CN104736476A - 一种用于有机凝胶及其热解产物的组合物及其制备方法,以及一种由该热解产物形成的电极和包含该电极的超级电容 - Google Patents

一种用于有机凝胶及其热解产物的组合物及其制备方法,以及一种由该热解产物形成的电极和包含该电极的超级电容 Download PDF

Info

Publication number
CN104736476A
CN104736476A CN201380053706.8A CN201380053706A CN104736476A CN 104736476 A CN104736476 A CN 104736476A CN 201380053706 A CN201380053706 A CN 201380053706A CN 104736476 A CN104736476 A CN 104736476A
Authority
CN
China
Prior art keywords
composition
gel
gathering
carbon
based compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380053706.8A
Other languages
English (en)
Other versions
CN104736476B (zh
Inventor
布鲁诺·杜福尔
雅尼克·比阿洛
雨果·多里
皮耶尔-埃克塞·帕罗达
菲利普·索恩塔格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutchinson SA
Original Assignee
Hutchinson SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchinson SA filed Critical Hutchinson SA
Publication of CN104736476A publication Critical patent/CN104736476A/zh
Application granted granted Critical
Publication of CN104736476B publication Critical patent/CN104736476B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/028Xerogel, i.e. an air dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/042Nanopores, i.e. the average diameter being smaller than 0,1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种非交联胶化碳基组合物和一种热解组合物,其分别形成一种含水聚合物凝胶及其一种多孔碳形式的热解产物。本发明也涉及其制备方法,并涉及一种由热解组合物形成的多孔碳电极,还涉及一种包含所述电极的超级电容。所述非交联胶化碳基组合物(G2)基于一种至少部分源自于(聚)苯酚R和(聚)甲醛F的树脂,并且包含至少一种水溶性阳离子聚电解质P。根据本发明,所述组合物形成了一种剪切稀化物理凝胶。依照本发明的一种包含单片碳的热解含碳组合物,其为所述非交联胶化碳基组合物的涂覆、交联、干燥及热分解产物,以微孔为主的所述单片碳能形成一种厚度小于1mm的超级电容电极。

