脉冲;
步骤2:第一模拟数字转化器2和第二模拟数字转化器3分别采集实际测试电路中第一端口的对地EMI信号Ua1和第二端口的对地EMI信号Ua2,并将其传送至计算机数据处理系统4;
步骤3:计算机数据处理系统4处理传送过来的第一端口6的对地EMI信号Ua1和第二端口9的对地EMI信号Ua2,实现实际测试电路的共差模EMI信号的分离,具体方法如下:
由于测量到的实际测试电路中第一端口处的对地EMI信号Ua1是对地共模EMI信号Ua共模与对地差模EMI信号Ua差模之和,如式(1)所示,测量到的实际测试电路中第二端口处的对地EMI信号Ua2是共模EMI信号Ua共模与差模EMI信号Ua差模之差,如式(2)所示,因此,可以得到:
Ua1=Ua共模+Ua差模   (1);
Ua2=Ua共模-Ua差模   (2);通过式(1)和(2)可以计算出差模EMI信号Ua差模和共模EMI信号Ua共模
因此,得到实际测试电路的差模EMI信号Ua差模和共模EMI信号Ua共模
步骤4:求取共模EMI信号分频段的平均值:
将得到的实际测试电路的共模EMI信号Ua共模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取一个平均值,得到30组实际测试电路的共模EMI信号分频段值,依次记为x1,x2,...,x30
步骤5:求取差模EMI信号分频段的平均值:
将实际测试电路的差模EMI信号Ua差模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取平均值作为一个值,得到30组实际测试电路的差模EMI信号分频段值,依次记为:y1,y2,...,y30
步骤6:通过pspice仿真软件搭建仿真电路:参见图3,其包括第二直流电压源10,其正极连接有第二开关器件12,负极连接有第二负载13,在第二直流电压源10和第二开关器件12之间设置有第三端口11,在第二直流电压源10和第二负载13之间设置有第四端口14;第二开关器件12即为电力电子开关器件IGBT高频模型,其包括串联的基极-发射极寄生电容Cge与基极-集电极寄生电容Cgc,基极-发射极寄生电容Cge与基极-集电极寄生电容Cgc串联后与开关S、反向续流二极管D、集电极-发射极寄生电容Cce并联,开关S的一端与发射极e相连,发射极e与负载相连;集电极-发射极寄生电容Cce的一端与对地寄生电容Ccg相连,另一端与地寄生电容Ceg相连,反向续流二极管D的阴极与基极-集电极寄生电容Cgc相连,其阴极还依次连接有寄生电感Lr和集电极c,其阳极与基极-发射极寄生电容Cge相连,基极g连接在基极-集电极寄生电容Cgc和基极-发射极寄生电容Cge之间的连接导线上;
其中,开关S的参数为:关断阻值ROFF=4×105V/A、开通阻值RON=0.0055V/A、关断电压VOFF=-15V、开通电压VON=15V;反向续流二极管D的参数为:二极管的反向饱和电流IS=3.18×10-43A;最大集射级电压UCES=1200V;第二直流电压源为100V,第二负载为10Ω的电阻;
基极-集电极间电容Cgc、基极-发射极间电容Cge、集电极-发射极间电容Cce、对地电容Ccg和Ceg、寄生电感Lr的值设置为随机值。
步骤7,粒子群算法确定步骤6中仿真电路的电力电子开关器件IGBT高频模型寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg的值:
7.1,将需要参与优化求解的自变量参数Cgc,Cge,Cce,Lr,Ccg,Ceg进行粒子编码,编码如下式所示:
G=[Cgc,Cge,Cce,Lr,Ccg,Ceg]   (5);
其中,G代表由各寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg组成的粒子;
7.2,初始化粒子群:
粒子数目M取为100个,最大迭代次数为K,K=25,惯量权重因子ω设置为0.4≤ω≤0.9,ω1=0.4,ωK=0.9,学习因子c1=c2=1.8:
粒子i的初始位置X1(i)如下式所示:
X1(i)=G(min)+(G(max)-G(min))×rand(1,1))   (6);
根据SKM400GB123D型号的IGBT具体模型,确定粒子的最大值与最小值:
G(max)=[3.0628×10-9,2.821×10-8,5.2×10-12,2.6×10-8,3.9×10-11,7.8×10-11]
G(min)=[1.650×10-9,1.519×10-8,2.8×10-12,1.4×10-8,2.1×10-11,4.2×10-11]
粒子i的初始速度如下式所示:
V1(i)=V(max)×rand(1,1)   (7);
V(max)=[3.0628×10-9,2.821×10-8,5.2×10-12,2.6×10-8,3.9×10-11,7.8×10-11]
