CN104750932B - 一种混合不确定性下基于代理模型的结构可靠性分析方法 - Google Patents

一种混合不确定性下基于代理模型的结构可靠性分析方法 Download PDF

Info

Publication number
CN104750932B
CN104750932B CN201510151288.7A CN201510151288A CN104750932B CN 104750932 B CN104750932 B CN 104750932B CN 201510151288 A CN201510151288 A CN 201510151288A CN 104750932 B CN104750932 B CN 104750932B
Authority
CN
China
Prior art keywords
msub
mrow
variable
interval
stochastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510151288.7A
Other languages
English (en)
Other versions
CN104750932A (zh
Inventor
肖宁聪
李彦锋
黄洪钟
张小玲
许焕卫
杨圆鉴
彭卫文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201510151288.7A priority Critical patent/CN104750932B/zh
Publication of CN104750932A publication Critical patent/CN104750932A/zh
Application granted granted Critical
Publication of CN104750932B publication Critical patent/CN104750932B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开一种混合不确定性下基于代理模型的结构可靠性分析方法,通过采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;根据随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本和系统响应值作为构建Kriging代理模型的训练样本点,建立Kriging代理模型,然后根据得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算任一区间变量取值下的可靠性灵敏度、失效概率及系统失效概率的最大、最小值,解决了混合不确定性下传统代理模型在局部有一定精度及传统可靠性分析计算量较大的难题,更加符合工程实际。