Description

一种用于有机凝胶及其热解产物的组合物及其制备方法,以及一种由该热解产物形成的电极和包含该电极的超级电容
本发明涉及一种非交联胶化碳基组合物和一种热解组合物,其分别形成一种有机聚合物凝胶及其一种多孔碳形式的热解产物,并涉及其制备方法,还涉及一种包含所述热解组合物的多孔碳电极和包含该电极的超级电容。本发明尤其适用于适合装备电动汽车的超级电容。
超级电容是一种电能存储系统,特别有利于应用在需要输送大功率电能的领域。
它们所具备的快速充放电的能力和比大功率蓄电池更长的使用寿命使得它们成为许多应用中最有前途的选择。超级电容一般包括两个导电多孔电极的组合,该导电多孔电极拥有大的比表面积,并且浸没在离子电解液中,被称为分离器的一种绝缘膜所隔开,该绝缘膜允许电极间的离子传导性并阻止其间的电接触。每个电极都与一个金属集电器相接触,使其与外部系统的电流交换成为可能。在两个电极间的电位差的影响下,电解质中存在的离子被电极表面所吸引,呈现出相反的电荷,于是在每个电极的交界面上形成了电化学双层。电能于是被以静电的形式通过电荷分离存储了起来。
超级电容的电容值C的表达式与传统电容相同,即:
C=ε·S/t
其中,ε.是指介质的介电常数,S为电化学双层正对面积,t为电化学双层的厚度。
由于具有最大化比表面积的碳基电容和极薄的电化学双层(通常为几纳米厚)的使用,超级电容内可达到的电容值,仍然远远高于传统电容器一般能达到的电容值。为了提供电荷输送,这些碳基电容必须具有导电性;为了提供离子电荷输送和电化学双层在较大的表面积上的形成,这些碳基电容必须是多孔的;为了防止任何耗能寄生反应,这些碳基电容必须是化学惰性的。
储存在超级电容中的能量E是根据电容的传统表达式来定义的,即:
E=1/2
其中,V为所述超级电容的电位。
因此,电容值和电位值是两个基本参数,优化它们以提升能源的性能水平是很有必要的。电容值取决于通过电解液真正可接触到的多孔组织。事实上,当应用于运输领域中特别是应用于电动汽车时,为了限制超级电容的车载重量而拥有较高的能量密度是有必要的,而超级电容具有高质量的电容。超级电容的电位主要取决于所用电解液的性质,可以是有机电解液或者含水电解液。
将活性物质组成超级电容电极具有许多种可能。文件US-B2-6356432,US-A1-2007/0146967和US-B2-7811337描述了导电的多孔碳在稳定的有机粘结剂和溶剂中的分散情况,然后在集电器中取得了粘贴的涂层。此方法,具有如下的缺点:使用粘结剂会让系统变重,而对于储存能量来说并不具活性。
在电动车应用的背景之中,为了最大化该电极的比能,将含水电解液中的单片碳作为电极活性材料是最好的。为了实现高功率运行,通常大于1kW/kg,单片碳非常薄是很有必要的,单片碳的厚度只有几百微米且通常小于或等于0.5mm,并且其强度足够大,以免在如此小的厚度情况下破碎和变形。
为了制备超级电容电极上这样的单片碳,通常需将间苯二酚/甲醛(RF)凝胶进行热分解。事实上RF凝胶对于以单片形式存在的高孔隙度碳的制备特别有利,因为,它们价格低廉,并且能在水中使用,从而使根据制备条件而获得各种孔隙度和密度成为了可能。
然而,由于间苯二酚R和甲醛F的混合物前体在水中具有非常低的粘度,它不能被涂得足够薄,即通常小于1mm,而作为这种涂层的替代,为了在聚合反应完成后形成凝胶,选择将间苯二酚R和甲醛F的混合物前体置于闭式压模中。为了减少混合物对模具壁的粘附,给该模具提供一个一般氟化的不粘的涂层很有必要,这样就产生了较高的生产成本。
既有的用于超级电容电极的RF凝胶的另一个缺点是,因为它们是通过模具中液态前体的缩聚反应而得到的,所以它们是明显不可逆的化学凝胶。因此,一旦形成,该凝胶不能被再利用。此外,在高转化率的情况下,该凝胶变成疏水性的并沉淀析出,其在物质中包含机械应力因而具有更脆的属性。于是,很有必要使用一种方法将凝胶中现存的水去除掉,从而足够温和地防止凝胶结构破碎或者收缩,例如超临界干燥(对于气凝胶构造),冷冻干燥(对于晶胶构造),或在湿润的室内进行缓慢的干燥(对于获得干凝胶)。然后,干燥的凝胶在氮气中被高温热分解,从而得到单片多孔碳。
事实上,现有方法的一个局限为:当凝胶的厚度小于2mm时,由于残留应力,热分解过程中会出现单片的形变。事实上,为了获得具有上述小于或等于0.5mm厚度的碳电极,这些方法必须包含一个最终抛光/精馏的步骤,其具有以下缺点:价格昂贵,难以实施,并会产生相当大的材料损失。
举上面给出的现有技术的单片碳的制备的例子来说,从RF凝胶制备成超级电容电极,文件US-B2-6737445中可能提到了,为了在水中形成乳胶并在其中聚合R和F前体,该文件指导了高剂量的阳离子、阴离子或非离子表面活性剂的使用。一种不可逆的水化学凝胶被获得了,其不能被涂上很薄的涂层,该凝胶在气流下被干燥并进行热分解之后,一种其孔的尺寸相当于胶束的多孔碳基结构就获得了。
该工艺过程的另一个缺点在于该由碳所得的介孔结构,在超级电容的案例中,与一个主要的微孔结构比起来是不利的,该微孔结构是具有高比能量和高电容值的更优选择。此外,大量地使用表面活性剂被证明是代价高昂的。