其中,i表示粒子的数目,i=1~100,rand(1,1)为0~1之间的随机数;
从初始化的100个粒子群中随机选取一个粒子作为初始的局部最优粒子,记为P1,其值为个体极值,并将其作为全局最优粒子,记为G1,其值为全局极值,将该粒子的Cgc,Cge,Cce,Lr,Ccg,Ceg值作为步骤6中仿真电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,计算该粒子的适应值,记为J1(best),也就是初始过程中全局最优粒子的适应值,记为F1(best),J1(best)的计算过程如下:
(1),计算机数据处理系统4处理新的仿真电路第三端口的对地EMI信号Us1,第四端口的对地EMI信号Us2,实现仿真电路的共差模EMI信号的分离,具体方法如下:
由于仿真电路中第一端口处的对地EMI信号Us1是共模EMI信号Us共模与差模EMI信号Us差模之和,如式(8)所示;仿真测试电路中第二端口处对地EMI信号是共模EMI信号Us共模与差模EMI信号Us差模之差,如式(9)所示,因此,可以得到:
Us1=Us共模+Us差模   (8);
Us2=Us共模-Us差模   (9);
通过式(8)和(9)可以计算出差模EMI信号Us差模和共模EMI信号Us共模
因此,可以得到新的仿真电路的差模EMI信号Us差模和共模EMI信号Us共模
(2),求取仿真电路共模EMI信号和差模EMI信号分频段的平均值:
将得到的共模EMI信号Us共模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取一个平均值,得到30组新的仿真电路的共模EMI信号分频段值,依次记为:m1,m2,...,m30
将得到的差模EMI信号Us差模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取平均值作为一个值,得到30组新的仿真电路的差模EMI信号分频段值,依次记为:n1,n2,...,n30
(3),求取差模EMI信号与共模EMI信号相对误差:
将实际测试电路的30组实测差模EMI信号分频段值y1,y2,...,y30与新的仿真电路的30组差模EMI信号分频段值n1,n2,...,n30进行一一对应求取相对误差计算公式如下:
将实际测试电路的30组实测共模EMI信号分频段值x1,x2,...,x30与新的仿真电路的30组共模EMI信号m1,m2,...,m30分频段值进行一一对应求取相对误差计算公式如下:
其中,l=1,2…,30;
(4),计算该粒子的当前适应值J1(best)
7.3,优化参数Cgc,Cge,Cce,Lr,Ccg,Ceg
(1)更新粒子速度和位置:
Vk+1(i)=ωk×Vk(i)+c1×rand1(1,1)×(Pk-Xk(i)+c2×rand2(1,1)×(Gk-Xk(i))   (15);
Xk+1(i)=Xk(i)+Vk+1(i))   (16);
w k + 1 = w 1 - w 1 - w K K × k - - - ( 17 ) ;
其中:k表示当前迭代次数。
(2)将更新后的各粒子的Cgc,Cge,Cce,Lr,Ccg,Ceg的值分别作为步骤6中仿真电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,按照求取J1(best)的方法计算各粒子的适应值Jk+1(i)
(3)更新个体极值与全局极值:
将适应值Jk+1(i)最小的粒子作为此次迭代过程得到的局部最优粒子,其值为新的个体极值,该粒子的适应值记为Jk+1(best),该局部最优粒子记为Pk+1
将局部最优粒子Pk+1对应的Jk+1(best)与全局最优粒子Gk对应的适应值Fk(best)相比较,若Jk+1(best)>Fk(best),则Pk+1替换Gk为此次迭代过程的全局最优粒子Gk+1,Fk+1(best)=Jk+1(best);反之,则Gk仍为此次迭代过程的全局最优粒子Gk+1,Fk+1(best)=Fk(best);此次迭代过程的全局最优粒子Gk+1的值为新的全局极值;
7.4,重复步骤7.3,直至达到迭代次数K,终止迭代过程,得到全局最优粒子GK+1,然后将全局最优粒子GK+1的Cgc,Cge,Cce,Lr,Ccg,Ceg的值作为步骤6中仿真测试电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,并计算该粒子的适应值JK+1,最后判断在迭代过程中全局最优粒子Gk的适应值是否满足至少连续10次小于0.000001,若满足,全局最优粒子GK+1的Cgc,Cge,Cce,Lr,Ccg,Ceg的值,即为获取的最终电力电子开关器件IGBT高频模型寄生参数;若不满足,进入步骤7.5;
步骤7.5,改变总迭代次数为Kj,Kj=K+jC,C为大于等于5的自然数,重复步骤7.1~7.4,直至在迭代过程中全局最优粒子Gk(j)的适应值满足至少连续10次小于0.000001,最终得到的全局最优粒子的参数即为构建电力电子开关器件IGBT高频模型的最优参数;