Description

一种混合不确定性下基于代理模型的结构可靠性分析方法
技术领域
本发明属于可靠性分析评估技术领域,涉及机械产品的可靠性分析方法,具体涉及一种混合不确定性下基于代理模型的结构可靠性分析新方法。
背景技术
随着科学技术的迅速发展,许多产品(如:飞机、航空发动机、可展开天线、汽车、数控机床等)的结构越来越复杂,其分析、设计等涉及众多学科领域及新方法、新工艺、新材料的应用。由于一些产品造价昂贵,并且工作环境恶劣,如果在运行过程中出现故障,会造成巨大的经济损失和人员伤亡。如发动机是飞机的心脏,被誉为“工业之花”,它直接影响到飞机的性能、可靠性及经济型,是一个国家工业和科技实力的重要体现。航空发动机可靠地工作是飞机正常运行和飞行安全的重要保障,其质量和性能直接影响到发动机的性能、寿命和可靠性。因此,结构的高可靠性是装备安全可靠运行的重要保障。
通常情况下,在产品的分析、设计和运行过程中所产生的各种不确定性是影响产品可靠性的关键因素。因此,为保证产品的高可靠性,核心问题在于掌握各种不确定性产生的实质、传输机制及其对产品可靠性的影响。工程中的不确定性通常被分为两大类:随机不确定性和认知不确定性。随机不确定性又称为不可简约不确定性、固有不确定性,它描述了物理系统内部变化的波动性,具有充足的试验数据和完善的信息。而认知不确定性是由于数据不足、试验条件或其它认知能力所限造成的知识缺乏、信息不完善等,故又称为可简约不确定性、主观不确定性等,认知不确定性是主要由于缺乏数据、认知偏差、信息不完备等因素引起的,是一种随着认识的深入和信息的增多而减少的不确定性。在工程实际中,往往随机和认知不确定性同时存在,贯穿于产品的整个全寿命周期。因此,混合不确定性下的产品可靠性分析至关重要。然而,现有的结构可靠性理论和方法主要建立在概率论与数理统计的基础上,相应的模型已较为完善,基于概率论与数理统计的可靠性理论与方法只能处理随机不确定性,而对认知不确定性则不能有效解决。现有复杂结构可靠性分析方法,大致可以分为两个部分:一是基于蒙特卡罗仿真和随机有限元的结构可靠性分析,这种方法的鲁棒性较好,为了保证一定的精度,往往需要大量重复的有限元分析计算,因此计算量较大,在工程中是难以接受的;二是基于代理模型的结构可靠性分析方法,通过相应的试验点设计,构建产品关键失效模式的代理模型,从而进行可靠性分析。需指出的是,现有基于代理模型的结构可靠性分析只考虑随机不确定性,而对认知不确定性不能有效解决。另外,现有方法受试验点的影响较大,所建立的代理模型只能在局部有一定的精度,而不能有效近似整个不确定性空间。因此,不同试验点往往导致得到不同的结果,误差较大,严重地影响其有效性。鉴于此,构建混合不确定性下的基于高效代理模型的结构可靠性分析方法,对于保障复杂产品的安全性和高可靠性有重要的现实意义及工程价值。
发明内容
为克服上述缺点,本发明提供一种混合不确定性下基于代理模型的结构可靠性分析方法。
本发明采用的技术方案为:一种混合不确定性下基于代理模型的结构可靠性分析方法,具体包括以下步骤:
S1、分析产品的运行环境、系统的组成和系统功能;确定产品的关键失效模式及失效机理;
S2、统计变量的信息和数据,采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;用最大似然估计法和卡方检验法对变量的分布参数及分布形式进行估计和检验;
S3、建立产品关键结构的有限元分析模型,并计算相关响应值;
S4、根据随机变量的分布产生随机数,根据随机数与随机变量的映射关系,得到随机变量样本集,根据随机变量样本集得到随机变量的近似取值区间,随机变量在近似取值区间和区间变量在区间变量所对应的区间上下界内产生一定数量的均匀分布样本;
S5、根据所有随机变量在各自近似取值区间和所有区间变量在各自区间变量所对应的区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,根据所有试验点以及步骤S3计算得到的响应值,得到Kriging代理模型的训练样本,根据得到的训练样本和Kriging原理,构建Kriging代理模型;
S6、根据步骤S5得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的可靠性灵敏度和失效概率;并计算失效概率的最小值和最大值。
本发明的有益效果是:本发明的一种混合不确定性下基于代理模型的结构可靠性分析方法,通过采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;并根据随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,建立Kriging代理模型,然后根据得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的失效概率和可靠性灵敏度,解决了混合不确定性下传统代理模型在局部有一定精度及传统可靠性分析计算量较大的难题,更加符合工程实际。本发明能显著的降低产品开发的费用、发现产品故障的实质,因此能显著地提高产品的可靠性。同时,本发明的一种混合不确定性下基于代理模型的结构可靠性分析新方法也适用于其他相关产品的可靠性分析,应用范围广阔。
附图说明
图1是本发明的方案流程图。
图2是本发明任意分布随机数的产生原理示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明内容作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,本实施例中的一种混合不确定性下基于代理模型的结构可靠性分析方法,主要包括以下步骤:
S1、分析产品的运行环境、系统的组成和系统功能;用FMEA或FMECA和加速寿命试验确定产品的关键失效模式及失效机理。
首先分析产品的运行环境、系统的组成和系统功能等;用FMEA(失效模式与影响分析,Failure Mode and Effects Analysis,简称FMEA)或FMECA(故障模式、影响和严重性分析,Failure Mode,Effects and Criticality Analysis,简称FMECA)和加速寿命试验等确定产品的关键失效模式及失效机理,并建立相应的性能函数。由于本步骤的FMEA和FMECA为现有技术,在此不做详细说明。