另外,举现有技术的这些电极的制备的例子来说,“一种在干燥过程中维持间苯二酚-甲醛的孔隙率的新方法:使用阳离子聚电解质来保持溶胶凝胶的纳米结构的稳定,马里亚诺·M·布鲁诺等人,2010年”,该文章公开了一种源自RF水化学凝胶的介孔单片碳,其除了包含一种基于碳酸钠的碱性催化剂C之外,还包含一种包括聚二甲基二烯丙基氯化铵的阳离子聚电解质P,它能使保持空气干燥后的凝胶的孔隙率成为可能。该凝胶的制备使用如下摩尔比:R:F:C:P=1:2.5:9×10-3:1.6×10-2,且相应的浓度为:[4M]:[10M]:[0.036M]:[0.064M],从一开始就在C和P的存在下,R和F在70℃温度下反应24小时,完成聚合反应。本文所述的该不可逆的化学凝胶的一个主要缺点在于其所具备的非常低的粘度,这使得其完全不能以小于2mm的厚度被涂覆。
本发明的目的是提供一种非交联胶化碳基组合物和一种热解组合物,其分别形成一种水基聚合物凝胶和一种多孔碳形式的所述交联凝胶的热解产物,本发明通过特别使用了一种RF型凝胶,该凝胶通过直接涂覆和快速干燥而具有很薄的涂层,从而弥补了上述缺点。
出人意料的是,该目标实现了,申请人已刚刚发现了在R和F的前体和水溶性阳离子聚电解质P的水相中的在先溶解,随后就可以从这些溶解的前体得到沉淀预聚物,借助于该沉淀,使得获得一种非交联中间物理凝胶成为可能,该凝胶明显的是可逆的,并且其特别的剪切稀化性质给予该凝胶足够高的粘度从而允许根据一个适合于超级电容电极的非常小的厚度来进行涂层制作。
根据本发明的一种非交联胶化碳基组合物是基于一种至少部分源自于(聚)苯酚和(聚)甲醛的树脂,并且至少包含一种水溶性阳离子聚电解质P,而该组合物是这样的,其以非交联胶化状态形成(即在该胶化组合物交联之前)一种剪切稀化物理凝胶。
根据本发明的另一个特点,该组合物包括所述沉淀预聚物,其为一种形成所述剪切稀化凝胶的沉淀预聚物,其为(聚)苯酚R、(聚)甲醛F、所述至少一种阳离子聚电解质P和催化剂C溶于水溶剂W中的水溶液发生预聚沉淀反应的产物。
用已知的方式来说,“凝胶”这一术语是指胶体物质和液体的混合物,其自发地形成或者在催化剂作用下通过胶体溶液的絮凝和混凝而形成。应该回顾一下,化学凝胶和物理凝胶具有一个区别,那就是前者的结构是由化学反应而得到的,明显不可逆,而后者的结构是由大分子链间的聚集而得到的,是可逆的。
还应该记得的是,术语“剪切稀化凝胶”是指一种具有流变特性的凝胶,它是非牛顿流体并且不受时间影响的,有时也描述其为假塑性流体,其特点在于其粘度随剪切速率的增加而减小。
术语“水溶性聚合物”是指一种无需加入添加剂(尤其是加入表面活性剂)就能溶于水的聚合物,与水分散性聚合物不同,当水分散性聚合物与水混合后,它能够形成分散状态。
应当指出的是,根据本发明所述的组合物具有能够以薄层的形式被使用和提升了机械性能的优点,它在非交联胶化状态包含了所述沉淀的预聚物,形成了一种剪切稀化可逆的凝胶。根据本发明,此中间物理凝胶具有足够的粘性,能以小于2mm的厚度被涂覆或塑造,接着,交联和干燥比传统的RF凝胶得到多孔干凝胶会更容易并且更快。相比之下,现有技术中未改性的RF树脂从其液态前体直接生成了一种不可逆的化学凝胶,该化学凝胶不能以薄层形式被涂覆,并且其以小厚度在凝胶的热分解过程中会变形。
事实上申请人已经发现所述阳离子聚电解质P具有混凝剂的效果并且使得中和聚酚R的酚盐电荷和因此限制预聚物胶体间的排斥力,以及提升在缩聚反应的弱转换下聚合物纳米粒子的构造和凝聚成为可能。另外,根据本发明,既然沉淀发生在该组合物的交联之前,那么当凝胶形成时,在强转换下该机械应力会比较弱。
因此,与现有技术中的含水凝胶相比,本发明中的胶化组合物通过简单的烘干,能更容易且更快地被干燥。事实上该烘干方法实施起来要简单得多,并且与溶剂置换干燥或超临界二氧化碳萃取相比较,其对凝胶产品成本的损害较小。
此外,申请人已经证明,与现有技术的热解凝胶相反,在其热分解过程中,甚至在其厚度小于1mm时,该干燥的胶化组合物(即干凝胶)不会发生变形。
还应当指出的是,所述至少一种聚电解质P使得维持干燥后的凝胶具有高的孔隙率并给予其低密度、大比表面积和高孔体积成为可能,根据本发明规定该凝胶主要是微孔的,它有利地使包含此热解凝胶的超级电容电极具有高比能量和高电容值成为可能。
优选的是,所述预聚合反应和沉淀反应的产品可包括:
——质量分数为0.5%至5%的所述至少一种阳离子聚电解质P,和/或
——所述至少一种阳离子聚电解质P和所述聚酚R,R/P质量比小于50,优选为10至25,和/或
——所述聚酚R和所述水溶剂W,R/W质量比为0.2至2,优选为0.3至1.3。
根据本发明所述的在组合物中适用的至少一种聚电解质P可以是任何阳离子聚电解质,其完全溶于水并且具有低的离子强度。
所述至少一种阳离子聚电解质P是一种有机聚合物,其从以下物质中优选,包括:季铵盐、聚氯化乙烯基吡啶、聚乙亚胺、聚乙烯基吡啶、聚烯丙胺盐酸盐,聚甲基丙烯酸乙酯基三甲基氯化铵、二甲基氯化铵丙烯酰胺共聚物和它们的混合物。
甚至更优选的是,所述至少一种阳离子聚电解质P是一种盐,其包括来源于选自聚二甲基二烯丙基卤化铵的季铵盐单元,并且优选聚二甲基二烯丙基氯化铵或聚二甲基二烯丙基溴化铵。