步骤8,输出得到的电力电子开关器件IGBT高频模型的最优参数。
本发明的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,将实际电路中开关器件的高频EMI特性与仿真电路中开关器件的高频EMI特性进行对比,然后采用粒子群算法对所建立的开关器件模型寄生参数进行优化调整,使得仿真电路中开关器件的高频EMI特性与实际电路中开关器件的高频EMI特性达到一致,可以准确建立高精度、高性能的仿真模型,进而可以有效的指导实际电路的研发,在研发实际电路过程中大大降低了返工几率,缩短了制作周期,降低了制作成本。

Claims (10)

1.一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,采用如下系统:其包括实际测试电路(1),实际测试电路(1)包括第一直流电压源(5),其正极连接有第一开关器件(7),负极连接有第一负载(8),在第一直流电压源(5)和开关器件(7)之间设置有第一端口(6),在第一直流电压源(5)和负载(8)之间设置有第二端口(9);第一端口(6)连接有第一模拟数字转化器(2),第二端口(9)连接有第二模拟数字转化器(3);第一模拟数字转换器(2)和第二模拟数字转换器(3)连接有计算机数据处理系统(4);
电力电子开关器件IGBT高频模型寄生参数的获取方法,具体按照以下步骤实施:
步骤1:将激励源输入至实际测试电路(1)的第一开关器件(7);
步骤2:第一模拟数字转化器(2)和第二模拟数字转化器(3)分别采集实际测试电路中第一端口(6)的对地EMI信号Ua1和第二端口(9)的对地EMI信号Ua2,并将其传送至计算机数据处理系统(4);
步骤3:计算机数据处理系统(4)处理传送过来的第一端口(6)的对地EMI信号Ua1和第二端口(9)的对地EMI信号Ua2,得到实际测试电路的差模EMI信号Ua差模和共模EMI信号Ua共模,实现实际测试电路的共差模EMI信号的分离;
步骤4:求取共模EMI信号Ua共模分频段的平均值,依次记为:x1,x2,...,x30
步骤5:求取差模EMI信号Ua差模分频段的平均值,依次记为:y1,y2,...,y30
步骤6:通过pspice仿真软件搭建仿真电路,其中包括第二开关器件(12),即为电力电子开关器件IGBT高频模型,其包括如下寄生参数:基极-集电极间电容Cgc、基极-发射极间电容Cge、集电极-发射极间电容Cce、对地电容Ccg和Ceg、寄生电感Lr
步骤7:结合实际测试电路的差模EMI信号Ua差模和共模EMI信号Ua共模,采用粒子群算法迭代优化步骤6中仿真电路的电力电子开关器件IGBT高频模型寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg的值;
步骤8,输出得到的电力电子开关器件IGBT高频模型寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg的最优值。
2.根据权利要求1所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,步骤3中实际测试电路的共差模EMI信号的分离的具体方法如下;
由于测量到的实际测试电路中第一端口处的对地EMI信号Ua1是对地共模EMI信号Ua共模与对地差模EMI信号Ua差模之和,如式(1)所示,测量到的实际测试电路中第二端口处的对地EMI信号Ua2是共模EMI信号Ua共模与差模EMI信号Ua差模之差,如式(2)所示,因此,可以得到:
Ua1=Ua共模+Ua差模  (1);
Ua2=Ua共模-Ua差模  (2);
通过式(1)和(2)可以计算出差模EMI信号Ua差模和共模EMI信号Ua共模
因此,得到实际测试电路的差模EMI信号Ua差模和共模EMI信号Ua共模
3.根据权利要求1所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,步骤4中求取共模EMI信号分频段的平均值的方法如下:将得到的实际测试电路的共模EMI信号Ua共模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取一个平均值,得到30组实际测试电路的共模EMI信号分频段值,依次记为x1,x2,...,x30
4.根据权利要求1所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,步骤5中求取差模EMI信号分频段的平均值的方法如下:将实际测试电路的差模EMI信号Ua差模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取平均值作为一个值,得到30组实际测试电路的差模EMI信号分频段值,依次记为:y1,y2,...,y30