S2、统计变量的信息和数据,采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;用最大似然估计法和卡方检验法对变量的分布参数及分布形式进行估计和检验。
所述采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模。例如,结构的某些变量:尺寸、材料弹性模量、密度、泊松比、材料屈服强度等由于信息和数据较多,可用随机变量进行建模(如正态分布);由于认知偏差、经费等因素限制,如某一变量的相关信息及数据较少,则用区间变量进行建模。在对变量进行建模前需要统计变量的信息和数据,用最大似然估计法和卡方检验法对变量的分布参数及分布形式进行估计和检验。所述分布参数包括均值和方差等,这里提到的最大似然估计法和卡方检验为现有技术,本领域的普通技术人员可以根据现有资料得到,在此不再详细描述其具体过程。
S3、建立产品组成部件的有限元分析模型,并计算相关响应值;通过相关有限元分析软件,如ANSYS,对产品组成部件进行有限元分析计算。建立产品有限元后,可分析计算相关响应值。
所述的相关响应值可以根据具体问题进行确定,研究内容不同,响应值也不同。如响应值可以选择为节点的应力或者是位移量等。
上述产品组成部件包括构成产品的所有零部件,特别是组成产品的关键部件。以航空发动机为例,其组成部件包括涡轮盘、涡轮叶片、电缆等,其中涡轮盘、涡轮叶片等是关键部件。
S4、根据随机变量的分布产生随机数,根据随机数与随机变量的映射关系,得到随机变量样本集,根据随机变量样本集得到随机变量的近似取值区间,随机变量在近似取值区间和区间变量在各自区间上下界内产生设定数量的均匀分布样本。
区间上下界根据统计专家经验以及现有数据得到区间变量的取值样本,然后根据统计得到的样本中的最小值和最大值构成区间的上下界;例如,根据咨询相关专家以及现有信息得到某个区间变量的样本有a个,这区间的上下界可分别初步确定为a个样本中的最大和最小值,例如a可取值为10个,本领域的普通技术人员应注意,此处取10个样本只为说明区间上下界的取值方法,在实际应用中并不限于10个样本。
所述的设定数量的均匀分布样本,通常产生均匀分布的样本量可为500-1000个,如估计系统失效概率较大,产生的样本量定为500个;反之为1000个。
首先采用MATLAB在区间[0,1]上产生N个随机数记本实施例中随机数的个数为N(N为自然数),如N可以取值为105,任意分布随机数的产生原理如图2所示,为随机变量,为随机变量的累积分布函数,为区间[0,1]上的任一随机数,为随机数的反函数。随机变量的任意随机数可以通过式产生,其可以借助现有软件如MATLAB进行实现。根据产生的样本,随机变量近似取值区间可以确定为min(·),max(·)分别表示取最小和最大值。
记[a,b]为任一区间,a≤b,则基于MATLAB软件产生的均匀分布随机数可表示为y=a+(b-a)rand(N,1)。
任一随机变量和任一区间变量分别在对应近似取值区间和对应区间上下界内产生的N1个均匀分布的样本可表示为:
S5、根据所有随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,根据所有试验点以及步骤S3计算得到的响应值,得到Kriging代理模型的训练样本,根据得到的训练样本和Kriging原理,构建Kriging代理模型;
首先,所有随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建极限状态方程的Kriging代理模型的试验点,表示为:
其中,式(3)和(4)中,i1,i2分别表示随机变量及区间变量的个数。把所有试验点作为输入,通过有限元分析计算所得的响应值记为zj,j=1,2,…,N1。则构建极限状态方程的Kriging代理模型的训练样本表示为:
其次,根据式(5)的训练样本和Kriging原理,则构建的Kriging代理模型可表示为:
式中,β为回归权重系数;fT(X,Y)为矢量X,Y的函数,即X为所有随机变量i1=1,2,…,n的矢量,Y为所有区间变量i2=1,2,…,m的矢量,为误差项。
Kriging是一种半参数化的插值技术,其原理是通过已知点的信息去模拟未知点的信息。在回归分析中,它包含了线性回归部分和非参数部分,其中非参数部分被视作随机过程的实现。由于本步骤的Kriging为现有技术,因此未对本步骤进行详细说明,但是本领域的普通技术人员可以根据上述的提示建立基于Kriging的代理模型。
S6、根据步骤S5得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的可靠性灵敏度和失效概率;并计算失效概率的最小值和最大值。
根据蒙特卡罗仿真方法计算区间变量任一取值下,如Y=yj的失效概率可表示为:
其中,yj表示矢量Y的第j个取值,Nmcs为产生随机数的样本量,表示代理模型的第i个响应值,i=1,2,…,Nmcs;I[·]称为指示函数;如果则I[·]=1,否则I[·]=0。
计算任一随机变量取值下的可靠性灵敏度可表示为:
其中,表示的分布参数,如均值和方差;的概率密度函数。比如服从均值μ和方差σ的正态分布,其概率密度函数为
计算失效概率的最小值、最大值。根据式(7),则失效概率的最小值及最大值为:
本发明的方法,通过采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;并根据随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,建立Kriging代理模型,然后根据得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的失效概率和可靠性灵敏度。本发明的方法能有效覆盖整个不确定性空间。解决了混合不确定性的情况下,传统代理模型仅在局部有一定精度及传统可靠性分析计算量较大等问题。从而可知本发明的方法更加符合工程实际。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (2)