在作为所述树脂前体并且可用于本发明的聚合物之中,可提及的是那些来源于至少一种聚酚型单体和至少一种甲醛单体的缩聚反应。此聚合反应可能涉及两种以上不同的单体,该额外的单体可选聚酚型。该可用的聚酚优选二酚或三酚,并且最好选择间苯二酚(1,3-二羟基苯)或者间苯二酚与选自邻苯二酚、对苯二酚和间苯三酚中的另一种化合物的混合物。
例如,使用中可以0.3至0.7的R/F摩尔比采用(聚)苯酚R和(聚)甲醛F。
类似的优选有,根据本发明,一种处于非交联胶化状态的组合物具有一定粘度,可用布氏粘度计在25℃下测得,其剪切速率50转每分钟时,该粘度大于100mPa.s并且优选150mPa.s至10000mPa.s之间,据规定,在20转每分钟时,该粘度大于200mPa.s并且优选大于250mPa.s。
据本发明的另一个优越的特性,该组合物能在非交联胶化状态下以小于2mm优选小于1.5mm的涂层厚度被涂覆。
依照本发明的一种热解碳基组合物,包含优选以微孔为主的单片碳,其特征在于,其为如以上定义的一种非交联胶化组合物的涂覆、交联、干燥和热分解的产物,所述单片碳能形成厚度小于1mm且优选小于或等于0.5mm的超级电容电极。
应当指出的是,这种根据本发明能获得的必要的微孔结构的特征明显在于其小于2nm的孔径,比如与在上述文章中获得的那些介孔结构相反,而它们的特征明显在于包含2nm至50nm的孔径。
根据本发明的另一个特点,在热解状态,所述组合物具有:
——0.1至1.2的密度和/或
——大于400m2/g的比表面积和/或
——0.2至0.8cm3/g的孔体积
优选的是,根据本发明的一种组合物能够在热解状态下形成超级电容电极,其具有小于1mm且优选小于或等于0.5mm的厚度。
根据本发明,一种制备如上定义的碳基组合物的方法,包含:
a)为了得到一种水溶液,在所述至少一种阳离子聚电解质P和催化剂的存在下,将所述(聚)苯酚R和(聚)甲醛F溶解于水溶剂W中。
b)进行预聚合反应,直到步骤a)所得的溶液发生沉淀,从而得到一种沉淀预聚物,形成所述非交联胶化碳基组合物。
c)以小于2mm并优选小于1.5mm的厚度涂覆或塑造步骤b)中所得到的沉淀预聚物。
d)将步骤c)中涂覆或塑造的凝胶优选在潮湿的烘箱中进行交联并干燥,从而得到一种形成多孔干凝胶的干燥交联胶化组合物,然后
e)将步骤d)中得到的干燥的组合物进行热分解,从而得到所述多孔碳形式的热解组合物,其优选为单片。
在步骤a)中,优选使用的是:
——质量分数在0.5%至5%之间的所述至少一种阳离子聚电解质P,和/或
——所述至少一种阳离子聚电解质P和所述(聚)苯酚R,R/P质量比小于50,优选为10至25,和/或
——所述(聚)苯酚R和所述水溶剂W,R/W质量比为0.2至2,优选为0.3至1.3。
同样地,步骤a)优选实施如下:
a1)将所述(聚)苯酚R溶解于所述水溶剂W,优选包含水,
a2将所述(聚)甲醛F,所述酸或碱催化剂C和所述至少一种阳离子聚电解质P加入步骤a1)所得的溶液中,然后
a3)搅拌获得的该混合物,并调节其pH值。
同样地,步骤b)在一个反应器中优选实施,例如将其浸没在50-70℃油浴中。
借助在步骤a)中可用的催化剂,例如其可以是酸性催化剂:例如盐酸、硫酸、硝酸、乙酸、磷酸、三氟乙酸、三氟甲磺酸、高氯酸、草酸、甲苯磺酸、二氯乙酸或甲酸的水溶液;或者其也可以是碱性催化剂:例如碳酸钠、碳酸氢钠、碳酸钾、碳酸铵、碳酸锂、氨水、氢氧化钾和氢氧化钠。
应当指出的是,根据本发明所述的该制备热解胶化组合物的方法,具有容易实施和实施成本低的优点,从而得到一种优选的单片碳,并且通过涂覆,必要的微孔使得获得小厚度的平片成为可能。
根据本发明,一种多孔碳电极可用于装备一种超级电容电池,当其被浸没在含水离子电解液中并覆盖金属集电器时,该电极是这样的:它在热解状态包含一种如上定义的碳基组合物,并且其厚度小于1mm且优选小于或等于0.5mm。
根据本发明所述的一种超级电容包含电池,每个包括至少两个多孔电极,一个将这些电极彼此分离的电绝缘膜和一种这些电极浸没在其中的离子电解液;而每个电池包括至少两个分别被这些电极覆盖着的集电器,并且该超级电容是这样的:这些电容中的至少一个是上面所定义的。
本发明的其他特点、优点和细节将会在阅读下述发明的几个实施例的说明书中出现,其以非限制性说明的方式将说明书和参考图1并给出,其中:
该单图是一张显示在25℃测得的一种依照本发明所述的非交联胶化碳基组合物G2和一种“控制”非交联胶化组合物G0的粘度变化(单位mPa.s)图,其作为布氏粘度计测得的旋转剪切速率的函数。
碳基组合物的制备实施例:
与三种“控制”胶化组合物G0、G0'和G0"及其相应的G0'和G0"的“控制”热解产物C0'和C0"相比,下述实施例说明了本发明所述的四种胶化组合物G1至G4的制备,并说明了本发明所述的四种热解组合物C1至C4的制备,它们分别由G1至G4热分解而获得。
为了得到该胶化组合物G1至G4以及G0、G0'和G0",下列试剂被用于间苯二酚R和甲醛F的缩聚反应中:
——来源于Acros Organics公司的间苯二酚(R),纯度98%,
——来源于Acros Organics公司的甲醛(F),纯度37%,