5.根据权利要求1所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,步骤6中搭建的仿真电路包括第二直流电压源(10),其正极连接有第二开关器件(12),负极连接有第二负载(13),在第二直流电压源(10)和第二开关器件(12)之间设置有第三端口(11),在第二直流电压源(10)和第二负载(13)之间设置有第四端口(14);第二开关器件(12)包括串联的基极-发射极寄生电容Cge与基极-集电极寄生电容Cgc,基极-发射极寄生电容Cge与基极-集电极寄生电容Cgc串联后与开关S、反向续流二极管D、集电极-发射极寄生电容Cce并联,开关S的一端与发射极e相连,发射极e与负载相连;集电极-发射极寄生电容Cce的一端与对地寄生电容Ccg相连,另一端与地寄生电容Ceg相连,反向续流二极管D的阴极与基极-集电极寄生电容Cgc相连,其阴极还依次连接有寄生电感Lr和集电极c,其阳极与基极-发射极寄生电容Cge相连,基极g连接在基极-集电极寄生电容Cgc和基极-发射极寄生电容Cge之间的连接导线上;
其中,开关S的参数为:关断阻值ROFF=4×105V/A、开通阻值RON=0.0055V/A、关断电压VOFF=-15V、开通电压VON=15V;反向续流二极管D的参数为:二极管的反向饱和电流IS=3.18×10-43A;最大集射级电压UCES=1200V;基极-集电极间电容Cgc、基极-发射极间电容Cge、集电极-发射极间电容Cce、对地电容Ccg和Ceg、寄生电感Lr的设置为随机值。
6.根据权利要求1所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,步骤7中采用粒子群算法迭代优化步骤6中仿真电路的电力电子开关器件IGBT高频模型寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg的值的具体过程如下:
7.1,将需要参与优化求解的自变量参数Cgc,Cge,Cce,Lr,Ccg,Ceg进行粒子编码,编码如下式所示:
G=[Cgc,Cge,Cce,Lr,Ccg,Ceg]  (5);
其中,G代表由各寄生参数Cgc,Cge,Cce,Lr,Ccg,Ceg组成的粒子;
7.2,初始化粒子群:
粒子数目M取为100个,最大迭代次数为K,K=25,惯量权重因子ω设置为0.4≤ω≤0.9,ω1=0.4,ωK=0.9,学习因子c1=c2=1.8,:
粒子i的初始位置X1(i)如下式所示:
X1(i)=G(min)+(G(max)-G(min))×rand(1,1))  (6);
根据实际测试电路的第一开关器件的型号,确定粒子的最大值G(max)与最小值G(min);
粒子i的初始速度如下式所示:
V1(i)=V(max)×rand(1,1)  (7);
V(max)的值取G(max)的值
其中,i表示粒子的数目,i=1~100,rand(1,1)为0~1之间的随机数;
从初始化的100个粒子群中随机选取一个粒子作为初始的局部最优粒子,记为P1,其值为个体极值,并将其作为全局最优粒子,记为G1,其值为全局极值,将该粒子的Cgc,Cge,Cce,Lr,Ccg,Ceg值作为步骤6中仿真电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,计算该粒子的适应值,记为J1(best),也就是初始过程中全局最优粒子的适应值,记为F1(best)
7.3,优化参数Cgc,Cge,Cce,Lr,Ccg,Ceg
(1)更新粒子速度和位置:
Vk+1(i)=wk×Vk(i)+c1×rand1(1,1)×(Pk-Xk(i)+c2×rand2(1,1)×(Gk-Xk(i))  (8);
Xk+1(i)=Xk(i)+Vk+1(i))  (9);
w k + 1 = w 1 - w 1 - w K K × k - - - ( 10 ) ;
其中:k表示当前迭代次数。
(2)将更新后的各粒子的Cgc,Cge,Cce,Lr,Ccg,Ceg的值分别作为步骤6中仿真电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,按照求取J1(best)的方法计算各粒子的适应值Jk+1(i)
(3)更新个体极值与全局极值:
将适应值Jk+1(i)最小的粒子作为此次迭代过程得到的局部最优粒子,其值为新的个体极值,该粒子的适应值记为Jk+1(best),该局部最优粒子记为Pk+1
将局部最优粒子Pk+1对应的Jk+1(best)与全局最优粒子Gk对应的适应值Fk(best)相比较,若Jk+1(best)>Fk(best),则Pk+1替换Gk为此次迭代过程的全局最优粒子Gk+1,Fk+1(best)=Jk+1(best);反之,则Gk仍为此次迭代过程的全局最优粒子,记为Gk+1,Fk+1(best)=Fk(best);此次迭代过程的全局最优粒子Gk+1的值为新的全局极值;