1.一种混合不确定性下基于代理模型的结构可靠性分析方法,其特征在于,具体包括以下步骤:
S1、分析产品的运行环境、系统的组成和系统功能;确定产品的关键失效模式及失效机理;
S2、统计变量的信息和数据,采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;用最大似然估计法和卡方检验法对变量的分布参数及分布形式进行估计和检验;
S3、建立产品关键结构的有限元分析模型,并计算相关响应值;
S4、根据随机变量的分布产生随机数,根据随机数与随机变量的映射关系,得到随机变量样本集,根据随机变量样本集得到随机变量的近似取值区间,随机变量在近似取值区间和区间变量在区间变量所对应的区间上下界内产生设定数量的均匀分布样本;
S5、根据所有随机变量在各自近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,根据所有试验点以及步骤S3计算得到的响应值,得到Kriging代理模型的训练样本,根据得到的训练样本和Kriging原理,构建Kriging代理模型;
首先,所有随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建极限状态方程的Kriging代理模型的试验点,表示为:
<mrow> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>i</mi> <mn>1</mn> </msub> <mi>j</mi> </msubsup> <mo>,</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>i</mi> <mn>2</mn> </msub> <mi>j</mi> </msubsup> <mo>,</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>m</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
其中,式(3)和(4)中,i1,i2分别表示随机变量及区间变量的个数;
把所有试验点作为输入,通过有限元分析计算所得的响应值记为zj,j=1,2,…,N1;则构建极限状态方程的Kriging代理模型的训练样本表示为:
<mrow> <mo>(</mo> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>i</mi> <mn>1</mn> </msub> <mi>j</mi> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>i</mi> <mn>2</mn> </msub> <mi>j</mi> </msubsup> <mo>,</mo> <msup> <mi>z</mi> <mi>j</mi> </msup> <mo>,</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>m</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>)</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其次,根据式(5)的训练样本和Kriging原理,则构建的Kriging代理模型可表示为:
<mrow> <mover> <mi>z</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>f</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>)</mo> </mrow> <mi>&amp;beta;</mi> <mo>+</mo> <msup> <mi>r</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>)</mo> </mrow> <mover> <mi>&amp;alpha;</mi> <mo>^</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
式中,β为回归权重系数;fT(X,Y)为矢量X,Y的函数,即X为所有随机变量i1=1,2,…,n的矢量,Y为所有区间变量i2=1,2,…,m的矢量,为误差项;
S6、根据步骤S5得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的可靠性灵敏度和失效概率;并计算失效概率的最小值和最大值。
2.根据权利要求1所述的方法,其特征在于,通过采用FMEA或FMECA和加速寿命试验确定产品的关键失效模式及失效机理。
CN201510151288.7A 2015-04-01 2015-04-01 一种混合不确定性下基于代理模型的结构可靠性分析方法 Expired - Fee Related CN104750932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510151288.7A CN104750932B (zh) 2015-04-01 2015-04-01 一种混合不确定性下基于代理模型的结构可靠性分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510151288.7A CN104750932B (zh) 2015-04-01 2015-04-01 一种混合不确定性下基于代理模型的结构可靠性分析方法