——催化剂(C)包含碳酸钠和
——聚二甲基二烯丙基氯化铵(P),纯度35%(在水溶液W中),用于凝胶G1至G5。
该“控制”胶化组合物G0包含一种由间苯二酚R和甲醛F严格按照上述现有技术文件中描述的实验条件制备的凝胶,“一种在干燥过程中维持间苯二酚-甲醛的孔隙率的新方法:使用阳离子聚电解质来保持溶胶凝胶的纳米结构的稳定,马里亚诺·M·布鲁诺等人,2010年”,即摩尔比R:F:C:P=1:2.5:9×10-3:1.6×10-2,且相应的浓度为[4M]:[10M]:[0.036M]:[0.064M],在C和P的存在下,立即将R和F在70℃温度下反应24小时,完成聚合反应。
为了制备组合物G1至G4和G0'及G0",上述试剂根据以下配比使用:
——R/F:间苯二酚和甲醛之间的摩尔比,
——R/W:间苯二酚和水之间的质量比,
——P表示聚电解质的质量分数,
——R/P:间苯二酚和聚电解质之间的质量比,还有
——R/C:间苯二酚和催化剂之间的质量比
首先,对于每一种组合物而言,将相同数量的间苯二酚溶解于蒸馏水中。然后,将以下物质加入到该溶液中:甲醛,碳酸钙溶液和包含35%的聚二甲基二烯丙基氯化铵溶液的聚电解质,只为制备组合物G1至G4。磁力搅拌10分钟之后,使用1M的Na2CO3溶液,为得到组合物G1至G4和G0',pH值被调节到6.5;为得到组合物G0",pH值被调节到6。于是,由一种基于前体R和F的非聚合物的水溶液得到了每种组合物G1至G4和G0'及G0"。
其次,所得各个水溶液中的预聚合反应,于50℃至70℃,在浸没在油浴中的反应器里进行,直到获得沉淀预聚物,该反应在一段酌情而定反应时间之后,大约为5分钟到1小时,从而形成剪切稀化的均匀的可逆性的中间体白色凝胶。所得每个剪切稀化的凝胶的粘度于25℃下使用布氏粘度计被测得,并且在50转每分钟的剪切速率下,该组合物G1至G4的粘度大约处于200mPa.s至7100mPa.s之间。
至于该“控制”组合物G0'和G0",它们发生了不可逆的交联,它们的粘度发生了突变,与组合物G1至G4相反,它们不具有一种剪切稀化的凝胶的中间体形式。
以下的表1给出了制备本发明中的凝胶G1至G4和三种“控制”凝胶G0(据上述马里亚诺·M·布鲁诺等人的文章)、G0'和G0"的反应条件的细节,还给出了用布氏粘度计在25℃下,于50转每分钟的剪切速率测得的这些凝胶相应的粘度μ。
表1
使用Malvern纳米激光粒度仪ZS通过动态光散射测得这些凝胶G1至G4呈现出大约100nm的聚合物粒径。
以薄膜的形式涂覆该由组合物G1至G4形成的剪切稀化可逆凝胶,此后用薄膜涂布器以1至2mm的湿膜厚度进行涂覆,然后,由组合物G0'和G0"形成的该不可逆凝胶以2mm的湿膜厚度被放置于涂覆的钢模具上。应当指出的是,这些G0'和G0"凝胶只能在模具中被处理,因为它们不能被涂覆。
该涂覆的胶化组合物G1至G4随后在90℃的潮湿的烘箱中交联反应24小时。由此产生的交联胶化组合物随后在85℃和85%的湿度环境下被干燥6小时。
这些交联胶化组合物G1至G4和G0'以及G0",此后在800℃下于氮气中被进行热分解,从而获得相应的单片碳C1至C4和C0'以及C0"。该平坦的单片,被认为能用于形成电极,被加工成固定的厚度,并且其通过该单片的质量/体积比来测量碳的密度从而被表征,通过TRISTAR 3020比表面和孔隙分析仪来测定比表面积和孔隙体积从而被表征。
表2
如表2所示,特别是通过对热解组合物C1至C4和C0'以及C0"之间的比较(例如查看C2和C0'),微孔C1-C4单片碳实质上具有与现有技术中由RF凝胶制备的单片碳相似的密度和比表面积,并且其由剪切稀化凝胶G1-G4的薄膜通过简单涂覆而获得。另外,这些C1-C4单片以非常薄的厚度直接获得,从而限制了材料的损失。
申请人此外还将本发明所述的为了胶化组合物G1-G4而制得的剪切稀化凝胶与不依照本发明所得的组合物进行了比较,发现由于各种剪切聚合物向通过组合物G0'和G0"而获得的凝胶中的加入而产生了不同。无论该剪切稀化剂将何种组合物纳入了这些凝胶中,每次这都导致单片的断裂,随后通过这些凝胶的热分解而获得。
包含热解组合物C1至C4和C0'以及C0"的电极的平均比电容:
该电极的电容值通过使用如下设备和进行电化学测试来完成电化学表征。被分离器绝缘的两个相同的电极被串联置于一个超级电容中,测量元件包含基于硫酸(1M H2SO4)的含水电解液并通过一个三电极界面而被一个“生物逻辑VMP3”稳压器/恒流器所控制。一个第一电极相当于工作电极和既包括反电极又包括参比电极的第二电极。
该装置在工作电极以0.125A/g的恒流I条件下进行充电-放电循环。
因为电位随着电荷的输送而线性地变化,该超级电容系统的电容值C可以从充放电过程中的斜率P而推导得出(知道C=I/p)。由于以质量的形式(m1=m2=m)该系统是对称的,则该平均比电容Cspe由此式定义:Cspe=2×C/m。
各种电极的性能水平被记录在下表中:
表3
该表3表明剪切稀化可逆中间体凝胶在使用R和F前体合成多孔碳的过程中的使用,使其能给予这些碳比电容,以相似的密度,其比电容如果不大于那么至少与那些现有技术中碳的比电容相近。