7.4,重复步骤7.3,直至达到迭代次数K,终止迭代过程,得到全局最优粒子GK+1,然后将全局最优粒子GK+1的Cgc,Cge,Cce,Lr,Ccg,Ceg的值作为步骤6中仿真测试电路中Cgc,Cge,Cce,Lr,Ccg,Ceg的值,搭建新的仿真电路,并计算该粒子的适应值JK+1,最后判断在迭代过程中全局最优粒子Gk的适应值是否满足至少连续10次小于0.000001,若满足,全局最优粒子GK+1的Cgc,Cge,Cce,Lr,Ccg,Ceg的值,即为获取的最终电力电子开关器件IGBT高频模型寄生参数;若不满足,进入步骤7.5;
步骤7.5,改变总迭代次数为Kj,Kj=K+jC,C为大于等于5的自然数,重复采用步骤7.1~7.4的方法,直至在迭代过程中全局最优粒子Gk(j)的适应值满足至少连续10次小于0.000001,最终得到的全局最优粒子的参数即为构建电力电子开关器件IGBT高频模型的最优参数。
7.根据权利要求6所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,步骤7.2中求解J1(best)过程如下:
(1),计算机数据处理系统(4)处理新的仿真电路第三端口(11)的对地EMI信号Us1,第四端口(13)的对地EMI信号Us2,得到新的仿真电路的差模EMI信号Us差模和共模EMI信号Us共模,实现仿真电路的共差模EMI信号的分离;
(2),求取仿真电路共模EMI信号和差模EMI信号分频段的平均值,分别记为:m1,m2,...,m30,n1,n2,...,n30
(3),求取差模EMI信号与共模EMI信号相对误差:
将实际测试电路的30组实测差模EMI信号分频段值y1,y2,...,y30与新的仿真电路的30组差模EMI信号分频段值n1,n2,...,n30进行一一对应求取相对误差
将实际测试电路的30组实测共模EMI信号分频段值x1,x2,...,x30与新的仿真电路的30组共模EMI信号m1,m2,...,m30分频段值进行一一对应求取相对误差
其中,l=1,2…,30;
(4),计算该粒子的当前适应值J1(best)
8.根据权利要求7所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,步骤7.2中得到新的仿真电路的差模EMI信号Us差模和共模EMI信号Us共模的方法如下:
由于仿真电路中第一端口处的对地EMI信号Us1是共模EMI信号Us共模与差模EMI信号Us差模之和,如式(14)所示;仿真测试电路中第二端口处对地EMI信号是共模EMI信号Us共模与差模EMI信号Us差模之差,如式(15)所示,因此,可以得到:
Us1=Us共模+Us差模  (14);
Us2=Us共模-Us差模  (15);
通过式(14和(15)可以计算出差模EMI信号Us差模和共模EMI信号Us共模
因此,可以得到新的仿真电路的差模EMI信号Us差模和共模EMI信号Us共模
9.根据权利要求7所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,步骤7.2中求取仿真电路共模EMI信号和差模EMI信号分频段的平均值的方法如下:
将得到的共模EMI信号Us共模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取一个平均值,得到30组新的仿真电路的共模EMI信号分频段值,依次记为:m1,m2,...,m30
将得到的差模EMI信号Us差模在150kHz-1MHz之间取平均值,1MHz-30MHz之间每隔1MHz取平均值作为一个值,得到30组新的仿真电路的差模EMI信号分频段值,依次记为:n1,n2,...,n30
10.根据权利要求1所述的一种电力电子开关器件IGBT高频模型寄生参数的获取方法,其特征在于,第一开关器件(7)采用德国SEMIKRON的SKM400GB123D型号的IGBT。
CN201510122065.8A 2015-03-19 2015-03-19 一种电力电子开关器件igbt高频模型寄生参数的获取方法 Active CN104764987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510122065.8A CN104764987B (zh) 2015-03-19 2015-03-19 一种电力电子开关器件igbt高频模型寄生参数的获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510122065.8A CN104764987B (zh) 2015-03-19 2015-03-19 一种电力电子开关器件igbt高频模型寄生参数的获取方法

Publications (2)