Publications (2)

Publication Number Publication Date
CN104750932A CN104750932A (zh) 2015-07-01
CN104750932B true CN104750932B (zh) 2018-03-09

Family

ID=53590611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510151288.7A Expired - Fee Related CN104750932B (zh) 2015-04-01 2015-04-01 一种混合不确定性下基于代理模型的结构可靠性分析方法

Country Status (1)

Country Link
CN (1) CN104750932B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021001B (zh) * 2016-05-26 2019-04-16 熊猫电子集团有限公司 一种对环备份电子产品进行可靠性建模分析的方法
CN106202623B (zh) * 2016-06-27 2018-12-28 中国人民解放军装甲兵工程学院 基于Kriging算法的武器站多工况结构优化方法
CN106372278A (zh) * 2016-08-19 2017-02-01 电子科技大学 一种联合考虑输入参数不确定性和代理模型不确定性的灵敏度分析方法
CN107194024B (zh) * 2017-04-12 2019-03-26 中国地质大学(武汉) 基于支持向量机的边坡可靠性参数获取方法及装置
CN108733864B (zh) * 2017-04-25 2021-07-27 南京航空航天大学 一种基于支持向量机的飞机机翼结构全局灵敏度分析方法
CN107273609A (zh) * 2017-06-14 2017-10-20 电子科技大学 一种基于Kriging模型齿轮传动可靠性评估方法
CN107505842B (zh) * 2017-09-04 2020-07-31 重庆邮电大学 一种数控机床广义空间切削稳定性预测与优化方法
CN107563067A (zh) * 2017-09-06 2018-01-09 电子科技大学 基于自适应代理模型的结构可靠性分析方法
CN108491560B (zh) * 2018-01-24 2022-07-05 西北工业大学 屋架结构可靠性以及灵敏度计算方法
CN108763707B (zh) * 2018-05-21 2020-10-23 电子科技大学 混合不确定性下基于二阶鞍点近似的结构可靠性分析方法
CN109977571B (zh) * 2019-04-01 2021-07-16 清华大学 基于数据与模型混合的仿真计算方法及装置
CN110032811B (zh) * 2019-04-17 2021-01-05 电子科技大学 基于Copula函数的工业机器人电气驱动器的可靠性分析方法
CN110135084B (zh) * 2019-05-20 2023-01-13 河北工程大学 一种复杂不确定性条件下的农机半轴可靠性分析方法
CN110321650B (zh) * 2019-07-11 2021-06-22 电子科技大学 基于新型试验设计与权重响应面的结构可靠性分析方法
CN110941881A (zh) * 2019-10-16 2020-03-31 北京航空航天大学 一种基于混沌多项式展开的混合不确定性结构疲劳寿命分析方法
CN110781622B (zh) * 2019-10-23 2022-06-21 湖南大学 一种统一的概率区间混合不确定性传播分析方法
CN111382500B (zh) * 2020-02-20 2021-03-30 中国民航管理干部学院 一种航空发动机涡轮增压系统的安全性分析验证方法
CN113326569B (zh) * 2021-06-15 2023-08-04 中国航发沈阳发动机研究所 一种飞机发动机空气系统封严篦齿间隙许用范围确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901308B1 (en) * 2002-07-09 2005-05-31 The Regents Of The University Of California System level analysis and control of manufacturing process variation
CN102663176A (zh) * 2012-03-28 2012-09-12 北京航空航天大学 针对高可靠机械产品的主动可靠性分析评价方法
CN103646138A (zh) * 2013-12-03 2014-03-19 北京航空航天大学 基于贝叶斯理论的定时截尾加速验收抽样试验优化设计方法
CN104077445A (zh) * 2014-07-01 2014-10-01 北京航空航天大学 基于模糊理论的加速寿命试验统计分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901308B1 (en) * 2002-07-09 2005-05-31 The Regents Of The University Of California System level analysis and control of manufacturing process variation
CN102663176A (zh) * 2012-03-28 2012-09-12 北京航空航天大学 针对高可靠机械产品的主动可靠性分析评价方法
CN103646138A (zh) * 2013-12-03 2014-03-19 北京航空航天大学 基于贝叶斯理论的定时截尾加速验收抽样试验优化设计方法
CN104077445A (zh) * 2014-07-01 2014-10-01 北京航空航天大学 基于模糊理论的加速寿命试验统计分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"随机和认知不确定性下的结构可靠性方法研究";肖宁聪;《中国博士学位论文全文数据库工程科技Ⅱ辑》;20130515(第6期);C028-5 *

Also Published As

Publication number Publication date
CN104750932A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
CN104750932B (zh) 一种混合不确定性下基于代理模型的结构可靠性分析方法
CN107563067A (zh) 基于自适应代理模型的结构可靠性分析方法
US8234093B2 (en) Computational method for load enhancement factors
US11003738B2 (en) Dynamically non-gaussian anomaly identification method for structural monitoring data
Gao et al. An integrated reliability approach with improved importance sampling for low-cycle fatigue damage prediction of turbine disks
CN108445759B (zh) 一种传感器饱和约束下网络化系统的随机故障检测方法
CN107436983A (zh) 一种基于多元样本差异的o型橡胶密封圈寿命预测方法
CN105608263A (zh) 一种面向涡轮叶盘结构寿命概率分析的自适应处理方法
CN103983453A (zh) 一种航空发动机的执行机构和传感器故障诊断的区分方法
CN105786678A (zh) 一种基于相关性模型的测试性预计方法
CN105138770A (zh) 基于间接可靠性特征量的航天产品可靠性仿真评估方法
Zhuang et al. Statistical inference of the equivalent initial flaw size distribution for an anisotropic material with the dual boundary element method
Pokorádi Sensitivity investigation of fault tree analysis with matrix-algebraic method
Rocco et al. Global sensitivity analysis in a multi-state physics model of component degradation based on a hybrid state-space enrichment and polynomial chaos expansion approach
Li et al. Hybrid central–WENO scheme for the large eddy simulation of turbulent flows with shocks
Easterling Measuring the predictive capability of computational models: Principles and methods, issues and illustrations
Du et al. A general framework for fatigue reliability analysis of a high temperature component
Singh et al. Unified framework for developing two dimensional software reliability growth models with change point
CN112377177B (zh) 油藏采收率预测方法及装置
Umar Software testing defect prediction model-a practical approach
Nazir et al. Testability estimation model (TEM OOD)
CN106682347A (zh) 基于岩体结构面随机强度的非连续变形分析方法
Zhang et al. Key fault propagation path identification of CNC machine tools based on maximum occurrence probability
Zavvar et al. A method based on fuzzy system for assessing the reliability of software based aspects
Dwyer et al. Improvements in estimating software reliability from growth test data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180309

Termination date: 20210401

CF01 Termination of patent right due to non-payment of annual fee