Claims (16)

1.一种形成含水聚合物凝胶的非交联胶化碳基组合物(G2),所述组合物基于一种至少部分来源于(聚)苯酚R和(聚)甲醛F的树脂,并且包含至少一种水溶性阳离子聚电解质P,其特征在于:
所述组合物形成了一种剪切稀化物理凝胶。
2.根据权利要求1所述的一种非交联胶化碳基组合物(G2),其特征在于:其包括一种形成所述剪切稀化凝胶的沉淀预聚物,其为(聚)苯酚R、(聚)甲醛F、所述至少一种阳离子聚电解质P和催化剂C溶于水溶剂W中的水溶液发生预聚沉淀反应的产物。
3.根据权利要求2所述的一种非交联胶化碳基组合物(G2),其特征在于:所述反应的产物包含质量分数为0.5%至5%的所述至少一种阳离子聚电解质P。
4.根据权利要求2或3所述的一种非交联胶化碳基组合物(G2),其特征在于:所述反应的产物包含所述至少一种阳离子聚电解质P和所述(聚)苯酚R,R/P质量比小于50,优选为10至25。
5.根据权利要求2-4中任一项权利要求所述的一种非交联胶化碳基组合物(G2),其特征在于:所述反应的产物包含所述(聚)苯酚R和所述水溶剂W,R/W质量比为0.2至2,优选为0.3至1.3。
6.根据权利要求1-5中任一项权利要求所述的一种非交联胶化碳基组合物(G2),其特征在于:
所述至少一种水溶性阳离子聚电解质P是一种有机聚合物,其从以下物质中选择,包括:季铵盐、聚氯化乙烯基吡啶、聚乙亚胺、聚乙烯基吡啶、聚烯丙胺盐酸盐,聚甲基丙烯酸乙酯基三甲基氯化铵、二甲基氯化铵丙烯酰胺共聚物和它们的混合物。
7.根据权利要求6所述的一种非交联胶化碳基组合物(G2),其特征在于:所述至少一种水溶性阳离子聚电解质是一种盐,其包括来源于选自聚二甲基二烯丙基卤化铵的季铵盐单元,并且优选聚二甲基二烯丙基氯化铵或聚二甲基二烯丙基溴化铵。
8.根据前述权利要求中任一项权利要求所述的一种非交联胶化碳基组合物(G2),其特征在于:其具有一定粘度,可用布氏粘度计在25℃下测得,其剪切速率为50转每分钟时,该粘度大于100mPa.s,并且优选150mPa.s至10000mPa.s之间。
9.根据前述权利要求中任一项权利要求所述的一种非交联胶化碳基组合物(G2),其特征在于:该组合物能以小于2mm且优选小于1.5mm的涂层厚度被涂覆。
10.一种包含一个单片碳的热解碳基组合物,其特征在于:该热解组合物为一种权利要求1-9任意一项所述的非交联胶化碳基组合物的涂覆、交联、干燥然后热分解的产物,以微孔为主的所述单片碳能形成厚度小于1mm且优选小于或等于0.5mm的超级电容电极。
11.根据权利要求10所述的热解组合物,其特征在于其具有:
——0.1至1.2的密度和/或
——大于400m2/g的比表面积和/或
——0.2至0.8cm3/g的孔体积
12.一种根据权利要求1-9中任一项所述的非交联胶化碳基组合物(G2)的制备方法,其特征在于其包括:
a)为了得到一种水溶液,在所述至少一种阳离子聚电解质P和催化剂C的存在下,将所述(聚)苯酚R和(聚)甲醛F溶解于水溶剂W中,
b)进行预聚合反应,直到步骤a)所得的溶液发生沉淀,从而得到一种沉淀预聚物,形成所述非交联胶化碳基组合物(G2),然后
c)以小于2mm并优选小于1.5mm的厚度涂覆或塑造步骤b)中所得到的沉淀预聚物。
13.根据权利要求12所述的一种非交联胶化碳基组合物(G2)的制备方法,其特征在于,在步骤a)中包含:
——质量分数为0.5%至5%的所述至少一种阳离子聚电解质P和/或
——所述至少一种阳离子聚电解质P和所述(聚)苯酚R,R/P质量比小于50,优选为10至25,和/或
——所述(聚)苯酚R和所述水溶剂W,R/W质量比为0.2至2,优选为0.3至1.3。
在步骤a)中实施:
a1)将所述(聚)苯酚R溶解于所述水溶剂W,优选包含水,
a2将所述(聚)甲醛F,所述酸或碱催化剂C和所述至少一种阳离子聚电解质P加入步骤a1)所得的溶液中,然后
a3)搅拌获得的该混合物,并调节其pH值。
步骤b)在反应器中实施,例如将其浸没在50-70℃的油浴中。
14.一种制备根据权利要求10或11所述的热解碳基组合物的方法,其特征在于,其包含:
a)为了得到一种水溶液,在所述至少一种阳离子聚电解质P和催化剂C的存在下,将所述(聚)苯酚R和(聚)甲醛F溶解于水溶剂W中,
b)进行预聚合反应,直到步骤a)所得的溶液发生沉淀,从而得到一种沉淀预聚物,形成所述非交联胶化碳基组合物(G2),
c)以小于2mm并优选小于1.5mm的厚度涂覆或塑造步骤b)中所得到的沉淀预聚物,
d)将步骤c)中涂覆或塑造的凝胶优选在潮湿的烘箱中进行交联并干燥,从而得到一种形成多孔干凝胶的干燥交联胶化组合物,然后
e)将步骤d)中得到的所述组合物进行热分解,从而得到多孔单片碳形式的所述热解碳基组合物。
15.一种多孔碳电极,当其被浸没在含水离子电解液中并覆盖金属集电器时,可用于装备一种超级电容电池,其特征在于,所述电极包含如权利要求10或11所述的一种热解碳基组合物,并且其厚度小于1mm且优选小于0.5mm。
16.一种超级电容包含电池,每个包括至少两个多孔电极,一个将这些电极彼此分离的电绝缘膜和一种浸没这些电极的离子电解液;而且每个电池包括至少两个分别被这些电极覆盖着的集电器,其特征在于:至少这些电容中的一个是权利要求15中所定义的。
CN201380053706.8A 2012-10-17 2013-10-08 一种用于有机凝胶及其热解产物的组合物及其制备方法,以及一种由该热解产物形成的电极和包含该电极的超级电容 Expired - Fee Related CN104736476B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1259892 2012-10-17
FR1259892A FR2996849B1 (fr) 2012-10-17 2012-10-17 Composition pour gel organique ou son pyrolysat, son procede de preparation, electrode constituee du pyrolysat et supercondensateur l'incorporant.
PCT/IB2013/059206 WO2014060904A1 (fr) 2012-10-17 2013-10-08 Composition pour gel organique et son pyrolysat, son procede de preparation, electrode constituee du pyrolysat et supercondensateur l'incorporant.

Publications (2)

Publication Number Publication Date
CN104736476A true CN104736476A (zh) 2015-06-24
CN104736476B CN104736476B (zh) 2017-03-29

Family

ID=47425107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380053706.8A Expired - Fee Related CN104736476B (zh) 2012-10-17 2013-10-08 一种用于有机凝胶及其热解产物的组合物及其制备方法,以及一种由该热解产物形成的电极和包含该电极的超级电容

Country Status (12)

Country Link
US (2) US10526505B2 (zh)
EP (1) EP2909138A1 (zh)
JP (1) JP6371771B2 (zh)
KR (1) KR20150083089A (zh)
CN (1) CN104736476B (zh)
BR (1) BR112015008422A2 (zh)
CA (1) CA2888484A1 (zh)
FR (1) FR2996849B1 (zh)
MX (1) MX2015004832A (zh)
RU (1) RU2648326C2 (zh)
WO (1) WO2014060904A1 (zh)
ZA (1) ZA201502681B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163808A (zh) * 2014-02-12 2016-11-23 哈钦森公司 包括有机气凝胶的真空绝缘板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996849B1 (fr) 2012-10-17 2015-10-16 Hutchinson Composition pour gel organique ou son pyrolysat, son procede de preparation, electrode constituee du pyrolysat et supercondensateur l'incorporant.
FR2996850B1 (fr) * 2012-10-17 2016-01-08 Hutchinson Composition thermiquement isolante pour gel monolithique organique ou son pyrolysat, son utilisation et son procede de preparation.
US20170029574A1 (en) * 2014-04-07 2017-02-02 Hutchinson Gelled, crosslinked and non-dried aqueous polymeric composition, aerogel and porous carbon for supercapacitor electrode and processes for preparing same
FR3022248B1 (fr) 2014-06-11 2018-02-16 Hutchinson Composition polymerique aqueuse gelifiee, composition carbonee pyrolysee qui en est issue pour electrode de supercondensateur et leurs procedes de preparation.
EP3045901A1 (en) 2015-01-19 2016-07-20 Hutchinson S.A. Use of high specific surface area carbon materials as counter electrode for electrochemical measurements
CN105977046A (zh) * 2016-07-28 2016-09-28 北京化工大学 一体化超级电容器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2080736A1 (de) * 2008-01-17 2009-07-22 Evonik Degussa GmbH Kohlenstoff-Aerogele, Verfahren zu deren Herstellung und deren Verwendung
US7666380B2 (en) * 2001-07-13 2010-02-23 Kent State University Imprinted mesoporous carbons and a method of manufacture thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775158A (en) * 1971-10-18 1973-11-27 Du Pont Composite article containing an alpha-olefin hydrocarbon copolymer
US4873218A (en) 1988-05-26 1989-10-10 The United States Department Of Energy Low density, resorcinol-formaldehyde aerogels
US5744510A (en) 1995-04-25 1998-04-28 Regents Of The University Of California Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures
US5877100A (en) * 1996-09-27 1999-03-02 Cabot Corporation Compositions and insulation bodies having low thermal conductivity
FR2773267B1 (fr) 1997-12-30 2001-05-04 Alsthom Cge Alkatel Supercondensateur a electrolyte non aqueux et a electrode de charbon actif
US6297293B1 (en) 1999-09-15 2001-10-02 Tda Research, Inc. Mesoporous carbons and polymers
EP1280215A1 (fr) * 2001-07-26 2003-01-29 University of Liege Matériau carboné poreux
US7167354B2 (en) 2002-02-12 2007-01-23 Tda Research, Inc. Mesoporous carbons and polymers from hydroxylated benzenes
FR2837493B1 (fr) * 2002-03-20 2004-05-21 Commissariat Energie Atomique Aerogel a base d'un polymere ou copolymere hydrocarbone et leur procede de preparation
DE10357539A1 (de) 2003-12-10 2005-07-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Herstellung von füllstoffhaltigen Aerogelen
CN101313376A (zh) 2005-11-22 2008-11-26 麦斯韦尔技术股份有限公司 具有可控碳含量的超级电容器
KR100805303B1 (ko) 2006-10-27 2008-02-20 한국기계연구원 다중적 기공구조를 가지는 다공성 세라믹 재료 및 그제조방법
US20080201925A1 (en) 2007-02-28 2008-08-28 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled sulfur content
US7948739B2 (en) * 2007-08-27 2011-05-24 Nanotek Instruments, Inc. Graphite-carbon composite electrode for supercapacitors
DE102008030921A1 (de) 2008-07-02 2010-01-07 Bayerisches Zentrum für Angewandte Energieforschung e.V. Mikro- und mesoporöses Kohlenstoff-Xerogel mit charakteristischer Mesoporengröße und dessen Vorstufen, sowie ein Verfahren zur Herstellung dieser und deren Anwendung
KR20090118200A (ko) * 2008-05-13 2009-11-18 엠파워(주) 카본 에어로겔의 제조방법 및 그 제조방법에 의하여 제조된카본 에어로겔
US20110024698A1 (en) * 2009-04-24 2011-02-03 Worsley Marcus A Mechanically Stiff, Electrically Conductive Composites of Polymers and Carbon Nanotubes
US8889751B2 (en) * 2010-09-28 2014-11-18 Allergan, Inc. Porous materials, methods of making and uses
ES2623475T3 (es) * 2010-05-11 2017-07-11 Allergan, Inc. Composiciones de porógenos, métodos para hacerlas y usos
US9365691B2 (en) * 2010-08-06 2016-06-14 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using intrepenetrating inorganic-organic composite gels
FR2996849B1 (fr) 2012-10-17 2015-10-16 Hutchinson Composition pour gel organique ou son pyrolysat, son procede de preparation, electrode constituee du pyrolysat et supercondensateur l'incorporant.
FR2996850B1 (fr) 2012-10-17 2016-01-08 Hutchinson Composition thermiquement isolante pour gel monolithique organique ou son pyrolysat, son utilisation et son procede de preparation.
WO2015121541A1 (fr) * 2014-02-12 2015-08-20 Hutchinson Aérogel composite flexible et procédé de fabrication
EP3113874B1 (fr) 2014-03-04 2018-05-09 Hutchinson Composition gelifiee pour gel monolithique organique, ses utilisations et son procede de preparation
US20170029574A1 (en) * 2014-04-07 2017-02-02 Hutchinson Gelled, crosslinked and non-dried aqueous polymeric composition, aerogel and porous carbon for supercapacitor electrode and processes for preparing same
FR3043404B1 (fr) * 2015-11-05 2017-11-24 Hutchinson Ionogel formant un film autosupporte d'electrolyte solide, dispositif electrochimique l'incorporant et procede de fabrication de l'ionogel.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666380B2 (en) * 2001-07-13 2010-02-23 Kent State University Imprinted mesoporous carbons and a method of manufacture thereof
EP2080736A1 (de) * 2008-01-17 2009-07-22 Evonik Degussa GmbH Kohlenstoff-Aerogele, Verfahren zu deren Herstellung und deren Verwendung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163808A (zh) * 2014-02-12 2016-11-23 哈钦森公司 包括有机气凝胶的真空绝缘板

Also Published As

Publication number Publication date
ZA201502681B (en) 2016-01-27
RU2015118267A (ru) 2016-12-10
EP2909138A1 (fr) 2015-08-26
CA2888484A1 (fr) 2014-04-24
US10526505B2 (en) 2020-01-07
RU2648326C2 (ru) 2018-03-23
JP2015534935A (ja) 2015-12-07
WO2014060904A1 (fr) 2014-04-24
US20190382614A1 (en) 2019-12-19
FR2996849B1 (fr) 2015-10-16
CN104736476B (zh) 2017-03-29
JP6371771B2 (ja) 2018-08-08
US20150299508A1 (en) 2015-10-22
MX2015004832A (es) 2016-01-08
FR2996849A1 (fr) 2014-04-18
KR20150083089A (ko) 2015-07-16
BR112015008422A2 (pt) 2017-07-04

Similar Documents

Publication Publication Date Title
CN104736476A (zh) 一种用于有机凝胶及其热解产物的组合物及其制备方法,以及一种由该热解产物形成的电极和包含该电极的超级电容
Shi et al. Nanostructured conducting polymer hydrogels for energy storage applications
Kim et al. Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics
Bridel et al. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries
US20170029574A1 (en) Gelled, crosslinked and non-dried aqueous polymeric composition, aerogel and porous carbon for supercapacitor electrode and processes for preparing same
CN109980162B (zh) 一种聚磷腈包覆陶瓷颗粒及其在锂离子电池隔膜中的应用
US6482299B1 (en) Polymer gel electrode
RU2627699C2 (ru) Углеродистая композиция для электрода суперконденсаторного элемента, электрод, способ его изготовления и содержащий его элемент
CN103258990A (zh) 锂硫电池正极材料及其制备方法
Ma et al. Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance
CN102067359A (zh) 二次电池的负极活性材料以及包含该负极活性材料的二次电池电极和二次电池及其制造方法
JP2008117648A (ja) 電気化学セル
CN109071747A (zh) 高密度微孔碳及其制备方法
JP2001319655A (ja) ポリキノキサリンエーテルを用いた2次電池及びキャパシター
EP3085432B1 (en) Separator for an electrochemical device and method for the production thereof
CN108884394B (zh) 碳凝胶阳极材料及其制备方法
US6720109B1 (en) Secondary battery and material therefor
KR101953114B1 (ko) Isg 시스템용 울트라 전지의 전극 및 이의 제조방법
CN106573777B (zh) 凝胶化水性聚合物组合物,由其制备的超级电容器电极用经热解碳基组合物,及其制备方法
CN102426929A (zh) 超级电容器氧化钌电极的制备方法
CN111430790A (zh) 半固态电解质及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170329

Termination date: 20201008