Publication Number Publication Date
CN104764987A true CN104764987A (zh) 2015-07-08
CN104764987B CN104764987B (zh) 2017-06-20

Family

ID=53646939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510122065.8A Active CN104764987B (zh) 2015-03-19 2015-03-19 一种电力电子开关器件igbt高频模型寄生参数的获取方法

Country Status (1)

Country Link
CN (1) CN104764987B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656185A (zh) * 2017-10-25 2018-02-02 北京国联万众半导体科技有限公司 一种用于宽禁带半导体功率器件的测试装置
CN108549768A (zh) * 2018-04-13 2018-09-18 西安理工大学 高速动车组整车共模emi模型及其等效电路的建立方法
CN108897915A (zh) * 2018-10-08 2018-11-27 全球能源互联网研究院有限公司 一种igbt芯片矩阵模型自动生成方法及系统
CN109917266A (zh) * 2019-04-16 2019-06-21 南方电网科学研究院有限责任公司 一种测试绝缘双极型晶体管芯片的方法、装置及设备
CN116362174A (zh) * 2023-05-24 2023-06-30 湖南大学 Igbt设计参数全局优化方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258550A (ja) * 2007-04-09 2008-10-23 Toyota Central R&D Labs Inc Igbtシミュレーション装置およびigbtシミュレーションプログラム
JP2010124606A (ja) * 2008-11-19 2010-06-03 Fuji Electric Systems Co Ltd 半導体素子の損失・温度を推定するシミュレーション方法
CN102495294A (zh) * 2011-11-30 2012-06-13 台达电子企业管理(上海)有限公司 一种用于测试寄生电感的系统及其方法
CN202383221U (zh) * 2011-12-28 2012-08-15 卧龙电气集团股份有限公司 一种用于高压变频器驱动电路测试的igbt管模拟装置
CN103472381A (zh) * 2013-09-27 2013-12-25 南京航空航天大学 一种功率开关管故障特征参数提取方法
CN203632551U (zh) * 2013-12-05 2014-06-04 西安理工大学 一种超强共模emi抑制性能的反激式开关电源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258550A (ja) * 2007-04-09 2008-10-23 Toyota Central R&D Labs Inc Igbtシミュレーション装置およびigbtシミュレーションプログラム
JP2010124606A (ja) * 2008-11-19 2010-06-03 Fuji Electric Systems Co Ltd 半導体素子の損失・温度を推定するシミュレーション方法
CN102495294A (zh) * 2011-11-30 2012-06-13 台达电子企业管理(上海)有限公司 一种用于测试寄生电感的系统及其方法
CN202383221U (zh) * 2011-12-28 2012-08-15 卧龙电气集团股份有限公司 一种用于高压变频器驱动电路测试的igbt管模拟装置
CN103472381A (zh) * 2013-09-27 2013-12-25 南京航空航天大学 一种功率开关管故障特征参数提取方法
CN203632551U (zh) * 2013-12-05 2014-06-04 西安理工大学 一种超强共模emi抑制性能的反激式开关电源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L. ARNEDO等: "High Frequency Modeling of Induction Motor Drives for EM1 and Overvoltage Mitigation Studies", 《ELECTRIC MACHINES AND DRIVES CONFERENCE》 *
王颖丽 等: "提取IGBT模块内部键合引线的寄生参数", 《化工自动化及仪表》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656185A (zh) * 2017-10-25 2018-02-02 北京国联万众半导体科技有限公司 一种用于宽禁带半导体功率器件的测试装置
CN108549768A (zh) * 2018-04-13 2018-09-18 西安理工大学 高速动车组整车共模emi模型及其等效电路的建立方法
CN108549768B (zh) * 2018-04-13 2021-10-26 西安理工大学 高速动车组整车共模emi模型及其等效电路的建立方法
CN108897915A (zh) * 2018-10-08 2018-11-27 全球能源互联网研究院有限公司 一种igbt芯片矩阵模型自动生成方法及系统
CN109917266A (zh) * 2019-04-16 2019-06-21 南方电网科学研究院有限责任公司 一种测试绝缘双极型晶体管芯片的方法、装置及设备
CN116362174A (zh) * 2023-05-24 2023-06-30 湖南大学 Igbt设计参数全局优化方法及系统
CN116362174B (zh) * 2023-05-24 2023-08-29 湖南大学 Igbt设计参数全局优化方法及系统

Also Published As

Publication number Publication date
CN104764987B (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN104764987A (zh) 一种电力电子开关器件igbt高频模型寄生参数的获取方法
CN103105571B (zh) 一种基于仿真的绝缘栅双极型晶体管的电流特性测定方法
Liu et al. Global maximum power point tracking algorithm for PV systems operating under partially shaded conditions using the segmentation search method
CN111368454B (zh) 一种基于裸片封装结构的SiC MOSFET SPICE模型建立方法
CN104778352A (zh) 基于stft算子的七参数光伏电池输出特性建模方法
CN104318622A (zh) 一种室内场景非均匀三维点云数据的三角网格建模方法
CN106370912A (zh) 提高mosfet管电流采样精度的方法、系统和电机驱动系统
CN104933307A (zh) 基于粒子群优化算法的太阳电池隐式方程参数辨识方法
Jayawardana et al. Design and implementation of switch-mode solar photovoltaic emulator using power-hardware-in-the-loop simulations for grid integration studies
CN104655111B (zh) 一种激光探测器模拟方法及装置
CN106202590B (zh) Igbt模块开关暂态模型参数获取方法及模型建立方法
CN106407492A (zh) 用于电力系统的多重开关处理的微网实时仿真方法
CN110661280B (zh) 确定多电平换流器混合仿真系统的虚拟阻抗的方法及系统
CN103020371B (zh) 自加热效应的模型参数提取方法
CN109033560B (zh) 一种电力电子电路的仿真方法
Soares et al. Simulation of a photovoltaic model using bisection method
CN104536807B (zh) 基于fpga的dc/dc实时仿真器及方法
CN106383941A (zh) 用于描述ldmos晶体管电容特性的仿真方法
CN107622167B (zh) 一种用于栅控器件的集电极电流软测量方法
CN107255753B (zh) 一种高压直流线路电晕损耗转化方法及其实现系统
CN104715084A (zh) 锗硅异质结晶体管的大信号模型方法
CN104883121A (zh) 基于功率-电压拟合曲线的光伏电池控制方法和系统
CN102521466A (zh) 一种扩散电阻的仿真方法及系统
CN106202780A (zh) 一种太阳能板建模软件调用系统及其调用方法
Gao et al. Identification of solar cell model parameters by combining analytical method with Nelder-Mead simplex method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant